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Abstract The notion of an angular function has been introduced by Zilber as one possible way of
connecting non-commutative geometry with two ‘counterexamples’ from model theory: the non-classical
Zariski curves of Hrushovski and Zilber, and Poizat’s field with green points. This article discusses some
questions of Zilber relating to existentially closed structures in the class of algebraically closed fields
with an angular function.
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1. Introduction: angular functions

This article is motivated by some questions posed by Boris Zilber in [12]. In that paper,
Zilber makes connections between non-commutative geometry and two ‘counterexamples’
in model theory: the non-classical Zariski curve of Hrushovski and Zilber from [3, 10.1]
(see Example 1.3 below), and Poizat’s ‘field with green points’ from [8] (see § 3.2 herein).
We will not attempt to describe these connections here: the reader should consult [12].
Instead we treat Zilber’s questions purely in terms of their model-theoretic content.

We begin by saying what is meant by an angular function. For the moment, fix a natural
number N , an algebraically closed field F of characteristic zero and multiplicatively
independent α, β ∈ F ∗ = F \ {0}. Let Γ be the group of Nth roots of unity in F , and
ε a primitive Nth root of unity. An angular function (with these data) is a function
ang : F ∗ → Γ satisfying, for all t ∈ F ∗:

ang(εt) = ang(t), (1.1)

ang(βt) = ang(t), (1.2)

ang(αt) = ε ang(t). (1.3)

In Question 2.4 of [12], Zilber asks the following question.

Question 1.1. Consider a structure which is existentially closed in the class of structures
(F, +, · , α, β, ang) satisfying these equations. What is its model-theoretic status? Is it
supersimple?
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736 D. M. Evans

Before making more precise what our answer to this question is, we give some defini-
tions and the examples which motivate the terminology and the question.

Note that associated to any angular function ang there are two definable subgroups of
the multiplicative group of the field. The group of periods of ang is

G = {g ∈ F ∗ : ang(gt) = ang(t), ∀t ∈ F ∗};

and the group of quasi-periods of ang is

G+ = {h ∈ F ∗ : ∃γ ∈ Γ, ∀t ∈ F ∗, ang(ht) = γ ang(t)}.

So Γ � G � G+ and there is a definable homomorphism χ : G+ → Γ with kernel G

(given by ang(ht) = χ(h) ang(t) for h ∈ G+ and t ∈ F ∗). Note that as defined above, χ

is surjective, so the induced map χ̄ : G+/G → Γ is an isomorphism.

Example 1.2. The following example from [12, 2.3] provides the motivation for the
terminology ‘angular function’. Let F = C, the complex numbers and ε = exp(2πi/N).
For k = 0, . . . , N − 1, let Pk be the sector of the complex plane consisting of non-zero
complex numbers z with an argument arg z in the range 2πk/N � arg z < 2π(k + 1)/N .
We define ang : C∗ → Γ by, for t ∈ C∗:

ang(t) = εk ⇔ tN ∈ Pk.

The group of periods of ang is G = R>0Γ and the group of quasi-periods is G+ = R>0〈ε1〉
where ε1 = exp(2πi/N2).

It is clear that (C, +, · , ang) has the strict order property (consider additive translates
of the definable subset P0).

Example 1.3. We describe briefly, following [12, § 1], how to obtain an example of a
non-classical Zariski curve from a suitable angular function. Given (F ; +, · , α, β, ang)
satisfying the above equations (and where 〈α, β〉 is free abelian of rank 2) define U, V :
F ∗ → F ∗ by

U(t) = αt,

V (t) = β ang(t)t.

These are definable permutations of F ∗ and

V U(t) = εUV (t).

Let T denote the set F with only the structure given by the definable permutations U , V

and p : T → F given by p(t) = tN . Then the structure ((T ; U, V ), (F ; +, ·), p : T → F )
is a finite cover of (F ; +, ·) which is interpretable in (F ; +, · , ang), but not in (F ; +, ·).
More details can be found in [12, § 1] and in [3, § 10].

We now return to Question 1.1. The intention is to add a generic angular function,
having prescribed in advance the groups of periods and quasi-periods (rather than also
having an existential closure condition on, say, the group of periods). Thus we make the
following definitions.
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Definition 1.4. Let L0 be a first-order language which contains the language of rings
(+,−, · , 0, 1) and additional unary predicates F , Γ , G and G+, and a unary function
symbol χ. Let F be an algebraically closed field of characteristic zero, and Γ � G �
G+ � F ∗ subgroups of the multiplicative group of F . Suppose χ : G+ → Γ is a surjective
homomorphism with kernel G. We consider this as an L0-structure, where F is interpreted
as F , Γ as Γ , G as G, G+ as G+ and χ as χ. Let T0 = Th(F ; +,−, · , 0, 1, Γ, G, G+, χ, . . . )
be the L0-theory of this structure. Without loss of generality, we shall assume that L0

has been extended so that T0 is model-complete. Note that if Γ is finite, then G+ and χ

are definable (with parameters) from G in the multiplicative group F ∗.
Now let LA be the expansion of L0 by an extra unary function symbol A. We define

TA to be the theory axiomatized by T0 and axioms:

(i) (A(0) = 0) ∧ (∀t)((t 	= 0) → Γ (A(t)));

(ii) (∀t)(∀g)(G(g) → A(g · t) = A(t));

(iii) (∀t)(∀h)(G+(h) ∧ (t 	= 0) → A(h · t) = χ(h) · A(t)).

Thus in a model M of TA, the subgroups G(M) and G+(M) are contained in the
periods and quasi-periods of the angular function AM and it is easy to show that if M is
an existentially closed model of TA, then they are exactly the periods and quasi-periods
(a priori it is not immediately obvious that TA is even consistent, but this will become
clear from Lemma 2.1). Question 1.1 can then be seen as asking whether the class of
existentially closed models of TA is axiomatizable, and if so whether completions of its
theory are supersimple. In § 2 we prove the following theorem.

Theorem 1.5.

(1) If T0 eliminates the quantifier ∃∞ in the sorts F , F /G and F /G+, then TA has a
model companion T ∗

A.

(2) If additionally T0 is simple and Γ is finite then all completions of T ∗
A are simple

(and in the same simplicity class as T0).

By the parenthetic remark at the end of (2), we mean, for example, that if T0 is
supersimple of SU-rank κ, then so is any completion of T ∗

A. If Γ is non-trivial, then T ∗
A

will not be stable.
Essentially both parts of the theorem follow quickly from known results. As we shall

see, the first follows from an old theorem of Winkler [9], and the second follows from
results of Nübling in [4]. Of course, for the result to be of any relevance to Zilber’s
question we need to identify suitable T0 which satisfy its hypotheses.

We consider two situations where the model theory of an algebraically closed field of
characteristic zero expanded by a predicate for a subgroup of the multiplicative group is
understood. In the first case, the subgroup is in the divisible hull of a finitely generated
group (structures of Lang type). In the second case, we consider structures constructed
via a Hrushovski predimension as in Poizat’s ‘field with green points’ from [8] (structures
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of Poizat type). The first case is relevant to § 2 in Zilber’s paper [12] and the second case
is relevant to §§ 3 and 4 therein.

In both cases we are dealing with superstable structures (of infinite U-rank). Both
cases have weak nfcp, that is, they eliminate ∃∞ in all (real and imaginary) sorts. For
structures of Lang type, this is folklore; for structures of Poizat type we give a proof
using belles paires.

In § 4 we show how to put a probability measure on definable sets in models of T ∗
A,

giving one possible answer to the problem at the end of § 2 of [12].

2. Winkler’s Theorem and the proof of Theorem 1.5

Throughout this section we use the notation of Definition 1.4. Suppose we have a model
M of TA. If the model is understood from the context, we will abuse notation and write
G instead of G(M), etc.

Rather than considering the angular function A : F → Γ we consider a section s :
F ∗/G+ → F ∗/G of the natural map ν : F ∗/G → F ∗/G+ (given by ν(xG) = xG+) which
is interdefinable with A. More formally, suppose L0 has been expanded to include the
part of Leq

0 involving the sorts F ∗/G+ and F ∗/G. Expand L0 further to a language Ls

which has an extra unary function symbol s between these sorts. Let Ts be the Ls-theory
axiomatized by T0 and the axiom

(∀y ∈ F ∗/G+)(s(y)G+ = y)

saying that s is a section of the L0-definable map ν.

Lemma 2.1. There is a definable correspondence between the models of TA and the
models of Ts which preserves the property of existential closure. Thus TA has a model
companion (respectively, model completion) if and only if Ts does.

Proof. The correspondence is given by the equation:

A(t) = χ̄(s(tG+)−1tG).

Indeed, given a section s of ν, then s(tG+)−1tG ∈ G+/G and χ̄ maps this into Γ . So A

given by this equation is certainly a map from F ∗ to Γ and it is easy to check that it
satisfies the axioms in Definition 1.4. Conversely, given an angular function A, the above
equation determines a function s : F ∗/G+ → F ∗/G given by

s(tG+) = tG(χ̄−1(A(t)))−1,

because χ̄ is bijective, and one checks easily that this is a section of ν.
The above correspondence is given by a quantifier-free formula, so it translates exis-

tentially closed structures in one class into existentially closed structures in the other.
This proves the statement about the existence of model companions. For the statement
about model completions, observe that TA has the amalgamation property if and only if
Ts has the amalgamation property. �
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By the above lemma it will suffice to prove Theorem 1.5 for the theory Ts. The advan-
tage of this is that s only has a simple axiom to satisfy: that of being a section of a certain
definable map. This is exactly the situation in which we can apply a result of Winkler
from the 1970s. In the following, L is any first-order language and T any L-theory.

Definition 2.2. We say that T eliminates the quantifier ‘there exist infinitely many’ (or
eliminates ∃∞, or is algebraically bounded) if for all L-formulae φ(x, ȳ) there is a natural
number Nφ with the property that for all models M of T and ā in M , if φ[M, ā] has
more than Nφ elements, then it is infinite.

Definition 2.3. Suppose φ(x, ȳ) is an L-formula, where ȳ is an n-tuple of variables.
Let L+ be the expansion of L by a new n-ary function symbol σ. The L+ theory T+ is
axiomatized by T together with the new axiom:

(∀ȳ)((∃x)φ(x, ȳ) → φ(σ(ȳ), ȳ)).

We refer to T+ as a Skolem expansion of T .

So of course this says that σ is a Skolem function for the formula φ(x, ȳ). Strictly
speaking, σ should be defined for all n-tuples, even if they do not satisfy (∃x)φ(x, ȳ). We
can avoid this issue by including a sort for the definable set (∃x)φ(x, ȳ) and only defining
σ on this sort. Alternatively we can define σ(ȳ) to be some fixed ∅-definable element.

Theorem 2.4 (Winkler [9, Theorem 2]). Suppose T is a model-complete L-theory
which eliminates the quantifier ∃∞. Then any Skolem expansion T+ of T has a model
completion (T+)∗. �

Proof of Theorem 1.5. (1) The theory Ts is the Skolem expansion of T0 with respect
to the formula φ(x, y):

(x ∈ F /G) ∧ (y ∈ F /G+) ∧ (xG+ = y).

The assumptions on eliminating ∃∞ in the indicated sorts means that we can apply
Winkler’s Theorem to deduce that Ts has a model completion T ∗

s . So by Lemma 2.1
there is a model completion T ∗

A of TA.

(2) If Γ is finite, then Γ is finite in all models of T0 and the map ν is |Γ |-to-1. So the
Skolem expansion Ts is an algebraic Skolem expansion (in the terminology of [4]) and
the results in [4, § 1] give immediately that if T0 is simple then so is any completion of
T ∗

s (and in the same simplicity class). By interdefinability of TA and Ts, the same is true
of T ∗

A. �

Remarks 2.5. The result in [9] is more general than is stated in Theorem 2.4: one has
a model completion for the expansion by an arbitrary number of Skolem functions. By
Theorem 4 of [9] there is also a converse to Theorem 2.4: if there is a model companion
for T+ then T+ eliminates ∃∞. By combining these results, one obtains [9, Corollary 1]
that the model completion (T+)∗ in Theorem 2.4 eliminates ∃∞.
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The proof of Theorem 2.4 gives an axiomatization of T ∗
s . As well as Ts we have axioms

of the form:
∀x̄((∃∞ȳ)α(x̄, ȳ) → (∃ȳ)(α(x̄, ȳ) ∧ β(x̄, ȳ))),

where

(i) α is an L0-formula and β is a conjunction of formulae of the form ‘s(v1) = v2’ where
v1, v2 are amongst the variables in x̄, ȳ, not both in x̄ (and no variable appearing
as v1 is in more than one such conjunct);

(ii) if i 	= j then yi 	= yj is a conjunct of α and if ‘s(v1) = v2’ is a conjunct of β, then
φ(v2, v1) is a conjunct of α.

It should be noted that ‘∃∞ȳ · · · ’ here means ‘there exist infinitely many ȳ which are
different in each coordinate’ (see the definition in [9, § 1]).

Remarks 2.6. We note that if, in Theorem 1.5, the group Γ is not finite (and F ∗/G+ is
infinite), then T ∗

s and T ∗
A cannot be simple. The argument is essentially that of Lemma 3.1

of [4]. In fact, the formula θ(x; y, z) given by A(x · y) = z has the tree property (with
respect to T ∗

s ). In some model of T ∗
s take (ai : i < ω) in F ∗ lying in different G+-cosets,

and distinct elements (gj : j < ω) of Γ . For η ∈ ω<ω with domain n > 0 consider the
parameters cη = (an, gη(n−1)). Clearly, {θ(x; cηˆj) : j < ω} is pairwise inconsistent for
each η ∈ ωω, and using the above axioms for T ∗

s one shows that for ζ ∈ ωω the set
{θ(x; cζ|n) : n < ω} is consistent.

3. Weak nfcp

Suppose L is a first-order language and T a complete L-theory. Then by a theorem of
Shelah, T has nfcp (‘does not have the finite cover property’) if and only if it is stable
and eliminates the quantifier ∃∞ in all (real and imaginary) sorts. The latter property
(for arbitrary T ) is sometimes referred to as weak nfcp. In this section we discuss two
types of stable theories T0 to which we would like to apply Theorem 1.5, and show that
they have weak nfcp.

3.1. Structures of Lang type

Recall that an abelian group is said to be of finite rank if it is in the divisible hull
of a finitely generated subgroup. By a structure of Lang type we mean an algebraically
closed field of characteristic zero expanded by a predicate G for a finite rank subgroup G

of some semi-abelian variety (see [6], where the use of this terminology is different, but
consistent with ours). We shall be interested in the particular case where G is a finite
rank subgroup of the multiplicative group (though it should be noted that the following
also holds in the more general context).

Theorem 3.1. Suppose F is an algebraically closed field of characteristic zero and
infinite transcendence rank and G is a finite rank subgroup of the multiplicative group

https://doi.org/10.1017/S1474748008000200 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748008000200


Expansions of fields by angular functions 741

F ∗. Consider this as an L-structure where L is the language of rings expanded by a unary
predicate G for the subgroup G. Then

(i) the induced structure on G is that of a stable one-based group and if G is κ-stable,
then so is T = Th(F ; +, · , 0, 1,G);

(ii) T has nfcp.

Proof. Part (i) is from [6], particularly Proposition 2.6.

For (ii) one can easily adapt the proof of Proposition 2.6 of [6] to show that T is non-
multidimensional. It follows (for example by Remark 8.2.13 of [5]) that T has nfcp.
Alternatively, by (i) the induced structure on G is that of a one-based group and so has
nfcp. Moreover, G is small in F (in the terminology of [1]), so one can apply Proposi-
tion 5.7 of [1] to obtain that T has nfcp. �

We summarize our answer to Zilber’s question (Question 1.1) as follows, using the
notation (L0, T0, LA, TA) from Definition 1.4.

Theorem 3.2. Suppose F is an algebraically closed field of characteristic zero of infinite
transcendence rank and α, β ∈ F are multiplicatively independent. Let N be a natural
number, ε a primitive Nth root of 1 and Γ = 〈ε〉; G = 〈αN , β, ε〉; and G+ = 〈α, β, ε〉.
Define χ : G+ → Γ to have kernel G and χ(α) = ε. Then

(i) T0 = Th(F ; +,−, · , 0, 1, Γ, G, G+, χ) is superstable of Lascar rank ω and has nfcp;

(ii) TA has a model completion T ∗
A and all completions of this are supersimple of SU-

rank ω.

Proof. (i) All of the structure is interpretable in (F, G, α, β, ε) and the required prop-
erties of this are given by Theorem 3.1 and the proof of Proposition 2.6 in [6].

(ii) This follows from part (i) and Theorem 1.5. �

Of course, in a model of TA as above the function A is an angular function, that is, it
satisfies the properties (1)–(3) in § 1.

By Theorem 10 of [9], any one-cardinal model of T0 can be expanded to a model of
T ∗

A. In particular, there is a countable model of T ∗
A in which G = G. It is natural to ask

whether there is a model of T ∗
A in which the field is the complex numbers and the group

of periods is precisely G. To do this it would be enough to construct an existentially
closed model of TA (or of Ts) of cardinality continuum in which G = G. This cannot be
an entirely straightforward union-of-a-chain argument, as the following example shows.

Let M0 be a model of T0, let c ∈ F (M0) be algebraically independent from G(M0) and
ψ(x, y, c) be the quantifier-free formula x ∈ G ∧ y = x + c. Then M0 can be expanded
to a model M of Ts in which s(ν(yG)) 	= yG for all y ∈ c + G. On the other hand, c +
G(M0) meets infinitely many (multiplicative) cosets modulo G, so there is an elementary
extension N0 of M0 and b ∈ G(N0) such that (b+ c)G(N0) 	∈ F (M0)/G(N0). Thus we can
expand N0 to a model N of Ts so that M is a submodel of N and ψ(x, y, c)∧s(ν(yG)) = yG
has a solution (b, b+c) in N . It follows that any existentially closed model M1 of Ts which
contains M has to have G(M1) > G(M).
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3.2. Poizat’s field with green points

We wish to consider Poizat’s ‘field with green points’ (F, G(F )) from [8]. This is a
structure in a language L for fields with an extra unary predicate G. The field F is
algebraically closed of characteristic zero and the subset G(F ) (the ‘green points’) is a
torsion free divisible subgroup of the multiplicative group F×. For every algebraically
closed subfield A of finite transcendence degree we have the predimension inequality

δ(A) = 2 tr deg(A) − rkQ G(A) � 0.

Moreover, (F, G(F )) is ‘rich’: the familiar existential closure condition with respect to self-
sufficient embeddings. The first-order axiomatization of TG = Th(F, G(F )) is described
in [8, § 3].

The main result of this section is the following theorem.

Theorem 3.3. TG has nfcp.

It should be noted that we will not use TG when applying Theorem 1.5. Instead, we
will use variations on Poizat’s original construction (see § 3.3). The axiomatization of
these variations and the proofs of nfcp are similar to those for TG, and it therefore seems
reasonable to present the proof of nfcp for the original ‘field with green points’.

Proof of Theorem 3.3. The proof we give of Theorem 3.3 uses Poizat’s technology of
belles paires from [7] and we begin by briefly recalling this.

Let P be a new unary predicate symbol and LP the language obtained by adjoining P

to L. We consider a pair M � N of models of TG as an LP -structure by interpreting P as
the subset M . We refer to this as a belle paire if M is ω+-saturated (in the L-sense) and for
every finite subset of N , every 1-type (in the L-sense) over M ∪A is realized in N . Let TP

G

denote the LP -theory of all belles paires. As TG is stable, TP
G is complete [7, Théorème 4]

and TG has nfcp if and only if every ω+-saturated (in the LP -sense) model of TP
G is a

belle paire [7, Théorème 6].
Henceforth, let M � N be an ω+-saturated model of TP

G . We need to show that this
is a belle paire, and of course, the issue is the relative ω-saturation of N over M . Let cl
denote self-sufficient closure in N , and aclf denote field-theoretic algebraic closure. Let
d be the dimension function associated with the predimension δ.

Let A be a finite subset of N and p(x) a 1-type (in the L-sense) over M ∪ A. Let
M1 = clN (M ∪ A). We want to show that p is realized in N . Suppose it is realized by
c in the elementary extension N1 of N . We may assume that M � N1 is a belle paire,
so (M, N) �LP (M, N1). Now, M2 = clN1(M ∪ A ∪ {c}) is of finite transcendence degree
over M1 [8, Corollaire 1.4], so we may assume that M1 � M2 is a minimal extension: for
every algebraically closed C with M1 ⊂ C ⊆ M2, we have cl(C) = M2. There are three
possible cases to consider, depending on d(c/M1) (computed in N1).

Case 1 (white generic). d(c/M1) = 2. So c 	∈ M1; G(M1) = G(M2) and M2 =
aclf (M1c).

Case 2 (green generic). d(c/M1) = 1. So c 	∈ M1; c is green; G(M1) is in the divisible
hull of the subgroup generated by G(M) and c; aclf (M1c) = M2.

Case 3. d(c/M1) = 0.
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Claim 1. For any natural number n there exist g1, . . . , gn ∈ G(N), algebraically inde-
pendent over M , with d(g1, . . . , gn/M) = n.

So the claim is that N contains a Morley sequence g1, . . . , gn of length n for the green
generic over M : the gi should be green points, algebraically independent over M , and
aclf (Mg1 . . . gn) should be self-sufficient in N , with its G-part Q-dependent on G(M) and
g1, . . . , gn. We show that there is a set Φ(x1, . . . , xn) of LP -formulae (without parameters)
which is equivalent to the L(M)-type of such a sequence. The claim then follows, because
of the ω+-saturation of the pair (M, N).

The formulae should express that:

• the gi are in G and algebraically independent over the P -part M ;

• for any s � 0, if e1, . . . , e2s+1 are green and have transcendence degree at most s

over Mḡ, then they are multiplicatively dependent over G(M)ḡ.

Note that the case s = 0 is equivalent to the G-part of aclf (Mḡ) being Q-dependent
on G(M)ḡ; the remaining cases say that aclf (Mḡ) is self-sufficiently embedded.

Clearly, we can ensure that Φ contains LP -formulae expressing the first group of con-
ditions. For the second, we use Proposition 3.2 of [8]. Suppose V (ȳ, z̄) is a variety over Q,
with the length of ȳ being k = n + 2s + 1. For an appropriate tuple of parameters b, we
denote by V (b) the variety in k-space defined by V (ȳ, b). There is a finite set of proper
basic tori T1, . . . , Tt, depending only on V , with the property that for any torus T and any
b, any irreducible component of V (b)∩T of dimension greater than dimV (b)+dimT −k

(an atypical component) is contained in a coset of one of the Ti.
Then in Φ we also take, for every such variety V over Q a formula (with appropriate

r, t, Ti):

(∀ē)(∀b ∈ P r)
(

‘V (b) irreducible of dimension � n + s’ ∧ ((x̄, ē) ∈ V (b)) ∧ G(ē)

→ (x̄, ē) ∈
⋃
i�t

(P×)n+2s+1Ti

)
.

To prove the claim we show that for any pair M1 � N1 of models of TG and n-tuple
ḡ in N1, we have (M1, N1) |= Φ(ḡ) if and only if ḡ is a Morley n-sequence of the green
generic over P (N1) = M1.

First, suppose (M1, N1) |= Φ(ḡ). So the gi are algebraically independent over M1 and
we need to show that the second bullet point above holds. Take e1, . . . , e2s+1 as there
and let V (b) be an irreducible variety over M1 with ḡē as generic point. So V is a variety
over Q and b is a tuple of parameters in M1, and V (b) is of dimension at most n + s. By
the appropriate element of Φ, the elements of ḡē satisfy ga1

1 · · · gan
n eb1

1 · · · eb2s+1
2s+1 = c ∈ M1,

for some integers ai, bj not all 0. Clearly, c ∈ G(M1), so this gives what we want.
Conversely, suppose ḡ is a Morley n-sequence of the green generic over P (N1) = M1.

We need to show that it satisfies the formulae in Φ. So take V , b and ē as in the displayed
formula with ḡē ∈ V (b). Let T be the minimum torus of ḡē over M1 and W the connected
component of V (b) ∩ T containing ḡē. We claim this is atypical. Indeed, dimW = n +
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tr deg(ē/M1ḡ) and dimT = n + rkQ(ē/M1ḡ) (where rkQ denotes multiplicative rank). As
aclf (M1ḡ) � N1 we have

2 tr deg(ē/M1ḡ) � rkQ(ē/M1ḡ).

Now, using these equations and the fact that dimV (b) � n + s, we have that dimV (b) +
dim T − (n + 2s + 1) < dim W if 2 tr deg(ē/M1ḡ) − rkQ(ē/M1ḡ) > tr deg(ē/M1ḡ) − s − 1.
But the left-hand side here is greater than or equal to 0, whereas the right-hand side
is negative, as we are supposing tr deg(ē/M1ḡ) � s. So W is an atypical component of
the intersection V (b) ∩ T , and is therefore contained in a coset of one of the basic tori
Ti. Both V (b) and T are defined over M1, so W is defined over M1. Therefore, the coset
representative can be taken in M1: hence ḡ satisfies the required formula in Φ.

� (Claim 1)

Claim 2. In Case 2, we may take c in N .
Indeed, take n > d(A/M), and g1, . . . , gn ∈ N as in Claim 1. Then for some i � n we

have d(gi/AM) = 1. But then tp(gi/M1) = tp(c/M1), as required. � (Claim 2)

Claim 3. In Case 1, we may take c ∈ N .
Again, take n > d(A/M) but this time, consider g1, . . . , g2n ∈ N as in Claim 1.

Let bi = gi + g2i, for i = 1, . . . , n. Then one checks that these are white generics,
independent over M . The same argument as in Claim 1 then shows that we can assume
that d(b1/MA) = 2, so we can take c = b1. � (Claim 3)

We now deal with Case 3. There exists a tuple c̄ = (c1, . . . , c2n) of elements of M2 such
that c1, . . . , cn are a transcendence basis of M2 over M1, and c1, . . . , c2n is a Q-basis for
G(M2) over G(M1). It is enough to show that the type of c̄ over M1 is realized in N .

Let V (b, ȳ) be the variety over M1 which has c̄ as generic point. So V (x̄, ȳ) is over Q,
and b is a tuple of parameters in M1.

Claim 4. There is a formula ψ(x̄) in the field language such that N |= ψ(b) and if ψ(f)
holds (in an algebraically closed field of characteristic zero), then

• V (f, ȳ) is irreducible and dimV (f, ȳ) = n;

• the generic of V (f, ȳ) is multiplicatively independent over aclf (f);

• if ḡ is a generic point of V (f, ȳ) and we colour its coordinates (and a torsion-free
divisible multiplicative group generated by them) green, then aclf (f) � aclf (fḡ).

The proof of this is in Poizat’s paper [8, bottom of p. 1674]. � (Claim 4)

There is a set Ψ(x̄, ȳ) of LP -formulae which expresses that

• V (x̄, ȳ) and G(ȳ);

• tr deg(ȳ/P x̄) = n;

• ȳ is multiplicatively independent over Px̄.
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Claim 5. For each φ(x̄, ȳ) ∈ Ψ , the closed formula

∀x̄(ψ(x̄) → (∃ȳ)φ(x̄, ȳ))

is in TP (the theory of belles paires).
Let M ′ � N ′ be a belle paire and f a tuple in N ′ satisfying ψ. Let A = aclf (f). Take

B = aclf (fḡ) as in the third bullet point in Claim 4. By the relative ω-saturation in the
belle paire, the free amalgam of B and clN ′(M ′f) embeds into N over clN ′(M ′f). Let ḡ′

be the image of ḡ under this embedding. Then (M ′, N ′) |= Ψ(f, ḡ′). � (Claim 5)

We can now finish off the proof in Case 3. Recall that (M, N) is an ω+-saturated
model of TP

G . Because of the tuple c̄, we have N1 |= ψ(b). By Claims 4 and 5 and the
ω+-saturation, there is therefore a tuple c̄′ in N with (M, N) |= Ψ(b, c̄′). As M1 � N1

and δ(aclf (M1c̄
′)/M1) = 0, we have aclf (M1c̄

′) � N1. From this and Ψ , we obtain
tpN1

(c̄′/M1) = tpN1
(c̄/M1), as required. �

We remark that Martin Hils pointed out to us that Theorem 3.3 follows from a result
of his [2]: the theory of TG (in a language expanded by definitions so that it is model
complete) together with an automorphism has a model companion.

3.3. Variations on green points

In [11], Zilber proves that, under the assumption of Schanuel’s conjecture, the field of
complex numbers expanded by a predicate for the multiplicative subgroup

exp((1 + i)R + Q)

is a model of Poizat’s TG. For the purposes of [12], it is more natural to consider C

expanded by predicates for slightly different multiplicative subgroups.

Example 3.4 (see [12, §3.5]). Consider α, β ∈ C× linearly independent over R, and
let ia, ib ∈ R be such that i = iaα + ibβ. Let h ∈ R be such that 1, 2πia, 2πiah are
linearly independent over Q and let N ∈ N. Define

G0 = exp
(

2πi
hN

Z +
α

h
Z + βR

)
.

There is a theory T̃G axiomatized in the same way as Poizat’s TG, but where the subgroup
of ‘green’ points is elementarily equivalent to Z2, rather than Q. The theory T̃G is
superstable of U-rank ω · 2 and assuming Schanuel’s conjecture, T̃G = Th(C, G0) (see
Proposition 3.5 of [12]). (One caveat here is that the class of coloured algebraically
closed fields (A, G(A)) of characteristic zero with G(A) ≡ Z2 satisfies the amalgamation
property but not the joint embedding property. So one should really work with the
subclass of coloured fields containing a fixed (A0, G(A0)), say with δ(A0) = 0, and include
constants for generators of G(A0) in the language.)

In the notation of Definition 1.4, we expand (C, G0) to an L0-structure by setting
Γ = 〈ε〉; G = G0 · Γ ; G+ = exp((2πi/hN)Z + (α/hN)Z + βR) · Γ and χ(a) = ε, where
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ε is a primitive Nth root of 1, and a = exp(α/hN). Note that G is of index N in G+

and so all of these are definable in (C, G0, a). Thus (assuming Schanuel’s conjecture) we
obtain a structure whose theory T0 is superstable of rank ω · 2. The proof of nfcp for TG

given in § 3.2 also works for T̃G with little modification. So Theorem 1.5 applies, and as
in Theorem 3.2 we have the following theorem.

Theorem 3.5. With the above notation, and that of Definition 1.4:

(i) T0 is superstable of Lascar rank ω · 2 and has nfcp;

(ii) TA has a model completion T ∗
A and all completions of this are supersimple of SU-

rank ω · 2.

In § 3.5 of [12] Zilber gives an explicit construction of an angular function angN with
the above data and asks whether the theory of the complex numbers expanded by angN is
supersimple (assuming Schanuel’s conjecture). In the light of the above result, it appears
reasonable to ask whether it is a model of T ∗

A.

Example 3.6. In § 3.3 of [12] Zilber works with an angular function ang having the
following data: Γ = exp(2πihZ); G = exp(2πihZ + βR); G+ = exp(2πihZ + αZ + βR)
and χ(exp(α)) = exp(2πih), where α, β and h are as in Example 3.4. Again, Schanuel’s
conjecture implies that Th(C; G, Γ ) can be axiomatized in a similar way to Poizat’s TG

(the appropriate predimension to use is δ(A) = 2 · tr deg(A) − rkQ(G(A)) − rkQ(Γ (A))),
and is superstable of Lascar rank ω · 2 (see Proposition 2 of § 3.3 in [12]). However, as
Γ is infinite, the group G+ and the homomorphism χ are not definable in this, so we
require a slightly different approach.

Let L′
0 be a language consisting of the language of rings together with unary predicates

G, Γ , Γ+ and unary functions χ, χ−1. Consider the class of L′
0-structures consisting of

an algebraically closed field A of characteristic zero, and multiplicative subgroups G(A),
Γ (A), Γ+(A) with the properties that

• Γ (A) is a pure subgroup of G(A) and G(A) ∩ Γ+(A) = 1;

• the groups G(A) and Γ (A) are elementarily equivalent to Z;

• χ : Γ+(A) → Γ (A) and χ−1 : Γ (A) → Γ+(A) are mutually inverse group isomor-
phisms;

• the predimension inequality δ � 0 holds;

where δ(A) = 2 · tr deg(A) − rkQ(G(A)) − 3 · rkQ(Γ (A)). Note that the intention is that
we can take (definably) G+ to be the direct product G · Γ+ and χ extends to G+ by
projection to the second factor. As with Poizat’s TG one can construct a complete L′

0-
theory T̂G whose ω-saturated models are the ‘rich’ structures in the class; moreover T̂G

is superstable of Lascar rank ω ·2, G is of rank ω and Γ of rank 1. (As in Example 3.4 we
should really work over a fixed coloured field.) This is similar to the construction in [10]
and as there, it is expected that (C; Γ, G, G+, χ) as given above is a model of T̂G (as
always, assuming Schanuel’s conjecture), though we have not checked the details.
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The proof of Theorem 3.3 can easily be adapted to show that T̂G has nfcp. Thus, as
in Theorem 1.5, the theory (T̂G)A of models of T̂G (with the language expanded to get
model completeness) with an angular function has a model companion (T̂G)∗

A. Note that
by Remark 2.6, this is not simple.

The above provides one possible approach to Problems 1 and 2 of § 3.3 of [12] and it
is of course of interest to check whether Zilber’s explicit angular function ang with the
above data gives a model of (T̂G)∗

A.

4. A probability measure

In this section we describe (under certain hypotheses on T0) how to put a probability
measure on the definable subsets of F in models of T ∗

A. In particular, this gives one
possible answer to the problem in 2.4 of [12].

We continue to use the notation of Definition 1.4 and assume that T0 is a superstable
L0-theory with nfcp and Γ is finite; we also assume that T0 has quantifier elimination
(as usual, this can be achieved by expanding the language). As we are working with
superstable fields, there is a unique 1-type of maximal rank (the generic type) over
any algebraically closed subset of a model of T0. We will assume that whenever C is
algebraically closed (in a model of T0) and e is generic over C, then G+(acl(Ce)) = G+(C).
This is the case in the examples of interest in § 3.

Theorem 1.5 applies, and we fix a completion of T ∗
A, which we will also denote by T ∗

A.
Results in [4] imply that this is determined by the values of the angular function on
acl(∅); it is supersimple; algebraic closure in the T ∗

A and T0 senses are the same, and in
a model (F ; ang) of T ∗

A a generic type tp(e/C) is determined by the restriction of the
angular function ang to acl(Ce). (Of course, the results in [4] apply to T ∗

s , and we obtain
the corresponding results about T ∗

A as in the proof of Theorem 1.5.)
Work in a big model (F ; ang) of T ∗

A and let C ⊂ F be algebraically closed. Let X be
the set of generic types over C, equipped with the Stone space topology. Note that X
is closed in the Stone space of all T ∗

A-types over C, as it consists of those types which
extend the T0 generic type over C. In particular, X is compact.

Fix some e ∈ F which is generic over C and let B = acl(Ce). Consider B just as an
L0-structure and let Y denote the set of all possible angular functions from B to Γ which
extend the given ang |C. By the above remarks each element of Y determines a generic
type over C, and two elements of Y give rise to the same generic type if and only if there
is an L0-automorphism of B over Ce which sends one to the other. In summary, we have
the following lemma.

Lemma 4.1. There is a surjective map Θ : Y → X whose fibres are the AutL0(B/Ce)-
orbits on Y.

Note that the quotient of any two elements of Y (as functions B → Γ ) is constant
on G+(B)-cosets, and so is a function from B/G+(B) to Γ which is the identity on
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C/G+(B). Conversely, if we multiply any element of Y by such a function, we obtain
another element of Y. Thus we have a regular action of the group

P = Γ (B/G+(B))\(C/G+(B))

of such functions on Y.
Now, P is a product of copies of the finite set Γ , so we can give it the product topology.

We can regard Γ as a uniform probability space, and give P the product measure κ (of
course, this is the Haar measure on P ). By choosing an element y0 of Y we obtain a
bijection η : P → Y (with η(g) = gy0), and thereby can transfer the topology and
measure on P to Y. The resulting topology and measure λ on Y are independent of the
choice of y0 here.

Claim. The map Θ in the above lemma is continuous.

For s ∈ N and ā = (a1, . . . , as) ∈ Bs, let ψ(x1, . . . , xs, y) be an L0(C)-formula such
that ψ(x̄, e) isolates the L0-type of ā over Ce. An LA(C)-formula θ(y) of the form

(∃x̄)
(

ψ(x̄, y) ∧
s∧

i=1

(ang(xi) = γi)
)

for γ1, . . . , γs ∈ Γ will temporarily be called a basic formula. Then p, q ∈ X are equal if
and only if they contain the same basic formulae, so the clopen sets determined by the
basic formulae are a basis of the topology on X .

Now, for any such basic θ(y) there is a finite A ⊆ B such that, for f, g ∈ Y, if f , g

have the same restriction to A, then θ(y) ∈ Θ(f) if and only if θ(y) ∈ Θ(g) (simply take
A to contain all Aut(B/Ce)-translates of the ai). Continuity of Θ then follows.

Definition 4.2. If D is a C-definable subset of F , let [D] be the closed subset {p ∈ X :
D ∈ p} of X , and define

µ(D) = λ(Θ−1([D])).

This is a finitely additive measure on the collection of LA(C)-definable subsets of F .
Of course, as λ is a measure on the Borel sets of Y, µ extends to a σ-additive measure
on the collection of countable boolean combinations of C-definable sets.

Lemma 4.3. The measure µ does not depend on the choice of C.

Proof. Temporarily augment the notation by including a subscript to indicate depen-
dency on C. We need to show that if C ′ ⊇ C is algebraically closed and D is C-definable,
then µC(D) = µC′(D).

Let e ∈ F be generic over C ′ and B′ = acl(C ′e). Then e is also generic over C, and
we let B = acl(Ce). Obviously, G+(B′) ∩ B = G+(B) so there is a natural injective
function ι : B/G+(B) → B′/G+(B′) (given by xG+(B) �→ xG+(B′)). By the assumption
that G+(B′) = G+(C ′), it follows that ι−1(C ′/G+(B′)) = C/G+(B). Thus ι induces a
surjective map π : PC′ → PC (essentially by restriction), and of course this is a continuous
group homomorphism.
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Let ηC′ : PC′ → YC′ and ηC : PC → YC be the bijections obtained by taking ηC′(1) =
ang |C ′ and ηC(1) = ang |C. Restriction gives a continuous map ρ : YC′ → YC and the
square

PC′
π ��

ηC′

��

PC

ηC

��
YC′

ρ �� YC

is commutative. In particular, ρ is surjective.
Restriction also gives a continuous surjection τ : XC′ → XC , and the square:

YC′
ρ ��

ΘC′

��

YC

ΘC

��
XC′

τ �� XC

is commutative.
Note that if D is C-definable, then [D]C′ = τ−1[D]C (i.e. any generic type over C

containing D extends to one over C ′). So we need to verify that if Z ⊆ XC is closed then

λC′(Θ−1
C′ τ−1(Z)) = λC(Θ−1

C (Z)).

By commutativity of the square, this follows if we show that whenever Y ⊆ YC is closed
(or even Borel), then

λC′(ρ−1(Y )) = λC(Y ).

By the first square and the definition of λ, this follows if κC′(π−1(X)) = κC(X) for
all closed (or Borel) X ⊆ PC . But each side of this equation is a Haar measure on PC :
hence the equality. �

Example 4.4. The following example shows that the measure µ is not preserved under
definable bijections.

Let T0 be as in Example 3.4, N ∈ N not divisible by 2 and Γ the Nth roots of unity,
with ε a primitive Nth root. Let T ∗

A be as in Theorem 3.5. Consider the LA(Γ )-definable
sets:

X = {e ∈ F ∗ : ang(e) = 1, ang({g : g2 = e}) = {ε, ε2}},

Y = {g ∈ F ∗ : ang(g) = ε, ang(g2) = 1, ang(−g) = ε2}.

There is a definable bijection between these sets as the different values of the angular
function allow one to select in a definable way a square root of each e ∈ X. On the other
hand, µ(X) = 2/N3 whereas µ(Y ) = 1/N3.
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