
TLP 5 (3): 391–399, 2005. C© 2005 Cambridge University Press

Printed in the United Kingdom

391

Book reviews

doi:10.1017/S1471068405212449

Programming in Prolog. Using the ISO Standard. by William F. Clocksin, Christopher

S. Mellish, Springer-Verlag, 2003, ISBN 3-540-00678-8, xiii + 299 pages.

This is the fifth and most recent edition of a legendary book whose first edition

dates from 1981. It was probably the first introductory Prolog book and it still

is the most gentle introduction to Prolog for everyone, including non-computer

scientists. The authors make very few assumptions indeed about the computer

science knowledge and programming skills of their readers. Even so, the book

covers most of the Prolog language.

The first edition was based on the de facto Edinburgh Prolog standard. Obviously,

with the appearance of the ISO Prolog Standard, a new edition of the book needed

to adapt to ISO, and that is the reason for the subtitle Using the ISO Standard. Other

changes were introduced as well and this review mentions some of the differences,

but mainly concentrates on the current contents, independent of the history involved.

The Preface of the book sketches the rationale behind the book and the new

edition. It also lists in a table differences between the new and the old editions

related to switching from the de facto standard to ISO. These differences are related

to syntax and built-in predicates. There are surprisingly few differences and they are

small.

The book consists of eleven chapters

1. Tutorial Introduction

2. A Closer Look

3. Using Data Structures

4. Backtracking and the “Cut”

5. Input and Output

6. Built-in Predicates

7. More Example Programs

8. Debugging Prolog Programs

9. Using Prolog Grammar Rules

10. The Relation of Prolog to Logic

11. Projects in Prolog

and 4 appendices:

A Answers to Selected Exercises

B Clausal Form Program Listings

C Writing Portable Standard Prolog Programs

D Code to Support DCGs

https://doi.org/10.1017/S1471068405212449 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405212449


392 Book reviews

The first chapter in any book on Prolog is the most difficult one: how to introduce

gradually a whole bunch of connected concepts (and terminology) without getting

sidetracked or forgetting certain essentials. The authors do a very good job here: after

general remarks about objects and relationships, and the nature of programming,

(ground) Prolog facts are introduced as a means to model the knowledge contained

in simple English sentences. This is followed immediately by showing how such facts

can be queried. Newbie questions in comp.lang.prolog show that at this point, the

book would benefit from an explicit statement that facts like likes(john,mary). are

not in the Prolog database at startup (and refer to the relevant section in the book).

This chapter next discusses variables, conjunctions (in queries), a first example where

backtracking happens, and rules. At the end of this chapter, the reader is familiar

with datalog. A set of exercises concludes this chapter.

Chapter 2 starts by taking a closer look at the syntax of terms and clauses. There is

a lot of fine-print in Prolog syntax, but most programmers never need to know it, so

the book justifiably does not go into all the details. That it does not mention the ISO

syntax for character codes (like 0’a for the ASCII 97), seems however a more serious

oversight, especially in view of the footnote on page 229 which suggests that the

notation "a" for [97] should be used in some implementations: "a" is legal syntax

but its meaning is not defined by ISO. Equality of terms (unification or matching)

and arithmetic are also covered explicitly at this stage. Most importantly, chapter 2

introduces diagrams with boxes containing a goal and an arrow that illustrates the

flow of control: this visualization of the execution of Prolog is extremely helpful

and is later in the book used for explaining other concepts like backtracking, the

cut and debugging. In the first edition, these diagrams looked like a wiggly snake in

a Prolog database: the current form is much better.

Chapter 3 introduces data structures which are drawn as trees of Prolog terms

and lists. The first recursive predicate now follows naturally: member/2. The chapter

goes on with recursive predicates and compound data structures. At the end, we

find two new sections on accumulators and difference structures.

There are two negative points about chapter 3: on page 56, the original edition

contained an explanation which (rather strangely) links left-recursive rules to the

order of rules. In the current edition, two code snippets were switched without

adapting the text and it now makes even less sense than before. On pages 59/60,

there is an albeit nice example which would have been worth reconsidering in the

section on cut. Or at least in the section on cut, the reader could have been asked

to reconsider the code on pages 59/60.

Chapter 4 explains in detail backtracking and the cut. Understanding backtracking

is central to programming in Prolog and the explanation of backtracking is repeated

in the context of several concrete programming examples later in the book as well.

This is nice work: it makes use of the diagrams introduced in chapter 2, this time

with nested boxes. The cut is also explained very well and with the same diagrams.

This is also the natural place to introduce the Prolog negation \+/1. The authors

devote some space to the common uses and the pitfalls of the cut. In particular they

show that a cut should be placed before the output unification (an issue related

to steadfastness), but too many of the example predicates in the book are not

https://doi.org/10.1017/S1471068405212449 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405212449


Book reviews 393

steadfast! Another critique related to cuts in the programs in the book, is that there

are so many of them. The book would have gained a lot if the Prolog if-then-else

construct would have been introduced in this very same chapter, and if subsequently

a series of quite ugly programs had been cleaned up. One more negative point: on

page 89, the text seems to argue that placing a cut in the body of the first clause

(the fact) of append/3, will increase space and time efficiency. This is not true. It

is understandable that the authors have chosen not to talk about first argument

indexing, but that does not justify wrong statements. Another Example of that kind

(related to the silence about indexing) can be found on page 146 where it is strongly

suggested that Prolog must do a linear search in a database of ground facts, even if

the first argument is instantiated.

A chapter about input and output is unavoidable in an introductory textbook

on any programming language: it is never exciting and the current book makes no

exception, but the example programs are OK. This chapter is adapted to the ISO

standard, albeit in a minimalistic way: the authors stick to the DEC-10 see/seeing

style which changes the current streams using the ISO built-ins current input/1 and

set input/1, warning for the pitfalls, but failing to point out the more safe I/O

predicates that take the stream as their first argument. At the end of this chapter,

there is a list of most important ISO Prolog operators: for some reason the quoting

of the operators is inconsistent and backslashes in quoted atoms were not doubled.

Also, the ISO style of op/3 with a list of atoms in the third argument should have

been followed. Still related to operators: on page 178 it is written that we shall have

to declare a “ˆ” operator; however, “ˆ” is already an ISO operator. The subsequent

declaration in the book gives a non-ISO precedence and associativity for “ˆ” . . .

Chapter 6 goes into more detail about some built-in predicates some of which

were covered already earlier in the book. To name just some new ones: var/1 (and

friends), clause/2 (and friends), the functor/arg/univ triple, a series of predicates

to transform atomic objects to a list of characters, term comparison . . .The section

on dynamic predicates should have mentioned the logical database update view

adopted by ISO Prolog. Page 132 says that the query ?- number_chars(23,X).

could deliver the result X = [’2’,’3’,’.’,’0’]: that is not true in ISO Prolog.

The section named Constructing Compound Goals (which deals with conjunction,

disjunction, call/1 and \+/1) should have contained the Prolog if-then-else. The

section on arithmetic lists some arithmetic operators and concludes on page 140 with

the note: “Particular Prolog implementations may include more arithmetic operations

such as exponentiation and trigonometric functions”. This is misleading as ISO Prolog

defines both exponentiation and a whole lot of trigonometric functions, so every

ISO Prolog must have them.

Chapter 7 contains a selection of classic programs: a sorted tree, searching in

a maze, the towers of Hanoi, dealing with graphs . . .Both the problems and the

solution programs are nicely laid out: this chapter can be digested by a novice and

contains lots of interesting stuff. It is not clear why the authors choose to introduce

(the implementation of) findall/3 as an example program, instead of as an extremely

useful built-in predicate. Page 147 contains a figure that was adapted from the first

version and it looks nicer now, but unfortunately, cut&paste has introduced errors,

https://doi.org/10.1017/S1471068405212449 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405212449


394 Book reviews

and made the figure inconsistent with the text. The programs are mostly OK, but

cut is used too often and inconsistently. Examples of this are on pages 148 and 165.

Many of these programs would benefit from a rewrite in an if-then-else style.

Chapter 8 is about debugging Prolog programs: ISO says nothing about it, but

actual implementations do not differ much in their simple interface to the Byrd Box

Model. This model is explained very nicely and example traces show how to use it.

It includes spy-points and leashing. This chapter contains advice on program layout

(which the book regularly does not follow), a section on Common Errors (whose

first point is wrong: there is no need to have a return after the last dot in a program -

EOF is enough), and a section on Fixing Bugs. The update of the latter section is

already 10 years overdue: one cannot seriously describe the use of ?- [user]. (and

its pitfalls) as the main method for fixing a program, given the current user interfaces.

Definite Clause Grammars are explained in chapter 9, starting from a simple

English sentence analysis. It is a classic and satisfying explanation. The section

about Translating Language to Logic is particularly nice, because through DCGs it

shows the relation between natural language sentences and logic formulas: this is

what logic programming is about!

Chapter 10 explains how Prolog relates to (pure) Logic. A reader who just wants

to have a practical grasp on Prolog could skip this chapter, but nobody should

be afraid of tackling it: the authors have done a very good job starting from an

explanation of Predicate Calculus, going to Clausal Form, covering Resolution and

Theorem Provers, finally arriving at Horn Clauses and ending with Prolog. This

chapter should be reread regularly by old Prolog programmers.

Chapter 11 lists some small and medium-sized projects to be done by the interested

reader: the selection shows some of the areas Prolog is good at.

Appendix A contains the answers to selected problems: Prolog code plus explan-

ation. Not bad, but it should be cleaned up: indentation, layout and cuts are the

main issues. Page 269 and 270 introduce some extra typos compared to the first

edition, and it is suggested that the notation {X} is not ISO, while it is (page 290

states it correctly though).

Appendix B contains the code for translating a logic formula into clausal form:

it follows the explanation of chapter 10, but now we see the full Prolog code.

Appendix C is about Writing Portable Standard Prolog Programs. The only

sensible advice would have been to eschew anything that is not defined by the

standard, and in particular the issues that ISO has left implementation dependent or

implementation defined. Instead, the authors warn the reader that non-conforming

implementations might exhibit non-ISO behavior, which is like the empty statement.

A section which describes more clearly the differences between (say) DEC-10 Prolog

and ISO Prolog would have been more helpful. The programs given in this chapter

mimic ISO built-ins using predicates that were popular in the de facto standard: it

seems better for the individual programmer not to use these programs.

Appendix D contains the full code for DCG translation. It is not clear why the

authors wanted it in the book. Moreover the code and its comments still try to make

it work in a non-ISO system: it is one of the examples of the ambiguity of the book

which has not resolutely chosen for ISO.

https://doi.org/10.1017/S1471068405212449 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405212449


Book reviews 395

Overall, the book is as great as ever as an introductory text for Prolog. When a

newbie asks for an introduction to Prolog, the best advice is still Clocksin & Mellish.

Leaving the ISO issue aside, the book would benefit from correcting (sometimes

newly introduced) errors, cleaning up some programs (especially the cuts in them)

and introducing (and using) if-then-else.

People attracted by the subtitle Using the ISO Standard could feel left in the cold

by the actual ISO content of the book. There are many small errors related to

ISO in the book. One more example: the footnote on page 182 suggests that an

implementation that limits the applicability of clause/2 to dynamic predicates, is not

ISO conforming. Since dynamic predicates are public, and since an implementation

can limit public predicates to the dynamic ones, it follows that this is not true. There

are too many such points in the book.

The book also often fails in Using the ISO Standard in some of its programs. As

an example: the preface mentions explicitly that the arithmetic operators =:= and

=\= are introduced (they were not in the first edition), but the programs on page 175

and 268 do not use these operators while that would have been the natural thing to

do.

On top of that, there are at least two major areas in ISO that the book does not

even mention: the first one is the issue of modules. On page 189, the book advises to

split a large program over several files, but the concept of modules, neither the fact

that ISO Prolog has also a part that standardized modules is mentioned. The second

issue is the one of the ISO error mechanism: ISO Prolog prescribes it in detail

and beginning programmers are confronted with it from the start because badly

called built-in predicates throw an exception. The book should have explained the

mechanism: it is not prohibitively difficult. Moreover, on pages 8 and 119, the book

mentions only failure, failure+warning or error message as the ISO possibilities for

calling a non-existing predicate or calling arithmetic on non-numbers.

In conclusion: this is a great introduction to Prolog, but it is weak on the ISO

aspect.

Bart Demoen

K.U. Leuven, Belgium

doi:10.1017/S1471068405222445

Term Rewriting Systems by “Terese” (Marc Bezem, Jan Willem Klop, and Roel de

Vrijer, eds.), Cambridge University Press, Cambridge Tracts in Theoretical Computer

Science 55, 2003, hard cover: ISBN 0-521-39115-6, xxii + 884 pages.

The formal study of rewriting and its properties began in 1910 with the pioneering

work of Axel Thue, and has since developed into a major area of research. Broadly

speaking, rewriting is the study of normal forms, their existence, their uniqueness,

and their computation. As a discipline of computer science, term rewriting has

two main application areas: functional languages and their semantics; and equa-

tional reasoning and mechanical inference. Term Rewriting Systems provides a very

comprehensive treatment of the subject, mainly from the former point of view.

https://doi.org/10.1017/S1471068405212449 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405212449


396 Book reviews

The rhetorical question, “Who is Terese?” the ostensible author of the volume,

is answered in the prefatory pages. “Terese” is the pseudonym of the contributing

editors, Marc Bezem, Jan Willem Klop, and Roel de Vrijer, and their colleagues,

Erik Barendsen, Inge Bethke, Jan Heering, Richard Kennaway, Paul Klint, Vincent

van Oostrom, Femke van Raamsdonk, Fer-Jan de Vries, and Hans Zantema, who

all shared in the writing of this massive work. The authors were all, at one time or

another, members of the TeReSe (“Term Rewriting Seminar”) group, which held

regular meetings during the years 1988–2000 at the Vrije University in Amsterdam.

The genesis of this book went something like this: In the beginning, in 1985 c.e.,

Klop delivered a short course on term rewriting at a seminar in Naples. He reworked

the unpublished course notes into a tutorial for a 1987 issue of the Bulletin of the

European Association of Theoretical Computer Science. Then, in 1990, he gave a

lecture on rewriting at the International Colloquium on Automata, Languages

and Programming, held at Warwick University. This grew into a large chapter

in the Handbook of Logic in Computer Science (Oxford Univ. Press, 1992), which

was the twelfth most frequently cited paper in CiteSeer’s gigantic database of

online papers, circa 2000–2001, and remains high up on their list. Determined to

expand this material into a full-length book, the Terese team of contributors was

assembled.

Terese labored many years to bestow upon the scientific community a large

and appealing volume, comprising sixteen chapters, plus an appendix. This is not

a gentle introduction to the field (there are handbook chapters for that), but a

text that is both broad and deep. One or more of the editors authored or coaut-

hored ten of the chapters. Some are virtually full-length monographs; most are

comprehensive discourses; a few are bare-bones sketches. This is the first book to

provide rigorous coverage of topics such as standardization, neededness, and infinit-

ary rewriting. Algorithmic issues are played down. The chapters are complemented

by an encyclopedic bibliography of some 500 references, and an index.

Term Rewriting Systems starts off with an introductory Chapter 0, presenting three

examples of rewriting, well-chosen for their heterogeneity: a functional program

for integer division; Reidemeister moves for unravelling knots; and Jieh Hsiang’s

nondeterministic rules for computing the Zhegalkin (Boolean-ring) normal form of

a propositional formula.

As has become customary, as many of the basic concepts as possible are introduced

within the abstract framework of arbitrary binary relations. Thus, Chapter 1, by

Bezem and Klop, defines (and fixes notations for) the fundamental notions of

confluence, including the Church-Rosser property (CR), and of normalization – in

both its weak (WN, that is, existence of normal forms) and strong (SN, or, uniform

termination) forms. Then it goes on to enumerate the relations between the notions,

most notably the 1942 result of Max Newman that local confluence (WCR) and

strong normalization imply the Church-Rosser property. (Three proofs of Newman’s

Lemma are given ad loc. and one more in Chapter 14.)

Chapter 2, by Klop and de Vrijer, turns to the central theme of the volume:

rewriting first-order terms. After defining the basic notions of term, context, sub-

stitution, (syntactic) unification, reduction (i.e. rewriting), and many more, it uses

https://doi.org/10.1017/S1471068405212449 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405212449


Book reviews 397

artful diagrams to explain the concepts of overlap and critical pair, and prove Don

Knuth’s famous Critical Pair Lemma.

Two important, early examples of term rewriting, namely Herbrand and Gödel’s

general recursive functions and Curry’s Combinatory Logic, are explained in

Chapter 3. These are followed by short sections on ground rewriting, recursive

program schemes, many-sorted rewriting, string rewriting (a.k.a. semi-Thue systems),

conditional rewriting (with equational Horn clauses), and the λσ-calculus (the earliest

of numerous recent proposals of a lambda calculus with explicit operations for

performing substitutions).

The pivotal chapter is the fourth. In it, Klop, van Oostrom, and de Vrijer define

orthogonal (left-linear and overlap-free) term rewriting systems and prove (again, in

more than one fashion) that they are confluent, hence, have at most one normal

form per term. The core ideas of descendants, residuals, developments, and reduction

diagrams are clearly explained, and the central issue of normalizing strategy is

introduced. (Regrettably, most of the proofs about normalization are deferred to a

later chapter.)

Chapter 5, by Klop and de Vrijer, is in reality two chapters: The first proves that

most interesting properties of term rewriting are – no surprise here – undecidable.

The second part gathers many results on the question of the extent to which the

union of two systems that share no function symbols or constants, but share a

property like confluence or strong normalization, also enjoys that property. The two

central results are a theorem by Yoshihito Toyama to the effect that confluence is

preserved, proved in detail, and another that confluence plus strong normalization

are preserved for left-linear systems, which is stated without proof. The book does

not deal with cases in which constructors or other symbols are shared (early on

recognized as important for practical modularity of programming considerations).

The termination chapter, by Zantema, is a long, somewhat haphazard sur-

vey of syntactic, semantic, and transformation-based methods of proving strong

normalization (termination), including the recent dependency-pair method (sans

proof).

Chapter 7, by Bethke, contains a very brief treatment – only 40 pages long – of

equational inference, including the all-important Knuth-Bendix completion proced-

ure, presented in the style of inference rules and proof orderings (as developed by Leo

Bachmair), proof by consistency (invented by Dave Musser, who should have been

cited), and equation solving (semantic E-unification). Many topics are not addressed,

including “unfailing” completion and associative-commutative completion, despite

their importance for automated deduction. Also, the contributions of Gérard Huet

to our understanding of the rôle of completion as theorem prover and of Jieh Hsiang

to the use of Boolean rings for first-order reasoning go unmentioned.

Chapters 8 and 9, both by van Oostrom and de Vrijer, comprise a very extensive

and beautiful study (at almost 250 pages, nearly one third of the text!) of prop-

erties of derivations of left-linear systems and reduction strategies for orthogonal

systems, including much new material. Labelling methods, tracing methods, various

forms of reduction (derivation) equivalence, standardization, reduction strategies,

sequentiality, “family” rewriting, and much more are covered in great depth.

https://doi.org/10.1017/S1471068405212449 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405212449


398 Book reviews

Two digressions are included next: the basics of untyped and typed lambda

calculi in a chapter by Bethke, followed by an introduction to higher-order rewriting

and combinatory reduction systems by van Raamsdonk. Of course, full treatment of

either would require a whole book unto itself. Still, they serve nicely to link rewriting

to sibling fields.

Properties of infinitely-long reduction sequences for orthogonal systems are the

subject of Chapter 12 by Kennaway and de Vries. It is refreshing to see this

relatively new topic in a textbook. The less interesting, and more problematic, case

of Cauchy-converging sequences is not elaborated.

Term-graph rewriting, important for implementations, is briefly discussed by

Barendsen in Chapter 13. Some advanced topics, like de Bruijn and van Oostrom’s

method of decreasing diagrams, are presented in Chapter 14 by Bezem, Klop, and

van Oostrom. Chapter 15, by Heering and Klint, is a welcome, though incomplete,

list of twenty-seven implementations of varied flavors of rewriting.

Last, but by no means least, the appendix by Bezem contains a masterful review

of mathematical prerequisites, including Cantor’s ordinal numbers, Kruskal’s Tree

Theorem, and Ramsey’s Theorem. The book closes with a pretty exercise on the

evolution of “amœbæ colonies.”

In fact, all chapters (save, naturally, the first and last) include exercises, some

more generously, and others less so. Keeping up with the times, the editors maintain

a web site, www.cs.vu.nl/∼terese, with solutions to many exercises (but, so far,

only for half the chapters).

The editors are also to be commended for what was obviously a gargantuan effort

expended in maintaining uniformity of form across the writings of a dozen people.

Abundant use is made of a few abbreviations: “ARS” for “abstract reduction system”

(already used on p. 7, just prior to its definition); “TRS” for “term rewriting system,”

“HRS” for higher order, etc. As of January 2005, the web site lists four errata; there

are relatively few typos. Cambridge should have provided better copyediting: though

always clear, the English is occasionally stilted. The notation is good overall, despite

some minor inconsistencies of usage. For example, the letter R is used for rewriting

systems (signature plus rules) in Chapters 2–5, for reductions in 8–9, and for sets of

redexes in 12.

The copious references given in all chapters are very helpful, though, here and

there, there are lapses. I think I have decoded the non-standard order of the

references; I leave that as a challenging exercise to the reader! The name and subject

indices are quite comprehensive and useful, but a bit inconsistent in coverage. For

example, Newman’s Lemma and Toyama’s Theorem (about which much ado is

made in the introduction) are not indexed. The notation index is harder to utilize,

and a few symbols are missing from the list. All in all, my students found the

cross-references between chapters very handy, and the examples well-placed and

helpful. They were particularly happy with the multiple insights, perspectives, and

proof methods afforded throughout.

For an introductory course in rewriting, I would choose Chapter 0, as much as

is needed from Appendix A, Chapters 1, 2 and 4, Sections 9.3, 5.1–3, 6.1–2, and

6.4, and Chapter 7. For an in-depth treatment of orthogonal rewriting, one could

https://doi.org/10.1017/S1471068405212449 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405212449


Book reviews 399

choose Chapters 1, 2, 4, 8, and 9, with Chapters 10 and 12 as optional extras. Anyone

interested in a more exhaustive discourse on equational theorem proving will need to

supplement Chapter 7 with additional material. For example, the older book, Term

Rewriting and All That, by Franz Baader and Tobias Nipkow (Cambridge University

Press, 1998), has a more detailed discussion of associative-commutative unification,

but also only a brief account of unfailing and associative-commutative completion.

For students of logic programming, the book, Advanced Topics in Term Rewriting,

by Enno Ohlebusch, reviewed in these pages (vol. 4, pp. 539–541), has extensive

material on conditional rewriting and termination of logic programs, which could

be of interest.

Suffice it to say that this book is indispensable for any serious student of rewriting.

Nachum Dershowitz

Tel Aviv University, Tel Aviv

https://doi.org/10.1017/S1471068405212449 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405212449

