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SUMMARY
We propose a novel formal approach to robust motion planning (MP) in dynamic environments based
on reachability analysis. While traditional MP methods usually fail to provide formal robust safety
and performance guarantees, our approach provably ensures safe task achievement in time-varying
and adversarial environments under parametric uncertainty. We leverage recent results on Hamilton–
Jacobi (HJ) reachability and differential games in order to compute offline guaranteed motion plans
that are compatible with the sampled-data (SD) paradigm. Also, we synthesize online provably robust
safety-preserving and target-reaching feedback controls. Unlike earlier applications of reachabil-
ity analysis to MP, our methodology handles arbitrary time-varying constraints, adversarial agents
such as pursuing obstacles or evading targets, and takes into account the robot’s configuration.
Furthermore, we use HJ projections in order to reduce significantly the computational burden with-
out trading off safety guarantees. The validity of this approach is demonstrated through the case
study of a robot arm subject to measurement errors, which is tasked with safely reaching a goal in
a known time-varying workspace while avoiding capture by an unpredictable pursuer. Finally, the
performance of the approach and research perspectives are discussed.

KEYWORDS: Robust motion planning; Reachability analysis; Sampled-data system; Reach-avoid
game; Hamilton–Jacobi–Isaacs Equation.

1. Introduction

1.1. Motivation
As robots are increasingly operating among humans, providing deterministic guarantees of achiev-
ing safe tasks under uncertainty becomes crucial. A robot evolving in a cluttered workspace typically
does not have perfect knowledge of itself nor of the environment because of sensing, measurement,
estimation or modeling errors or due to the presence of unpredictable objects. Planning a task without
taking these uncertain factors into account beforehand may result in the mission failure or even harm-
ful accidents. Although there exist many practical and efficient algorithms for motion planning (MP)
in dynamic environments,1 most of them usually fail to provide safety and performance guarantees
under uncertainty. As a matter of fact, formal verification in this context is challenging as an infinite
number of evolutions must be taken into account: same initial conditions may result in different out-
comes depending on the realization of uncertain factors at run-time. Thus, it is possible to perform
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the verification over sets of possible evolutions rather than checking individually each one of them
by modeling uncertain factors explicitly in a worst-case fashion.2, 3 Indeed, given initial conditions
and some worst possible realization of uncertainty, it is sufficient to ensure safety and performance
along a worst-case evolution which delimits the set of possible evolutions starting from the same
initial conditions. This idea of preparing the robot for the worst can be mathematically formalized by
differential games.4 This leads to regard the robust MP problem somehow pessimistically as a game
opposing the robot trying to generate nice evolutions, to an adversarial agent acting maliciously –
rationally and optimally against the robot’s objectives.

To this end, reachability analysis is a powerful framework that can address the formal verification
of safety-critical control systems. Its main feature is to define a wide range of constructs charac-
terizing attainability and invariance properties of dynamical systems. The most basic reachability
construct is the reachable set, which contains every state that can reach a predefined target set at a
given time. There exists many shades of reachability5 to characterize more sophisticated combina-
tions of these basic properties. For instance, in the context of robust MP, one may be interested in
characterizing the states that can reach a predefined target set (goal configurations) at a certain time
while avoiding a given unsafe set at all times (forbidden configurations) regardless of the oppos-
ing action of adversarial agents (uncertain factors), that is the robust reach-avoid set.6 Numerous
methods have been developed to calculate efficiently reachability constructs,7–10 and many of them
however rely on restrictive assumptions (linear dynamics or constraints convexity) which are unlikely
to be verified in the context of MP. A more general approach to characterize reachability constructs
is to express them as victory domains of appropriately defined differential games.11 In this way, it
has been shown that a level set representation of the robust reach-avoid set can be computed as the
viscosity solution to appropriate Hamilton–Jacobi–Isaacs (HJI) partial differential equation (PDE) in
the case of static constraints12 and time-varying constraints.13–15

Besides, most of the real-world cyber-physical systems are not realistically modeled as purely
continuous-time (CT) processes. Instead, they consist of a plant evolving continuously over time
while being periodically controlled and observed by a digital controller, which is represented by the
sampled-data (SD) model. This loss of knowledge and control authority must naturally be taken into
account when it comes to safety guarantees: safety must be ensured between sampling times when no
state measurement is available and no control adjustment is possible. The definition and characteriza-
tion of reachability properties under SD models requires to take into account the lack of knowledge
and control authority between sampling times: for example, the SD robust reach-avoid set describes
initial states that can reach a given target set within N sampling steps while continuously avoiding
a given unsafe set on the way. It has been shown that computing SD reachability constructs can be
done by recursively using CT reachability over sampling intervals in the case of static constraints16, 17

and time-varying constraints.18

1.2. Related work
There are already some applications of Hamilton-Jacobi (HJ) reachability to MP. In ref. [11], the set
of inevitably unsafe initial states is computed as the solution to a continuous dynamic game in order
to ensure aircraft collision avoidance and, in ref. [19], the victory domain of a capture-the-flag game
is shown to be a reach-avoid set described by a specific HJI PDE. In refs. [14, 15], the reach-avoid
game under time-varying constraints is addressed in CT by solving a Hamilton–Jacobi–Bellman PDE
in the state-time space and a time-varying double obstacle HJI PDE in the state space, respectively.
However, as mentioned previously, the CT model is somewhat unrealistic.

Hence, reachability-based MP for SD systems has also been investigated. For instance in ref. [20],
the set of safe initial states for a mobile robot represented by an SD model evolving in the presence
of an unpredictable malicious agent is computed through recursive reachability computations, and a
safety-preserving control law is synthesized. The control synthesis problem is specifically addressed
in refs. [17, 21] for SD systems. Finally, closer to our work, the authors of ref. [16] introduced
a systematic approach based on robust reach-avoid sets to synthesize guaranteed safety-preserving
and target-reaching feedback policies for SD systems under bounded disturbances and applied this
methodology to Unmanned Aerial Vehicles in ref. [22]. However these results only hold under the
assumption of static state constraints and are restricted to point robots.

Other methods have been developed for MP under uncertainty that rely on “robustifying” model
predictive control (MPC). For instance, mini-max MPC seeks to minimize online the cost of the
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worst-case uncertainty over open-loop controls, while feedback MPC reasons over control policies
in closed-loop. However, these approaches are impractical because either overly conservative or com-
putationally prohibitive, thus tube-based MPC emerged, which consists in computing invariant tubes
within which the predicted state trajectory is guaranteed to remain regardless of uncertainty. In fact,
these tubes are forward reachability constructs, in a sense that they characterize sets of states that can
be reached from a given state or region, as opposed to backward reachability constructs that char-
acterize states from which a given state or region is reachable. An exhaustive comparison of these
homologue definitions in the context of safety analysis is available in ref. [5] and a detailed survey
on MPC robust variants is available in ref. [23]. Another approach that has been recently developed
is that one of ref. [24] which relies on the computation of funnel libraries based on sum-of-square
programming and enables online robust MP in previously unknown environments.

1.3. Contributions and outline
In this paper, we show that reachability analysis can be used in a general and flexible manner as
a formal approach to the robust MP problem in dynamic environments. General because provable
deterministic guarantees of performance and safety can be provided that are compatible with the SD
framework and hold under arbitrary dynamics and constraints. Flexible because changing the model,
the task or the environment does not require modifications on the algorithm’s core: the main idea
is always to solve numerically specific differential games, namely reach-avoid games, in order to
synthesize offline a guaranteed feedback controller. In our previous work,18 we already proposed the
extension to time-varying constraints of the SD HJ algorithm originally described in ref. [22] for
static constraints. However, we did not provide a formal proof of the main result, neither did we
consider an adversarial agent nor we restricted our scope to point robots. We intend to show that
SD HJ algorithm can be further extended to more challenging dynamic environments (adversarial
environments) through an appropriate differential game formulation and to non-point robots by rea-
soning in the configuration space instead of the state space. Furthermore, we explain how to mitigate
the curse of dimensionality while preserving safety and performance guarantees. Hence our main
contributions are:

• development of a formal approach to robust MP in dynamic environments
• extension of the SD HJ algorithm to time-varying constraints
• under-approximation of robust reach-avoid sets through HJ projections
• extension of the methodology to non-point robots.

Section 2 introduces the robust MP problem through a generic example and provides an overview
of the SD HJ reachability approach. In Section 3, preliminary definitions are provided that include
the robot’s SD dynamic model, constraints, basic reachability constructs and set representation tools.
Section 4 describes our SD HJ algorithm for dynamic – time-varying and adversarial – environments
and the associated control synthesis. Section 5 demonstrates the validity of the approach on a case
study and explains how to mitigate computational issues in higher dimensions. Finally, Section 6
provides a discussion on the performance of the methodology as well as research perspectives.

2. Problem Formulation
In this section, we illustrate the class of problems addressed by our method through a concrete but
generic example scenario and we provide an overview of the SD HJ reachability methodology.

2.1. Robust MP problem
Consider a robot arm operating in a cluttered workspace and tasked with reaching in finite time
a known moving target with its end-effector while avoiding collision with known moving obsta-
cles (see Fig. 1). In addition, the robot must also avoid being captured by an adversarial agent,
assumed to be unpredictable and malicious. Moreover, the robot is represented by an SD system
subject to bounded external disturbances modeling uncertainty. Under these assumptions, the robust
MP problem amounts to answer the following question: how to steer the robot’s end-effector to the
target within N sampling steps while continuously avoiding collision with obstacles or capture by
the pursuing agent in spite of uncertainties. The answer to that question must contain:
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Fig. 1. Robot arm operating in a known time-varying workspace in the presence of an unpredictable agent.

Fig. 2. Offline stage (SD HJ reachability): constraints and adversarial input bounds are used to compute CT
reach-avoid constructs over sampling intervals (cf. Section 4.1) which are stored in a look-up table. A recursion
formula enables to retrieve the current SD robust reach-avoid construct used as a new goal to reach over next
sampling interval (cf. Section 4.2).

• Analysis: what is the set of admissible initial conditions?
• Synthesis: given an admissible initial condition, how to derive a suitable control policy?

2.2. Overview of the approach
First of all, the robot’s success and failure configurations are expressed in a joint configuration space
C describing the joint configuration of the robot and the pursuer. Also, the time-varying nature of
the environment is taken into account by augmenting C with an additional time dimension (the
configuration-time space, cf. Section 3.2). Then, the analysis part of the robust MP problem defined
previously is formalized in reachability terms as the SD robust reach-avoid problem of which the
solution is the set of admissible initial conditions, namely the N-step robust reach-avoid tube (cf.
Section 3.3). It is calculated offline based on the SD HJ reachability algorithm (see Fig. 2): on each
sampling interval, CT robust reach-avoid sets are computed by solving appropriate HJI PDEs (cf.
Section 4.1) and a recursion is performed over sampling intervals, starting from the target set and
propagating backwards the robust performance and safety properties (cf. Section 4.2). All interme-
diate reach-avoid constructs are stored in a look-up table and used to address the synthesis problem
(see Fig. 3): a guaranteed feedback control policy is synthesized online through a look-up table
exploration algorithm (cf. Section 4.3).

3. Preliminaries

3.1. SD model
As mentioned previously, many real-world cyber-physical systems are CT plants remotely operated
through digital controllers updating their signals periodically upon measurements at a certain rate. As
a matter of fact, our ability to observe and control such systems is impacted by this design pattern and
it is crucial to incorporate it into mathematical models25 for analysis and control synthesis. But purely
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Fig. 3. Online stage (control synthesis): at each sampling step, the controller searches in the look-up table the
set of viable controls corresponding to the current state (joint configuration) measurement and a best control
input is selected based upon a predefined selection rule (cf. Section 4.3).

Fig. 4. SD model: the continuous state trajectory x(.) is sampled at a rate δ. At time tk , the k th measurement
xk is received by the digital controller. An input value uk is selected and held constant until the next state
measurement xk+1 is available. Hence the full control signal is piecewise constant over sampling intervals.

CT models assume somehow unrealistically that continuous state knowledge and instantaneous con-
trol adjustment are possible, and discrete-time (DT) models simply neglect the plant’s inter-sampling
behavior. In fact the SD paradigm lays somewhat between CT and DT by assuming that the system’s
state evolves continuously over time but is only observed at a fixed sampling rate δ, while the control
input is updated periodically based on those measurements (cf. Fig. 4). In addition to time-sampling,
it is also common to assume that the control input’s amplitude is quantized for simplicity and imple-
mentation convenience. From a modeling perspective, the SD model assumption enables to capture
the system’s open-loop behavior within sampling intervals (the control input cannot be adjusted faster
than time sampling). From an analysis perspective, it enables to check whether the system violates
safety constraints between consecutive measurements, and raises the critical question of operating it
with a restricted control authority. Let us formalize this by considering the dynamical system

f :
{
X ×U × V → X
(x, u, v) �→ f (x, u, v) (1)

where f is bounded and Lipschitz continuous in the state x , u is the control input, v is an external
disturbance modeling uncertainty, U and V are compact and bounded. According to the aforemen-
tioned SD assumptions, x and v are allowed to vary continuously over time, whereas u is piecewise
constant and ranges over a finite set of input values, that is, U = {u1, . . . , uL}. Given some state
measurement xk received at step k, the controller generates a constant control signal uk(.)≡ u j ∈U
and a 1-step adversarial signal vk(.) is applied. The resulting open-loop trajectory over [tk, tk+1) is
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Fig. 5. On the one hand, the robot acts on the joint configuration q = (qr , qp) through qr using input u(.) (chosen
upon the policy π ). On the other hand, the adversarial team acts on q through qr and qp using the disturbance
vd and the pursuer’s input vp (chosen upon the joint strategy γ = (γp, γd )).

the unique continuous solution to the Ordinary Differential Equation{
φ̇(t) = f (φ(t), uk(t), vk(t))
φ(tk) = xk (2)

This state trajectory is formally denoted as φk(.; xk, uk(.), vk(.)). Let us now formalize how uk(.)

and vk(.) are selected:

• An admissible feedback policy (or admissible control law) π k is a rule for selecting a 1-step
constant control signal based on the k th measurement xk , that is, π k[xk](.) is a 1-step constant
function uk(.)≡ u j ∈U over [tk, tk+1).
• An admissible adversarial strategy (or non-anticipative strategy) γ k is a rule for selecting a 1-step

measurable adversarial signal based on a control input value, that is, γ k maps an element u j ∈U
to some measurable function γ k[u j ](.)= vk(.) : [tk, tk+1)→ V .

Under the light of the above definitions, the SD closed-loop trajectory over [0, tN ) can be fully
defined given an initial state measurement x0, an N -step feedback policy �N

0 = (π0, . . . , π N−1),

and an N -step adversarial strategy �N
0 = (γ 0, . . . , γ N−1):

∀k ∈ {0, . . . , N − 1} ∀t ∈ [tk, tk+1) xcl(t; x0, �N
0 , �

N
0 )= φk(.; xk, uk(.), vk(.))

where xk is the state measurement received at time tk , u j = π k[xk], v(.)= γ k[u j ], and
φk(.; xk, uk(.), vk(.)) is the solution of (2). When there is no ambiguity on the initial state, input
signals, policies, or interval we are considering, xk, π k, γ k, uk(.), vk(.) will be abbreviated by
x, π, γ, u(.), v(.), the open-loop trajectory by x(.), and the closed-loop trajectory by xcl(.).

In the rest of the paper, the state x ∈X will actually be replaced by q ∈ C, representing the robot–
pursuer joint configuration q = (qr , qp) ∈ C = Cr × C p, u will represent robot’s control input chosen
upon policy π and v will denote the joint adversarial input v= (vp, vd) where vd is the external
disturbance modeling uncertainty and vp is the malicious agent’s control input, both selected upon
the joint strategy γ = (γp, γd). This special interpretation of x, u, and v leads to regard our system
(1) as a differential game setting between two teams, as illustrated in Fig. 5.

3.2. Configuration-time constraints
Consider a workspace W ⊂R

2 or R3 containing a union of known moving obstacles OBS(t) and
a known moving target T AR(t). Since the robot and the pursuer are not assumed to be points,
their geometry and volume occupied in given configurations must be taken into account in order to
characterize safety. We define the configuration-time unsafe and target sets as{

G = ⋃t∈[0,tN ] G(t)× {t}
L = ⋃t∈{0,...,tN } L(t)× {t}

(3)
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where G(t) is the set of forbidden configurations at time t and L(t) the set of goal configurations
defined as: {

G(t) = {q |R(qr )∩OBS(t) 
= ∅ ∨ R(qr )∩P(qp) 
= ∅}
L(t) = {q | E[qr ] ∈ T AR(t)} (4)

where R(qr ),P(qp)⊂W denote the spaces occupied by the robot in configuration qr and by the
pursuer in configuration qp, respectively, and E[qr ] ∈W is the end-effector location. It should be
observed that L is a finite sequence as a consequence of the SD assumption: the target’s trajectory
between sampling times is not important since it should be reached exactly at a sampling time, that
is, when a state measurement is available to verify that it has effectively been reached. Thus for any
k, L(tk) will be simply denoted Lk . On the contrary, the unsafe sets from an infinite sequence over
the CT space [0, tN ] since safety should be ensured continuously throughout time – even between
sampling times when no state measurement is available.

3.3. SD robust reach-avoid problem over [t0, tN ]
The SD model and the configuration-time constraints being properly defined, we can now formally
express the set of admissible initial conditions to the robust MP problem.

Definition 1. The N − i-step robust reach-avoid tube is the set of (q, tk) that can be steered into
L within N − i steps while continuously avoiding G regardless of the adversarial strategy:

RAN−i (L,G)= {(q, tk) | ∃�m
k , ∀�m

k , ∃k ′ ∈ {k, . . . ,m}
qcl(tk ′) ∈Lk ′ ∧ ∀τ ∈ [tk, tk ′ ] qcl(τ ) /∈ G(τ )}

where m =min{N , k + N − i} and qcl(.)= qcl(.; q, �m
k , �

m
k ).

Intuitively, this set contains good initial conditions from the robot’s perspective, that is, the ones
for which there exist a robust N − i step target-reaching and safety-preserving piecewise feedback
policy. Using m enables to exclude the states that would reach the target later than step N . A natural
convention for i = N is to set RA0(L,G)=L. As a matter of fact, solving the analysis part of the
robust MP problem consists in calculating the N -step robust reach-avoid tube RAN (L,G) – as it
characterizes exactly the admissible states for the full horizon problem. This is a purpose of the SD
HJ reachability offline algorithm illustrated in Fig. 2 and described in the next section.

3.4. CT reachability constructs
Throughout the offline SD HJ reachability algorithm, the N -step robust reach-avoid tube defined
above will be calculated from simpler CT reachability constructs. Let S ⊂ C, u j ∈U .

Definition 2. The reach set of S at tk+1 associated with u j

R j
k (S)= {q | ∀γ q(tk+1) ∈ S}

contains every configuration that can be driven by u j into S in exactly one step starting from tk
regardless of the adversarial strategy γ (cf. Fig. 6). Note that q(.) represents the open-loop trajectory
starting from q and driven by u j and γ [u j ].

Definition 3. The avoid tube of G over [tk, tk+1] associated with u j

A j
k (G)= {q | ∀γ ∀t ∈ [tk, tk+1] q(t) /∈ G(t)}

contains every configuration that can continuously avoid entering G(t) between tk and tk+1 under u j

and regardless of the adversarial strategy γ . This definition naturally holds for any static unsafe set
G (replacing G and G(t) by G in the above expression).

Definition 4. The CT robust reach-avoid set of S,G over [tk, tk+1] associated with u j

RA j
k (S,G)=R j

k (S)
⋂

A j
k (G)
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Fig. 6. The reach set of S at tk+1 associated with u j : any q that belongs to this set can be steered into S by u j
in one step.

contains every configuration that can be driven into S exactly at time tk+1 while continuously
avoiding G(t) between tk and tk+1 under u j and regardless of the adversarial strategy γ .

3.5. Level set representation
Definition 5. A level set (LS) function for the static set A⊂R

n is a function a(.) :Rn �→R such
that A= {x ∈Rn | a(x)≤ 0}.

If a(.), b(.) are respective LS functions for A,B⊂R
n , then we state the following properties:

x �→min{a(x), b(x)} is a LS function for A∪B
x �→max{a(x), b(x)} is a LS function for A∩B
x �→−a(x) is a LS function for Ā

Any time-varying set A⊂R
n × [t0, tN ] is represented by an LS function a(., .) such that A=

{(x, t) ∈Rn × [t0, tN ] : a(x, t)≤ 0}

4. General Approach
We describe now the methodology introduced in Section 2.2: Sections 4.1 and 4.2 correspond to the
offline stage (analysis) and Section 4.3 to the online stage (synthesis).

4.1. CT reach-avoid game over a sampling interval (offline analysis)
We first consider over the sampling interval [tk, tk+1] the reach-avoid game opposing the robot
with input u to the adversarial team with input v= (vp, vd). The goal of the robot is to steer q
into some static target set S = {q | s(q)≤ 0} exactly at time tk+1 while continuously avoiding
G= {(q, t) | g(q, t)≤ 0}, whereas the adversarial team must prevent the robot from winning the
game. Starting from q, the cost for the robot of playing π[q] ≡ u j against adversarial strategy γ
yields

V j(q(.))=max{s(q(tk+1)), max
tk≤τ≤tk+1

−g(q(τ ), τ )} (5)

Obviously, the robot wins the game when V j(q(.))≤ 0. Therefore, the goal of the adversarial team is
to maximize V j(q(.))≤ 0 by adjusting its strategy γ so as to get the optimal cost for this game:

V j(q)= sup
γ

V j(q(.)) (6)

It can be observed that the robot’s victory domain is precisely the CT robust reach-avoid set, that is,
RA j

k (S,G)= {q | V j(q)≤ 0} (see Fig. 7).
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Fig. 7. Initial states q ′ and q ′′ are located outside of the reach-avoid set; thus, there exists a defeating adversarial
strategy. On the contrary, q belongs to the reach-avoid set, thus it can be driven safely into S by u j despite any
opposing strategy. The boundary of the reach-avoid set corresponds to the zero-level of the cost function V j(.).

Proposition 1. The optimal cost verifies V j(q)=	(q, tk), where	(., .) : C × [tk, tk+1]→R is the
viscosity solution to the HJI PDE:⎧⎨

⎩
max{−g(x, τ )−	(x, τ ), ∂	

∂t (x, τ )+ H(x, ∂	
∂x (x, τ ))} = 0

H(x, p)= supv∈V pT f (x, u j , v)

	(x, tk+1)= s(x)

This result has been proven in the case of static state constraints in ref. [12] and extended to time-
varying constraints in ref. [15]. The present HJI PDE is in fact a particular case of the one studied in
ref. [15] in which the state is only required to reach the target exactly at the end of the time interval
instead of within the time interval.

4.2. SD HJ reachability recursion (offline analysis)
We show now how the N -step robust reach-avoid tube can computed offline by using a sequence
of nested sets. This sequence relies on the 1-step robust reach-avoid set operator which is formally
defined for any S⊂ C × {t0, . . . , tN−1} as

RA1(S,G)= {(q, tk) | ∃�k+1
k , ∀�k+1

k ,

qcl(tk+1) ∈ Sk+1 ∧ ∀τ ∈ [tk, tk+1] qcl(τ ) /∈ G(τ )} (7)

The set RA1(S,G) contains every initial (q, tk) that can robustly reach S while avoiding G in exactly
1 step. Conceptually, the SD HJ reachability algorithm consists in applying this operator recursively
starting from L in order to back-propagate the 1-step robust reach-avoidance property over sampling
intervals. To this end, we state Theorems 1 and 2 – the main result of this section. Their technical
proofs are available in Appendices A.1 and A.2. These theorems, respectively indicate that

• The N − i-step robust reach-avoid tube can be calculated by propagating the 1-step robust reach-
avoid set operator in C × {t0, . . . , tN }
• Applying the 1-step robust reach-avoid set operator amounts to compute CT robust reach-avoid

sets in C

Theorem 1. Let us consider the following recursion:{
S

N = L

S
i = RA1(S

i+1,G)
⋃

S
i+1 ∀N − 1≥ i ≥ 0

Then for any i ∈ {0, . . . , N }, Si =RAN−i (L,G).

Theorem 2. For any i ∈ {0, . . . , N − 1} and k ∈ {0, . . . , i},{S i
k = Sk

k if k ∈ {i, . . . , N }
S i

k = S i+1
k

⋃L
j=1 RA j

k (S i+1
k+1,G) otherwise
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In particular, Theorem 2 not only provides a practical formula to calculate the recursion of Theorem 1
(see Algorithm 1) but also implies that the calculation of S

N , . . . , S0 can be performed in C
by solving r N (N+1)

2 HJI PDEs like the one of Proposition 1.

Algorithm 1 Calculate S
i for all 0≤ i ≤ N

S
N = (SN

0 , . . . , SN
N )← (L0 \ G(t0), . . . ,LN \ G(tN ))

for i = N − 1 to 0 do
for k = 0 to i do
S i

k← (
⋃

u j∈U RA
u j

k→k+1(S i+1
k+1,G))

⋃ S i+1
k

end for
for k = i + 1 to N do
S i

k← Sk
k

end for
S

i← (S i
0, . . . , S i

N )

end for
Return (SN , . . . , S0)

4.3. SD robust reach-avoid controller (online synthesis)
Supposing that we retained the sets RA j

k (S i+1
k+1,G) during the recursion, these can be used to derive

a safe and robust feedback policy. Starting at time 0 from an initial configuration q0 ∈ S0
0 , first search

the largest k0 such that q0 ∈ S0
k0

, then record every u j such that q0 ∈RA j
k0
(S1

k0+1,G) such an input

always exists since by Proposition 2, S0
k0

is included in
⋃L

j=1 RA j
k0
(S1

k0+1,G). This leads to the

set-valued feedback FU (q0)= {u j ∈U | q0 ∈RA j
k0
(S1

k0+1,G)} from which a best input u∗ can be
selected upon a predefined rule. Once a input is selected, q0 is driven safely and robustly to some
q1 ∈ S1

k0+1 exactly at step 1. The procedure is then repeated for q1, that is, search the largest k1 such

that q1 ∈ S1
k1

, then calculate the set-valued feedback FU (q1)= {u j ∈U | q1 ∈RA j
k1
(S2

k1+1,G)} and
select an input. This procedure is repeated until L is reached (cf. Algorithm 2). Figure 8 illustrates
the algorithm.

Algorithm 2 Online control synthesis
1: q← q0, i← 0
2: while (q, ti ) /∈L do
3: ki← N + 1
4: repeat
5: ki← ki − 1
6: until q ∈ S i

ki
or ki = 0

7: if ki = 0 then
8: STOP (L has been reached)
9: else

10: Record every u j such that q ∈RA j
ki
(S i+1

ki+1,G)

11: Select an input u∗
12: Apply u∗ and update q
13: end if
14: end while

5. Case Study with the 2-DoF Robot Arm
In this section, we demonstrate the validity of our approach by solving the robust MP problem for a
simulated 2-degrees of freedom robot arm. The robot operates in a cluttered environment containing
unpredictable malicious obstacles along with known moving obstacles and a target. We provide safety
and performance guarantees by applying the SD HJ algorithm in order to synthesize an SD target-
reaching and safety-preserving control policy that is provably robust against any adversarial policies.
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Fig. 8. The look-up table of SD robust reach-avoid tubes S i
k . At step k, the controller looks in the k th row for

the leftest set that contains the current state and pushes it down left. Thus the action of the controller can be
viewed as driving the state from up right to down left as left as possible, in order to reach the first column (L)
in a minimal number of steps.

5.1. Computational efficiency
The present algorithm requires to solve numerically HJI PDEs which becomes extremely challenging
in high dimensions. Tackling the curse of dimensionality arising in HJ reachability is subject to active
research26, 27 and scalable techniques such as complexity reduction or fast numerical schemes for
HJ-like equations have emerged recently in the literature. However, they often impose restrictive
assumptions unlikely to be satisfied in practice28–30 (e.g., prismatic constraints, CT model) or have
not been extended yet to the kind of HJI PDEs arising in reach-avoid games.31–33

In order to be able to apply the SD HJ algorithm of Section 4 to higher dimensional systems, we
propose to mitigate the algorithm complexity by projecting HJI PDEs onto lower dimensional spaces
(cf. Appendices A.3, A.4, A.5 for technical details). In fact, we adapted the technique originally
developed in ref. [34] in order to calculate under-approximations of reach-avoid sets with a reduced
computational cost. The main idea consists in projecting the full dimensional constraints onto a
lower dimensional subspace and to evolve the associated HJI PDE in this subspace with modified
Hamiltonian treating unmodeled dimensions as external disturbances. An under-approximation of
the original solution can be retrieved by back-projection into the original space, as shown later in
Section 6, which maintains robust safety and performance guarantees.

In this context, we decided to study the case of a 2-DoF robot operating in the presence of a
2-dimensional pursuer so that the corresponding 4-dimensional MP problem is easily tractable using
our algorithm and a reference solution is available. This way, we can evaluate the correctness and
performance of the original SD HJ algorithm as well as verify the conservativeness, the accuracy,
and the computation time improvement of the HJ projection-based approximation. As emphasized
in ref. [34], the main challenge to use HJ projections with higher dimensional models is to choose
appropriate subspaces on which to project. As a matter of fact, poorly chosen projections may result
in overly conservative solutions. In practice, projecting along the dynamics’ natural directions works
well, and performing multiple projections in several directions can help reducing the final approx-
imation’s conservativeness through intersections. Finally, nothing theoretically prevents from using
low dimensional projection subspaces – by projecting several times – in order to achieve a better
computation time. The main challenges in doing so may be the implementation complexity and the
risk of excessive conservativeness due to loss of information when projecting.

5.2. Model
The robot is a 2-DoF planar robot arm with links of length l = [l1, l2], configuration qr = (qr,1, qr,2) ∈
Cr = [−π,+π]2, and end-effector position E[qr ] ∈W ⊂R

2. Its direct geometric model yields

qr = (qr,1, qr,2) �→
(

l1 · cos(qr,1)+ (l1 + l2) · cos(qr,2)

l1 · sin(qr,1)+ (l1 + l2) · sin(qr,2)

)
(8)

https://doi.org/10.1017/S0263574719001905 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001905


2162 SD HJ Reachability-based Robust MP

The robot’s dynamic model fr : (qr , u, vd) �→ fr (qr , u, vd) is a simple integrator subject to external
bounded disturbances: ( ˙qr,1

˙qr,2

)
=
(

u1 + vd,1

u2 + vd,2

)
(9)

where u = (u1, u2) is the robot’s control input and vd = (vd,1, vd,2) the external disturbance modeling
uncertainty. The inputs u and vd are bounded as ‖u‖∞ ≤ umax, ‖vd‖∞ ≤ vmax

d . In accordance with the
SD model, the control space is sampled U = {−umax, . . . ,+umax}2 and we set the number of samples
per dimension to 5 so that L = 25.

The pursuer is assumed to be a disk of radius rp moving in W . The pursuer’s center’s position
p= (px , py) ∈W is equal to its configuration qp = (qp,1, qp,2) ∈ C p for simplicity (although nothing
prevents from considering the case where C p 
=W). The space occupied by the pursuer in configu-
ration qp is P(qp)=D(p, rp), where D(p, rp) represents the disk centered in p with radius rp. The
pursuer’s actuation is modeled as a simple integrator as well:

q̇p = vp (10)

where vp = (vp,1, vp,2) is the pursuer’s bounded control input such that ‖vp‖∞ ≤ vmax
p .

5.3. Obstacles and target
Target and unsafe sets are defined according to Section 3.2. For implementation simplicity we
made the assumption that the workspace target and obstacles are disks and moving along straight
lines at constant speed, but the present framework enables to consider any kind of shapes and
motion patterns. The workspace moving target is a collection of T AR(t)⊂W such T AR(t)=
T AR(0)+ vT AR · t . The moving obstacle set is a collection of obstacle sets OBS(t) for t ∈ [0, tN ].
In Figure 9(a), the 2D workspace is represented. The unsafe regions are represented in red and include
one static obstacle, two moving obstacles with circular and linear trajectories at constant speed, and
the unpredictable obstacle as a bold dotted black contour. The successive target regions are repre-
sented in blue. The white arrows represent the initial velocities of the moving objects. In Fig. 9(b),
the robot’s 2D configuration space Cr is represented (it is actually a 2D slice of the 4D joint config-
uration space C at some fixed pursuer’s configuration qp). The initial C-unsafe and C-target sets are
represented in red and blue, respectively and the bold dotted contoured set contains the configurations
corresponding to a collision with the pursuer in W .

5.4. Implementation
The algorithm was implemented using MATLAB and the LS Toolbox.35 All sets are represented on
a fixed grid by their LS function and whenever a function must be evaluated between grid nodes,
a linear interpolation is used. The general terms of HJI PDEs are calculated using a Lax–Friedrich
approximation, the spatial derivative in the Hamiltonian is approximated with a second-order upwind
scheme and all constrained ordinary differential equations are integrated forward in time using a
second-order accurate total variation diminishing Runge–Kutta integrator (cf. ref. [35], Sections 3.4,
3.5 and 3.6).

In theory, the sets L(t) and G(t) can be constructed by exhaustive C-space explorations, however,
this is costly and impractical. Actually, the C-target can be obtained by exploring only Cr since it
does not depend on qp. Furthermore, we only need L(t) at sampling times tk ; thus, only N Cr -space
explorations are required. The computation of the unsafe set is somehow trickier, since an infinite
number of C-space exploration is required. By using the decomposition introduced in Appendix A.3,
the number of explorations is reduced to 1 for the static set G2, but is still infinite for the time-
varying set G1. In order to circumvent this issue, we use the view-time approach36 which consists in
over-approximating OBS(t) by the volume it swept over the current sampling interval, that is:

OBS [tk ,tk+1] =
⋃

τ∈[tk ,tk+1]
OBS(τ )

This volume defines a virtual static obstacle containing the successive volumes occupied by the real
moving obstacle during [tk, tk+1]. Then one simply needs to explore the Cr -space N times in order to
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Fig. 9. Workspace and configuration space (cf. Section 3.2). (a) Known time-varying 2D workspace W with an
unpredictable obstacle. (b) Robot’s 2D configuration space Cr .

construct static Cr -unsafe sets (G1
[tk ,tk+1])k=0,..,N−1 corresponding to (OBS [tk ,tk+1])k=0,..,N−1. The full

C-unsafe set is retrieved by back-projection into C. Finally, in the HJI PDE of Proposition 1, the
time-dependent LS function g(., t) of G(t) is replaced by the static LS function g[tk ,tk+1](.) of G[tk ,tk+1].

5.5. Results
In this simulation, the sampling period was chosen to be δ = 0.1 s (i.e., the feedback controller runs
at 10 Hz) and the 4D joint configuration space C was discretized uniformly into a grid of 254 nodes.
The corresponding discretization steps in the robot’s configuration space Cr and the pursuer’s space
C p are about 0.2 rad and 0.03 m, respectively. Figure 10 shows a 2D slice of the SD reach-avoid tubes
computed through HJ reachability (Section 4.2). For clarity, we did not display every S i

k but rather
all S i

0, that is, sets of states that can reach the moving target within N − i steps starting from step 0.
Computations took approximately 92 min with an Intel Core i5-6500 CPU.

Figure 11 shows the same sequence of sets computed through HJ projections onto 3D subspaces
which took less than 8 min. Games 2 and 3 were projected in qp,2 and qp,1 directions according to
the theoretical results of Appendices A.3, A.4, A.5 and the full dimensional reachability constructs
retrieved by back-projection and intersection. We performed simulations of the feedback controller
by starting from various initial conditions and observed that in every case, regardless of the distur-
bance and malicious agent’s actions, the robot succeeds in safely reaching the target provided that
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Fig. 11. Under approximation of the robust reach-avoid tubes sequence based on HJ projections.

its initial configuration is admissible. Figure 12 shows a trajectory generated by the feedback con-
troller in the workspace (Fig. 12(a)) and in the configuration space (Fig. 12(b)) that reaches the target
within 7 steps (0.7 s). In this simulation, we assumed that the adversarial strategy consisted in select-
ing piecewise constant randomly valued signals, that is, a random v is chosen within adversarial
bounds at each step and kept constant over one sampling period.

6. Discussion

6.1. Simulation results
We observed in our simulations that any initial configuration within the SD robust reach-avoid tube
can be driven by the feedback controller safely and robustly to the target within N steps despite
the uncertain factors. It should be emphasized that due to the game-theoretic basis of our approach,
safety and performance are ensured regardless of the adversarial strategy. For instance, let us assume
that the pursuer acts more aggressively, for example, instead of selecting randomly its input value
at each sampling time, it effectively attempts to enter in collision with the robot by choosing those
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Fig. 12. 2-D views in C-space and W-space of a trajectory generated by the controller. (a) Trajectory of the
end-effector in W . (b) Trajectory of the robot’s in C (2D slice view).

inputs that minimize their relative distance. As verified in simulations, this change of adversarial
strategy would not affect safety nor performance because the feedback controller has been designed
to ensure safety and performance under worst-case scenarios, that is, by optimizing the cost over the
space of admissible adversarial strategies.

Furthermore, it should be noted that changing the nature of the adversarial agent does not require
significant modifications of the algorithm: all the theoretical results hold if an unpredictable “evad-
ing” target is considered instead of an unpredictable pursuing obstacle: it suffices to change the
constraints definition of Section 3.2. Concretely, the new evader is incorporated into the definition
of the target set, whereas the unsafe set is somehow simplified and contains only known obstacles.
The decompositions of Appendix A.3 consist in an nr -dimensional time-varying “avoid” part and
an n-dimensional “reach” part that can be under-approximated using the HJ projection method of
Appendices A.4 and A.5. Figure 13 shows that the reach-avoid tubes obtained by HJ projections are
indeed under-approximations of the reach-avoid tubes obtained by full dimensional computations,
which are conservative from both safety and performance perspectives.

Figure 14 shows the performance of the original SD HJ algorithm against the HJ projections-
based one. The HJ projection method enables to compute the sequence of reach-avoid tubes in a
reasonable time (a few minutes) on moderately dense grids, whereas the original algorithm becomes
almost intractable (a few hours). When gradually increasing the number of nodes per dimension, the
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Fig. 13. Comparison of original reach-avoid tubes and their under-approximation based on HJ projections in
directions q1

p and q2
p (cf. Appendices A.4 and A.5).

# nodes per dimension 25 30 35 40

Original 586 1540 3093 5615

HJ projections 105 190 347 549

Fig. 14. Computation times (in seconds) of both algorithms for various grid densities using an Intel Xeon(R)
W-2145 CPU. The computation time includes the initialization time (construction of configuration space
constraints) and the SD HJ recursion (HJI PDEs solving and sets operations).

ratio of the original algorithm’s computation time over the HJ projection method’s computation time
increases from 5 to 10, that is, the latter scales much better with grid density than the former. This
confirms that solving more HJI PDEs in lower dimensional subspaces is computationally beneficial.

As a consequence of our model of uncertainty, if the adversarial team is allowed to use inputs
of larger magnitude, the robot’s victory domain shrinks until some point where the set of admissible
initial condition gets empty. Whether this conservativeness is an advantage or a drawback depends on
the application scenario: in a safety-critical scenario where deterministic guarantees are mandatory,
that is, where no trade-off is allowed between safety and performance, this is obviously a strength.
However, if the safety constraints can be somehow relaxed to benefit performance, then this solution
may be unsuited because too rigid. Nevertheless, increasing the number of levels for control input
quantization enables the robot to capture a wider range of behaviors, which can slightly reduce the
conservatism on the robot’s victory domain (informally, the robot has “more options”), but this comes
naturally at the price of an increased computational cost since the number of HJI PDEs to solve
scales linearly with L . Also, since the feedback is set-valued, a particular behavior can be prioritized
through the feedback selection rule by optimizing some running cost, such as the distance to the target
or to the obstacles. It should also be noted that the constraints do not necessarily describe collision
with an external objects but can actually characterize various robot’s restrictions (joint limits, robot’s
self-collision configurations, etc.).

6.2. Future prospects
6.2.1. View-time approximation. Computing the swept volume of arbitrary shapes along arbitrary
trajectories is unfortunately not a trivial task.37 Therefore, we decided to approximate each swept
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volume by a finite union of obstacle sets over sub-sampling steps, that is:

OBS↓[tk ,tk+1] =
⋃
τ ′

OBS(τ ′)

where τ ′ ranges discretely over [tk, tk+1]. This results naturally in an under-approximation of the
true swept volume, but provided that the sub-sampling step is small enough, the finite union gets
big enough so that it does not jeopardize safety (which is confirmed by our simulations where we
choose the number of sub-samples to be 20). A practical implementation maintaining with the theo-
retical safety guarantees would require ideally a fast C-obstacle construction in order to access g(., τ )
efficiently, or at least a provable over-approximation of the swept volume.

6.2.2. Flexibility of the motion plan. As discussed in the simulation results, one of the consequences
of the game-theoretic basis of our approach is the conservativeness of the resulting MP. While this is
an obvious advantage in safety-critical situations, this may be too rigid for some applications where
flexibility is required, such as in human–robot interaction (HRI) or collaboration (HRC) (as discussed
in the introduction of ref. [38], for example). In these cases, flexible motion plans – that is, that are
allowed to trade off safety against performance – are then preferable since they allow the robot
to exploit more possibilities. Besides, one can “soften” reachability through stochastic definitions of
reach-avoid sets39 that allow to guarantee probabilistic safety up to a certain – arbitrary – level against
stochastic uncertainty. Other approaches consist in learning disturbance bounds through experience,
so as to reduce conservativeness of the reach-avoid set and thereby to enable a less restrictive behav-
ior of the robot. We believe that a promising lead for this behavior “relaxation” may be the use of
reinforcement learning (RL) algorithms: instead of assuming the worst (i.e., other agent’s full mali-
ciousness), the robot could learn adversarial policies through interaction with its environment and
thereby learn some optimal behavior in a specific context. Conversely, a big challenge in RL is to
ensure safety during the learning process while not ruling out huge parts of the state space of which
the exploration could benefit performance. This lead has been explored in refs. [40, 41].

6.2.3. Experimental validation. Another lead of improvement is naturally the integration of this
approach on a real experimental platform. While the theoretical correctness makes no doubt and the
approach has been validated through simulations, the next logical step would be to implement it on
a real robot in an actual hardware experiment in order to evaluate its practicality and to identify the
aspects that must be improved.

7. Conclusion
We presented a comprehensive approach based on SD HJ reachability to address the robust MP
problem of a non-point robot operating in adversarial dynamic environments. We constructed offline
a look-up table of reach-avoid constructs and designed a set-valued feedback controller guaranteeing
robust performance and safety. We also proposed a decomposition of the reach-avoid game combined
with projective approximations in order to obtain a conservative solution at a reduced computational
cost. Our approach enjoys the flexibility of HJ reachability which does not make any restrictive
assumption on the constraints nor on the system’s dynamics. Also, the robot’s geometry is consid-
ered since we reasoned in a configuration space, and the impractical construction of time-varying
configuration obstacles has been circumvented by the view-time approximation. Moreover, costly
computations are done offline and accurate projective under-approximation can be calculated at a
reduced cost when the state’s dimension is too high (up to 10 times faster in our 4D numerical exam-
ple). Finally, this method complies with the SD nature of the dynamics, which is useful for practical
implementation. The main challenge is to further reduce the computational cost of solving HJI PDE
in order to apply this method to high-dimensional systems and to carry out hardware experiments.
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A. Appendix

A.1. Proof of Theorem 1
The proof is done by backward induction on i and is very similar to the one for static environments
provided in ref. [22]. First, we prove the equality for i = N . By convention, RA0(L,G)=L so
RA0(L,G)= S

N . Suppose now that there exist i ∈ {1, . . . , N − 1} such that RAN−i (L,G)= S
i . We

will show that RAN−i+1(L,G)= S
i−1. By definition

S
i−1 =RA1(S

i ,G)
⋃

S
i

By induction hypothesis

S
i−1 =RA1(RAN−i (L,G),G)

⋃
RAN−i (L,G)

Let (q, tk) ∈ Si−1.

• If (q, tk) ∈RAN−i (L,G), then there exists a feedback policy�m
k (where m =min{N , k + N − i})

steering q safely into L within N − i steps from step k regardless of the adversarial strategy �m
k

so trivially (q, tk) ∈RAN−i+1(L,G).
• If (q, tk) ∈RA1(RAN−i (L,G),G), then there exists a one-step feedback policy π steering q

safely into RAN−i (L,G) within 1 step from step k regardless of the adversarial strategy γ . Let
q ′ = qcl(tk+1), then (q ′, tk+1) ∈RAN−i (L,G). Hence, q ′ can be steered by some feedback policy
�m ′

k+1 (where m ′ =min{N , k + 1+ N − i}) safely into L within N − i steps from step tk+1 regard-
less of the adversarial strategy �m ′

k+1. Then the concatenated feedback policy �m ′
k = (π, �m ′

k+1)

can steer the q safely into L within N − i + 1 steps from step k despite any strategy �m ′
k , so by

definition (q, tk) ∈RAN−i+1(L,G).

Therefore, Si−1 ⊂RAN−i+1(L,G).
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Conversely, if suppose (q, tk) /∈ Si−1, then (q, tk) /∈RA1(RAN−i (L,G),G) and (q, tk) /∈
RAN−i (L,G). Since (q, tk) /∈RA1(RAN−i (L,G),G), then for any one-step feedback strategy π
there exists a disturbance γ such that q cannot safely reach RAN−i (L,G) from step k to k + 1, that
is, such that q ′ = qcl(tk+1) /∈RAN−i (L,G). Consequently, for any feedback policy �m ′

k+1 there exists
a disturbance �m ′

k+1 preventing (q ′, tk+1) from reaching safely L within N − i steps (where m ′ =
min{N , k + 1+ N − i}). Hence, for any feedback policy�m ′

k , we can construct by concatenation the
disturbance strategy �m ′

k = (γ, �m ′
k+1) which prevents (q, tk) from reaching L within N − i + 1 steps.

Therefore, (q, tk) /∈RAN−i+1(L,G). This implies Si−1 ⊂RAN−i+1(L,G) hence RAN−i+1(L,G)⊂
S

i−1. Therefore, Si−1 =RAN−i+1(L,G) and the result is true for any i ∈ {0, . . . , N }.

A.2. Proof of Theorem 2
We first prove that for any (S,G)⊂ (C × {0, . . . , tN })× (C × [0, . . . , tN ))

RA1(S,G)=
L⋃

j=1

N−1⋃
k=0

RA j
k (Sk+1,G)× {tk}

The proof is straightforward from the definition of this operator: for any (q, tk ′) ∈ C × {0, . . . , tN }

(q, tk ′) ∈RA1(S,G) ⇐⇒ ∃�k ′+1
k ′ ∀�k ′+1

k ′
(qcl(tk ′+1), tk ′+1) ∈ S∧ ∀t ∈ [tk ′, tk ′+1] (qcl(t), t) /∈G

(q, tk ′) ∈RA1(S,G) ⇐⇒ ∃ j ∈ {1, . . . , r} ∀�k ′+1
k ′

xcl(tk ′+1) ∈ Sk ′+1 ∧ ∀t ∈ [tk ′, tk ′+1] xcl(t) /∈ G(t)
(q, tk ′) ∈RA1(S,G) ⇐⇒ ∃ j ∈ {1, . . . , r} x ∈RA j

k ′(Sk ′+1,G)

(q, tk ′) ∈RA1(S,G) ⇐⇒ (q, tk ′) ∈⋃L
j=1

⋃N−1
k=0 RA j

k (Sk+1,G)× {tk}
This alternative expression of RA1(S,G) enables to expand the recursion formula of Theorem 1.
For any i ∈ {0, . . . , N − 1}, by writing out Si , Si+1 explicitly as finite unions and by using the above
result, the recursion formula becomes:

N⋃
k=0

S i
k × {tk}︸ ︷︷ ︸
Si

=
L⋃

j=1

N−1⋃
k=0

RA j
k (S i+1

k+1,G)× {tk}︸ ︷︷ ︸
RA1(S

i+1,G)

N⋃
k=0

S i+1
k × {tk}︸ ︷︷ ︸
Si+1

For a fixed k ∈ {0, . . . , i}, the term S i
k can be identified as

S i
k = S i+1

k

L⋃
j=1

RA j
k (S i+1

k+1,G)

If k ∈ {i, . . . , N }, it can be easily seen in Definition 1 that m =min{N , k + N − i} = N , so in this
case

x ∈ S i
k ⇐⇒ (q, tk) ∈ Si By definition of Si

x ∈ S i
k ⇐⇒ (q, tk) ∈RAN−i (L,G) Recursion formula of Theorem 1

x ∈ S i
k ⇐⇒ (q, tk) ∈RAN−k(L,G) From Definition 1 with m = N

x ∈ S i
k ⇐⇒ (q, tk) ∈ Sk Recursion formula of Theorem 2

x ∈ S i
k ⇐⇒ q ∈ Sk

k By definition of Sk

A.3. Decomposition of the reach-avoid game
G(t) can be decomposed into an nr -dimensional time-dependent part and an n-dimensional static
part as

G(t)= {qr ∈ Cr |R(qr )
⋂

GW(t) 
= ∅}︸ ︷︷ ︸
G1(t) time-dependent (collision with an obstacle at t)

⋃ {q ∈ C |R(qr )
⋂

P(qp) 
= ∅}︸ ︷︷ ︸
G2 static (capture by the pursuer at t)
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As a straightforward consequence, the CT robust reach-avoid set definition leads to:

RA j
k (S,G)=R j

k (S)
⋂
(A j

k (G
1)× C p)

⋂
A j

k (G2)

where G
1 denotes the unsafe set in the absence of pursuer, and A j

k (G2)=A j
0(G2) for any k (G2 is

static). This decomposition corresponds to the intersection of victory domain of 3 familiar differential
games

• Game 1 in Cr (robot-disturbance): qr must avoid G1(t) for all t ∈ [tk, tk+1] despite vd

• Game 2 in C (robot-pursuer-disturbance): q must avoid G2 over [tk, tk+1] despite v
• Game 3 in C (robot-pursuer-disturbance): q must reach S at time tk+1 despite v.

of which the optimal costs under constant u j are⎧⎪⎨
⎪⎩

V j
1 (qr ) = supγd

maxtk≤τ≤tk+1 −g1(qr (τ ), τ )

V j
2 (q) = supγ maxtk≤τ<tk+1 −g2(q(τ ))

V j
3 (q) = supγ s(q(tk+1))

where g1(., τ ), g2(.), and s(.) are LS functions representing, respectively, G1(τ ), G2, and S . The
above cost functions are respective LS functions of A j

k (G
1), A j

k (G2), and R j
k (S) and they each

satisfy a special HJI PDE.11, 15, 42

A.4. Projective over-approximation of unsafe sets
The projection of q ∈ C in direction i ∈ {0, . . . , n} is denoted as pi [q] ∈Rn−1, the projection of A⊂
C in direction i is pi [A] = {pi [q] | q ∈A}, the back-projection of x ∈ pi [C] in direction i is p−1

i [x] =
{q ∈ C | pi [q] = x}, the back-projection of B⊂ pi [C] in direction i is p−1

i [B] = {q ∈ C | pi [q] ∈B},
the i th dimension of C is denoted Ci ⊂R, and for any ω ∈ Ci we denote by p−1

i [x;ω] the element of
p−1

i [x] of which the i th coordinate is equal to ω. The projective dynamics in direction i is defined as

f i :
{

pi [C] ×U × (V × Ci )→ pi [C]
(x, u, (v, ω)) �→ pi [ f (p−1

i [x;ω], u, v)]
where the (v, ω) ∈ V × Ci is the adversarial input augmented with a disturbance ω ∈ Ci , and
p−1

i [x;ω] ∈ p−1
i [x] with i th component equal to ω. Given G, S ⊂ C, we are interested in calculating

the unsafe sets {
R j

k (pi [G])= {x ∈ pi [C] | ∃γ, ψ ∃t ∈ [tk, tk+1] x(t) ∈ pi [G]}
A j

k (pi [S])= {x ∈ pi [C] | ∃γ, ψ, x(tk+1) /∈ pi [S]}
These sets can be characterized by solving two differential games dramatically similar to
Game 2 and Game 3 of Appendix A.3 of which the optimal costs under u j are, respec-
tively, V j

2,i (x)= supγ,ψ maxtk≤τ≤tk+1 −g pi (x(τ )) and V j
3,i (x)= supγ,ψ s pi (q(tk+1)) where g pi (x)=

minw∈Ci g(p−1
i [x;ω]) and s pi (x)=minw∈Ci s(p−1

i [x;ω]). These costs are LS functions of the com-

plements of our sets of interest, namely R j
k (G) and A j

k (pi [S]) and can be computed from the
viscosity solutions 	2,i (., .), 	3,i (., .) to the following HJI PDEs:{

∂	
∂t (x, τ )+min{0, H(x, ∂	

∂x (x, τ ))} = 0

	(x, tk+1)= g pi (x)

{
∂	
∂t (x, τ )+ H(x, ∂	

∂x (x, τ ))= 0

	(x, tk+1)= s pi (x)

with Hamiltonian H(x, p)= infv,ω pT f i (x, u j , (v, ω)). We assume that ω ranges over Ci – which
is to be necessarily bounded in practice – such that V j

2,i (x)=	2,i (x, tk) and V j
3,i (x)=	3,i (x, tk). In

theory however, tight bounds for ω’s input set can be obtained by intersecting back-projections of
HJI PDEs’ solutions in multiple dimensions.34
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A.5. Projective under-approximation of safe sets
We use now the results of Appendix A.4 to under-approximate the victory domains of Game 2 and
Game 3. We are looking for some sets A↓,R↓ ⊂ C such that: A↓ ⊂A j

k (G2) and R↓ ⊂R j
k (S), which

is equivalent to find R↑,A↑ such that A j
k (G2)=R j

k (G2)⊂R↑ and R j
k (S)=A j

k (S)⊂A↑. We state
now two lemmas:

Lemma 1. ∀G ⊂ C R j
k (G)⊂ p−1

i [R j
k (pi [G])]

Proof. For convenience, let us denote G↑ = pi [G2]. Let first prove R j
k (p−1

i [G↑])⊂ p−1
i [R j

k (G↑)].
Let us define q ∈R j

k (p−1
i [G↑]) and show that pi [q] ∈R j

k (G↑). There exist ṽ and t ∈ [tk, tk+1] such
that q(t) ∈ p−1

i [G↑], where q(.) denotes the solution to the ODE φ̇(t)= f (φ(t), u j , v(t)) over
[tk, tk+1] with initial condition φ(tk)= q. Let qi (.) denote the i th component of q(.) and x(.) denote
its projection in direction i , namely x(.) : t ∈ [tk, tk+1] �→ x(t)= pi [q(t)]. We only need to show that
x(.) is a possible trajectory under the projected dynamics and that x(.) enters G↑ within [tk, tk+1].
Showing that x(.) is a valid trajectory under f i is not difficult since

ẋ(.) = ˙pi [q(.)] = pi [q̇(.)]
q̇(.) = f (q(.), u j , v(.)) and by definition of q(.)
ẋ(.) = pi [ f (q(.), u j , v(.))]
ẋ(.) = f i (x(.), u j , (v(.), qi (.))) by definition of f i

Showing that x(.) enters G↑ at time t is obvious since q(t) ∈ p−1
i [G↑] implies that x(t)= pi [q(t)] ∈

G↑. Therefore, pi [q] ∈R j
k (G↑) so q ∈ p−1

i [R j
k (G↑)]. Now going back to the main proof, since G2 ⊂

p−1[G↑]):
R j

k (G2) ⊂ R j
k (p−1

i [G↑]) complement of Definition 3
R j

k (G2) ⊂ p−1
i [R j

k (G↑)] by Lemma 2

Lemma 2. ∀S ⊂ C A j
k (S)⊂ p−1

i [A j
k (pi [S])]

Proof. The proof is very similar to the one of Lemma 1.

According to Lemmas 1 and 2, A↓ and R↓ can be chosen, respectively, as complements

of p−1
i [R j

k (pi [G2])] and p−1
i [A j

k (pi [S])]. Furthermore, these results can be generalized and it
can be shown that using collection of projection directions I = {i1, . . . , im} leads to tighter
under-approximations: {⋂

i∈I p−1
i [R j

k (pi [G2])] ⊂ A j
k (G2)⋂

i∈I p−1
i [A j

k (pi [S])] ⊂ R j
k (S)
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