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The effects of bed roughness, isolated from those of bed permeability, on the vertical
transport processes across the sediment–water interface (SWI) are not well understood.
We compare the statistics and structure of the mean flow and turbulence in open-
channel flows with a friction Reynolds number of 395 and a permeability Reynolds
number of 2.6 over sediments with either regular or random grain packing at the SWI.
The regular sediment interface is formed by cubic packing of spheres aligned with
the mean-velocity direction. It is shown that, even in the absence of any bedform,
the subtle details of the particle roughness alone can significantly affect the dynamics
of turbulence and the time-mean flow. Such effects translate to large differences in
penetration depths, apparent permeabilities, vertical mass fluxes and subsurface flow
paths of passive scalars. The less organized distribution of mean recirculation regions
near the interface with a random packing leads to a more isotropic form-induced stress
tensor. The augmented wall-normal form-induced fluctuations play a significant role in
increasing mixing and wall-normal mass and momentum exchange.

Key words: turbulence simulation, shear layer turbulence, porous media

1. Introduction
The exchange of water, solutes and momentum across the interface of sediments and

the overlying water plays a significant role in controlling biogeochemical processes in
aquatic environments. Examples include hyporheic exchange (Bencala 2000; Wondzell
2006; Phanikumar et al. 2007; Roche et al. 2019) and reactive transport processes
involving nitrification and denitrification within streams and streambed sediments
(Bertuzzo et al. 2007; Gomez-Velez et al. 2015; Painter 2018). Such interfacial
exchange phenomena occur over a wide range of spatial and temporal scales and are
affected by a number of key processes and parameters including roughness, bedform,
bed porosity and permeability, bed heterogeneity, water flow velocity and unsteadiness
(Boano et al. 2014; Cardenas 2015).

Fundamental studies of turbulent flow over permeable beds have addressed the
effect of varying permeability on canonical turbulent channel flows. These include, for
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example, experimental studies of Zagni & Smith (1976), Kong & Schetz (1982), Zippe
& Graf (1983), Manes, Poggi & Ridolfi (2011) and Kim et al. (2018) and numerical
studies of Kuwata & Suga (2016a,b) and Fang et al. (2018). Wall permeability is
shown to significantly affect the dynamics and statistics of turbulence, including
a higher friction coefficient, a varying von Kármán constant (κ) dependent on
the separation of the penetration depth and the boundary-layer thickness, reduced
streamwise velocity fluctuations and augmented wall-normal and spanwise velocity
fluctuations due to a relaxation of wall blocking. According to the type of dominant
flow processes, the interfacial flow can be separated into three regimes (Suga, Mori
& Kaneda 2011; Voermans, Ghisalberti & Ivey 2017) based on the permeability
Reynolds number, ReK = uτ

√
K/ν (where uτ is the friction velocity, K is the

permeability and ν is the kinematic viscosity): (i) an effectively impermeable regime
(ReK � 1) where attached eddies (Cossu & Hwang 2018) dominate the near-wall
dynamics, displaying a broad range of turbulent scales, (ii) a highly permeable
regime (ReK � 1) where the interface is characterized by a distinct inflection
point of the mean velocity and a predictable frequency of coherent motions due
to Kelvin–Helmholtz instability and (iii) a transitional regime (ReK ∼ o(1)), where
characteristics of both limiting regimes exist. Here, we focus on the momentum
transport in a scenario similar to river flows over sand beds, i.e. turbulent water flows
over sediments with ReK ∼ o(1) that allows turbulence to penetrate into the sediment.

A challenge in understanding the mass and momentum transport across the
sediment–water interface is associated with the lack of detailed information on the
fluid dynamics at the scale of sediment grains, especially near the bed surface. This
is due to both the difficulty of experimental measurements at the scale of sediment
grains as well as the high cost of numerical simulations to resolve the full spectrum of
scales ranging from individual grains to those of ripples, dunes, pool-riffle structures,
meanders and the watershed. The wall-normal protuberances formed by individual
particles are characterized as bed roughness (or particle roughness). This is to be
differentiated from the protuberances of bedforms, which are formed by clusters of
particles and are typically orders-of-magnitude larger compared to the length scale
associated with the particles.

The bed roughness influences properties of the time-average flow and turbulence
over permeable walls (Nikora, Goring & Biggs 1998). Many rough, permeable-bed
flow studies focused on the role of permeability using similarly structured sediments
that vary in particle size; in this case, it is difficult to separate the effect of roughness
from that of permeability, except for cases with very small particle size (Breugem,
Boersma & Uittenbogaard 2006) or cases where the packing structure is modified
inside the bed (Fang et al. 2018). Manes et al. (2009a) compared permeable and
impermeable walls with the same roughness and showed that the penetration
of turbulent flows into the porous bed leads to higher flow resistance than an
impermeable rough bed. Even in the fully rough regime, the friction factor for the
permeable bed increases with Reynolds number.

The understanding of the effect of roughness isolated from that of permeability
is much more limited. Padhi et al. (2018) experimentally compared two gravel beds
with different bed surface roughnesses. They observed that the bed with streamwise
oriented gravels generates significantly higher Reynolds stresses, form-induced stresses
and turbulent-kinetic-energy (TKE) flux than the sediment with randomly oriented
gravels. Han et al. (2018) conducted direct numerical simulations (DNS) of solute
transport on synthesized sediments consisting of regularly packed spheres with a layer
of small spheres above to simulate roughness in different regimes of rough-walled
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turbulence. They found that an increase of roughness Reynolds number disrupts the
diffusive layer and causes turbulent motions that more efficiently transport the solute.

While most studies are conducted using regularly packed particles, natural
permeable-bed roughness is characterized by random shape, orientation, spacing and
arrangement of particles. These irregularities affect the bed roughness and apparent
bed permeability and, consequently, could influence strongly the pattern and intensity
of turbulence, as well as the transport characteristics across the interface. While the
effects of permeability heterogeneity in the bulk of the sediment have been studied
in relation to interfacial transport and a few studies emphasized the importance of
the uppermost sediment layer on the transport across the interface (Kalbus et al.
2009; Laube, Schmidt & Fleckenstein 2018), it is not clear how characteristics of
the uppermost sediment layer influence the dynamics at the individual grain level
as well as the overall exchange of solute mass and momentum. For turbulent flows
bounded by impermeable rough walls, surface roughness leads to spatial heterogeneity
of the time-averaged fields and, consequently, additional mechanisms of production
and transport of TKE and mean momentum that depend sensitively on the roughness
texture (Raupach, Antonia & Rajagopalan 1991; Mignot, Bartheleemy & Hurther
2009; Yuan & Aghaei Jouybari 2018).

The goal of this work is to characterize the detailed effects of different bed
roughnesses on aspects of turbulence that are responsible for scalar and momentum
transfer, including averaged statistics and flow structural information. Our questions
are the following: (i) How different are the roughness characteristics corresponding to
regular and random arrangements of sediment grains in the top layer? (ii) How does
the bed roughness texture influence the dynamics at the individual grain level and
the overall interfacial exchange of mass and momentum? Specifically, how important
are the additional, form-induced terms in the momentum and stress balances?

To address the above questions, we perform DNS of fully developed turbulent
open-channel flows over grain-resolved permeable beds with an identical bulk
permeability (below the interface region) but different roughnesses produced by
either random or regular grain arrangements at the bed surface. The Reynolds
numbers based on the open-channel height (Reτ = uτδ/ν, where δ is the open-channel
height) and on the permeability (ReK) are kept constant. The paper is organized as
follows. Section 2 introduces the methodology of the simulations and porous-bed
synthesis and compares the two different interfaces generated. Section 3.1 validates
the random sediment synthesis by comparing with the experimental measurements of
Voermans et al. (2017). Section 3.2 compares the turbulence statistics and structure
as affected by the differences in the interface. Lastly, § 3.3 discusses implications for
the hyporheic exchange mechanisms.

2. Methodology
2.1. Governing equations

The incompressible flow of a Newtonian fluid is governed by the equations of
conservation of mass and momentum

∂ui

∂xi
= 0, (2.1)

∂uj

∂t
+
∂uiuj

∂xi
=−

∂P
∂xj
+ ν∇2uj + Fj. (2.2)
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Here, x1, x2 and x3 (or x, y and z) are, respectively, the streamwise, wall-normal and
spanwise directions, and uj (or u, v and w) are the velocity components in those
directions; P= p/ρ is the modified pressure, where ρ the density. The term Fj in (2.2)
is a body force imposed by an immersed boundary method (IBM) to impose no-slip
boundary conditions on the fluid–solid interface. The grain geometry is well resolved
by the grid. The IBM is based on the volume-of-fluid approach (Scotti 2006); its
detailed implementation and validation are provided in Yuan & Piomelli (2014a,b).
The Fi values are negligible except in the cells that are cut by the immersed solid
boundaries. The simulations are performed using a well-validated code that solves the
governing equations (2.1) and (2.2) on a staggered grid using second-order, central
differences for all terms, semi-implicit time advancement (with second-order Adams–
Bashforth scheme for the wall-normal diffusion term) and MPI parallelization (Keating
et al. 2004).

Fully developed open-channel flows are simulated with symmetric boundary
conditions applied at both top and bottom boundaries of the simulation domain
and periodic conditions are applied in x and z. A constant pressure gradient is used
to drive the flow.

In the sediment, the presence of grains leads to spatial heterogeneity of the
time-averaged variables; these time-averaged fluctuations are separated from turbulent
fluctuations using the double-averaging (DA) decomposition introduced by Raupach
& Shaw (1982),

φ(x, t)= 〈φ〉(y)+ φ̃(x)+ φ′(x, t), (2.3)

where φ is an instantaneous flow variable, 〈φ〉 is the intrinsic spatial average in the
(x, z)-plane, 〈φ〉 = 1/Af

∫
Af
φ dA (where Af is the area occupied by fluid), φ is the

temporal average, φ′=φ−φ is the instantaneous turbulent fluctuation and φ̃=φ−〈φ〉
is the form-induced fluctuation. The area averaging carried out in the total area of fluid
and solid, Ao, is termed superficial area averaging, denoted by 〈φ〉s = 1/Ao

∫
Af
φ dA;

the two averaging approaches satisfy the relation 〈〉s= θ(y)〈〉, where θ(y) is the plane-
averaged porosity at elevation y,

θ(y)=
Af (y)

Ao
. (2.4)

The plane-averaged total drag FD(y), exerted by the grains on the fluid (including
both viscous and pressure drag contributions), is calculated using the IBM body force,
F1

FD(y)=
ρ

LxLz

∫
Ao

F1(x, y, z) dx dz, (2.5)

where Lxi is the domain size in xi. For a detailed explanation of this method, see Yuan
& Piomelli (2014a). The friction velocity, uτ , is calculated based on the maximum
value of the total stress, which is the sum of the viscous shear stress, turbulent shear
stress and the form-induced shear stress.

2.2. Parameters
The detailed simulation parameters for all cases are listed in table 1. Two types of
sediment–water interface (SWI) – regular and random interfaces – are simulated; their
definitions are given in § 2.3. Case 1 is used in § 3.1 to validate the synthesis of
the random interface generated with experimental data. Cases 2 and 3 share a higher
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FIGURE 1. (a) Simulation domain and (b) positions of sediment crest, kc, and zero-plane
displacement, d, defined in § 3.2.1.

Interface type θavg ReK Reτ D/δ D+ Hs/δ (Lx, Lz)/δ (1x+, 1y+min, 1z+)

Case 1 Random 0.41 2.56 178 0.43 76 2.6 (12, 6) (2.0, 1.5, 2.0)
Case 2 Regular 0.41 2.62 395 0.20 79 0.8 (6, 3) (1.5, 0.19, 1.5)
Case 3 Random 0.41 2.62 395 0.20 79 0.8 (6, 3) (1.5, 0.19, 1.5)

TABLE 1. Summary of simulations. θavg is the average porosity in the bulk of the
sediment; D is the sphere diameter; Hs is the sediment depth; Lxi is the domain size in xi.

friction Reynolds number than that in Case 1; these two cases are used to compare
the effects of different interface geometries on the turbulent flow in § 3.2.

In table 1, θavg is the volume-averaged porosity inside the sediment; its value is
kept the same for all cases. The bulk permeability, K, is estimated using the Kozeny–
Carman model (Kozeny 1927; Carman 1937),

K =
θ 3

avg

180(1− θavg)2
D2, (2.6)

where D is the grain diameter. The Kozeny–Carman model has been widely used
for multiple types of artificially generated packed beds, for example, by Voermans
et al. (2017) for a random packing of spheres and by Fang et al. (2018) for periodic
arrays of spheres. The elevation of y= 0 is chosen at the sediment crest, for ease of
simulation domain set-up. However, y=0 is not used as the virtual origin of the y axis
for comparison of flow statistics. Instead, the virtual origin is chosen at the zero-plane
displacement, −d, which is obtained by fitting the DA velocity to the logarithmic law
(shown in § 3.2); Hs is the sediment depth measured from the sediment crest to the
bottom boundary of the simulation domain. Figure 1(a,b) shows the simulation domain
and the relation between various lengths and the y axis.

The domain sizes for Case 1 in the x and z directions are 12δ and 6δ, respectively.
For Cases 2 and 3 with higher Reτ values, smaller domain sizes are used. Such
domain sizes are considered sufficiently large for the following reasons. (i) The
streamwise and spanwise two-point autocorrelations of the streamwise turbulent
velocity fluctuations, calculated at y 6 0.5δ, fall below 0.1 at half the domain length
or width for all cases. (ii) The domain is sufficient for the sediment domains to
contain 2000–2500 randomly distributed grains to produce statistically converged
single-point and two-point turbulent flow statistics. A test is performed for Case 3
with a domain size twice as large in both x and z, which yields similar results.
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(iii) The sediment depth, Hs, is much larger than the penetration depth of turbulence
into the sediment, as shown in § 3.2. The total simulation time for each case is at
least T = 25δ/uτ after the transient.

The number of grid points is 1024(x) × 380(y) × 512(z) for Case 1 and
1536(x) × 478(y) × 768(z) for Cases 2 and 3. For Cases 2 and 3, we have verified
that coarsening 1x+i twofold does not noticeably affect the results shown in this paper.
Here, superscript + indicates normalization by the viscous length scale, δν = ν/uτ .
Uniform spacing of grids is used in x and z; 1x=1z. The grain geometry is resolved
by 36 grid points along each direction in Case 1 and 50 grid points in Cases 2
and 3. In the y direction, 120 grid points are used to refine the grid within one
diameter distance below the crest; deeper inside the sediment, uniform 1y, the same
as the grid size in x and z, is used. Above the crest, the y grid is stretched with finer
resolution close to the interface. The minimum vertical grid spacing 1y+min in wall
units is 1.5 for Case 1 and 0.19 for Cases 2 and 3. The maximum 1y+ is 5.3 for
Case 1 and 4.2 for Cases 2 and 3.

To provide further evidence that the resolution of 50 grid points per diameter
captures well the velocity distribution and forces produced by the spheres, we
conducted another simulation of a uniform flow past a single sphere with a
set-up similar to Mittal et al. (2008) and compared the results to the experimental
measurements of Taneda (1956). Two values of the Reynolds number based on grain
diameter, DU/ν (where U is the uniform undisturbed velocity), of 75 and 100 were
used. These values are similar to or higher than the Reynolds number experienced
by the spheres near the interface in this work. Results (not shown) quantify the
difference between our DNS and the experimental results as 1 %–4 % for the flow
characteristics (separation angle, recirculation bubble size and recirculation centre
location) and 1 %–1.5 % for the drag force. The comparison gives confidence that
the results herein, especially the local mean shear layers (important for turbulence
production) and the drag force (important for form-induced stress production (Raupach
& Shaw 1982)) are well captured by the spatial resolution.

2.3. Synthesis of porous beds
Numerical studies of permeable walls usually employ idealized models characterized
by regular packing of grains and a constant bed height due to their easy implementa-
tion. Examples include a Cartesian grid of cubes used by Breugem & Boersma
(2005), a regular packed bed of Breugem et al. (2006) or a simple cubic packing of
spheres used in Stoesser, Frohlich & Rodi (2007) and Fang et al. (2018). Numerical
approximations of natural sediments were constructed by, for example, Stubbs,
Stoesser & Bockelmann-Evans (2018), who used a computer-aided design model
to design and manufacture an artificial gravel riverbed to approximate a natural
bed for both experimental and numerical studies. Here, we implement a different
approach based on molecular dynamics (MD) simulations, which are widely applied
in flows through porous media with applications in materials science (Khirevich 2011;
Amadio 2014). The simulations are carried out using the open-source code LAMMPS
(Plimpton 1995) to generate sediments composed of randomly packed, monodisperse
hard spheres. The process of pouring hard spheres into a tank is simulated; this
process is designed to reproduce the sediment used in the experimental studies
of Voermans et al. (2017) (henceforth referred to as VGI17). Details of the MD
simulations are included in appendix A.
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FIGURE 2. Synthesized sediment beds coloured by y/δ with (a) regular and (b) random
interfaces.
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FIGURE 3. Wall-normal profiles of plane-averaged porosity profile for regular (- - - -) and
random (——) interfaces.

Two types of distribution of the sphere-centre locations of the uppermost-layer
spheres are generated: (i) regular distribution in (x, z) with constant height, y, called
a regular interface, and (ii) random values in both (x, z) and y directions, called
a random interface. Below the interface, sediments with both types of interface are
synthesized using a random sphere distribution that is statistically similar. The total
number of spheres are 2633, 2351 and 2116, for Cases 1, 2 and 3, separately. Figure 2
compares the sphere distributions in Cases 2 and 3; the difference at the top of the
sediments is apparent. These characteristics of the interface can also be expressed in
terms of the mean and variance of the permeability in the uppermost sediment layer
as well as the correlation length scales in the x and z directions (§ 2.4).

2.4. Geometrical comparison of the two interface types
The characteristics of the grain distributions in Cases 2 and 3 are compared. First, the
plane-averaged porosity profiles along the vertical direction are shown in figure 3. In
the interface region (y ≈ 0), the random interface yields monotonically decreasing
porosity with decreasing y, with an inflection point as observed in VGI17. In
comparison, the regular sediment yields a different pattern, with large-amplitude
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FIGURE 4. Bed surface height fluctuations for the (a) regular and (b) random interfaces.
(c) Autocorrelation of height fluctuations and Taylor micro-scales.

Interface κ d/δ Cf δb/δ δ∗b/δ δp/δ δ∗p/δ µln(K∗) σ 2
ln(K∗)

Case 2 Regular 0.32 0.06 0.008 0.078 0.138 0.097 0.157 −6.472 0.005
Case 3 Random 0.33 0.11 0.013 0.055 0.165 0.117 0.227 −5.391 0.055

TABLE 2. Flow parameters for Cases 2 and 3. δb and δp are Brinkman-layer thickness and
Reynolds-stress penetration depth, both measured from y = −d; δ∗b and δ∗p are the same
lengths measured from crest; K∗ is apparent permeability.

fluctuations. This is due to the constant sphere height in the uppermost layer. The
vertically averaged porosity inside the sediment is the same between the two cases.

To characterize the positioning of the sediment grains located in the vicinity of the
interface, we define the local bed surface height, h(x, z), as the highest sphere-surface
elevation at each (x, z) location. Note that this is different from using the sediment-
grain centre height (which would yield constant height distribution for the regular
interface). Since the penetration depths are within one sphere diameter, as shown later
in table 2, only sphere surfaces within one sphere diameter distance below the crest
are considered in calculating h(x, z). The number of top-layer spheres identified in
this way is 900 for the regular interface (Case 2) and 632 for the random interface
(Case 3). The sediment-height fluctuations, h′(x, z), are defined as the deviations of the
local height value h(x, z) from its plane-averaged value. Figure 4(a,b) compare h′(x, z)
distributions in Cases 2 and 3, normalized by δ. Interpolation is carried out to show
a smooth variation for demonstration. The magnitude of h(x, z) fluctuations can be
characterized by the root-mean-square value of h′, σh. The σ+h values are 17 and 23
for Cases 2 and 3, respectively. The horizontal distribution of h′(x, z) is characterized
here by a Taylor micro-scale, λ, determined from a polynomial fit of the two-point
autocorrelation Rx of h′, similar to the method used by Padhi et al. (2018). Here, Rx

is calculated as

Rx =
1
Ao

∫
x,z

h′(x, z)h′(x+ rx, z) dA, (2.7)
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FIGURE 5. Probability density function of bed height fluctuations for (a) regular and (b)
random interfaces.

where rx is the separation length in x. Figure 4(c) shows that λ+, estimated using
the two-point correlation with streamwise separation, is 15 and 28 for Cases 2 and 3,
respectively. The significant difference in roughness length scales affects the apparent
permeability in the uppermost sediment layer, as shown in § 3.3.1. The random
interface is more heterogeneous with a larger mean and variance of the apparent
permeability, although the permeability in the bulk of the sediment is the same.

The probability density functions of h′(x, z) are shown in figure 5. Case 2 (regular)
gives a highly skewed probability distribution with a skewness of −2.5 and a
kurtosis of 8.7, while Case 3 (random) displays a less skewed but still asymmetric
distribution with a skewness of −0.075 and kurtosis of 1.9. The skewness and a
kurtosis of Case 3 are well within the ranges for gravel beds summarized in Nikora
et al. (1998), confirming that the interface is random. These observations show that
the major differences between the sediment surfaces in Cases 2 and 3 are the larger
wall-normal and horizontal length scales for the random case. These lengths are small
compared to the grain size (D+ ≈ 70); thus, such height fluctuations are considered
as roughness, instead of bedform, whose length scales are much larger than the
grain scale. We have also verified that different realizations of the random interface
(obtained from separate MD simulations) share similar geometrical characteristics of
the sediment surface. For example, another realization of the sediment in Case 1
gives matching values of σh/D and λ/D within 1 % difference.

3. Results
3.1. Validation of sediment synthesis

To test how the random interface mimic sediment beds in natural and laboratory
settings, we compare Case 1 with the measurements of Case L12 from VGI17. The
present values of θ = 0.41 and ReK = 2.56 match those in VGI17 and fall in the
range in real aquatic systems. To be consistent with VGI17, in this section we define
the location of y= 0 to be the location where ∂2θ/∂y2

= 0. Note that for the rest of
this paper, y = 0 is defined at the sediment crest (while the virtual origin is chosen
as y=−d for statistics comparison, as discussed in § 3.2).

The comparison of the mean velocity profile U = 〈u〉 normalized by the DA
free-surface (or channel half-height) flow velocity, Uδ, is shown in figure 6(a).
Excellent agreement is obtained. Figure 6(b–d) shows the comparison of the
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FIGURE 6. Comparison of (a) mean velocity and (b–d) streamwise, wall-normal and shear
components of the Reynolds-stress tensor.E Experiment, —— DNS.
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FIGURE 7. Comparison of (a) streamwise, (b) wall-normal and (c) shear components of
the form-induced stress tensor.E Experiment, —— DNS. Black lines represent the values
spatially averaged over the entire horizontal plane; grey lines emulate the sampling used
in the experiment.

turbulence intensities normalized by uτ . Very good agreement is obtained and the
slight differences in the outer layer (y/δ > 0.3) are probably due to the fact that
the flow in the experiment at the measurement station is not a fully developed
open-channel flow, but resembles a spatially developing boundary-layer flow.

The intensities of the form-induced fluctuations normalized by uτ are compared
in figure 7. Relatively large discrepancies are found between the present DNS and
the experimental measurements. This is at least partially attributed to a difference
in the sampling size. The sizes of the sediment domains are similar between the
present DNS and the experiment; however, for the DNS, the spatial averaging
is carried out throughout the entire (x, z) domain, while the spatial averaging in
the experiment was carried out over six lateral measurement frame positions at
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FIGURE 8. (a) Diagnostic function for fitting the logarithmic profile and (b) DA velocity
profiles for regular (– – –) and random (——) interfaces; - - - (red) fitted logarithmic
profiles.

one streamwise location only. The form-induced stresses have been found to be
highly sensitive to the interface geometry (Nikora et al. 2001; Fang et al. 2018). If
we mimic the experimental sampling protocol by applying the spanwise averaging
procedure at six uncorrelated spanwise locations and then repeating the procedure
for different streamwise locations using the DNS data, we obtain a family of curves
whose envelope provides an indication of the level of uncertainty in the experimental
measurements. Such a family of curves is shown by the grey lines in figure 7 while
the black solid lines denotes DNS results using spatial averaging over the entire
domain. The VGI17 data points fall within the scatter.

In addition to the uncertainties arising due to sampling size, subtle differences in
details of the sphere distribution near the interface may also contribute to discrepancies
in form-induced velocity fluctuations. However, since the detailed grain-distribution
characteristics are not available from VGI17, we consider the synthesized sediment
sufficiently ‘realistic’ as it reproduces quantitatively the turbulence statistics and
matches qualitatively the form-induced fluctuations. In comparison, a sediment with
a regular interface may yield flow statistics that are drastically different as described
in § 3.2.

3.2. Effects of interface irregularity on flow statistics
In this section, Cases 2 and 3 are compared to understand the effects of interface
characteristics on turbulence statistics and structure.

3.2.1. DA velocity and friction
The location of the zero-plane displacement, d, and the von Kármán constant, κ , of

the wall-bounded flow are determined by fitting the streamwise DA velocity profile to
the logarithmic law,

U+ =
1
κ

log(y+ d)+ + B, (3.1)

where B is the intercept of the logarithmic profile. The fitting procedure is similar to
the method used by Breugem et al. (2006) and Suga et al. (2010) and is demonstrated
in figure 8(a). The fitted velocity profiles are shown in figure 8(b). The fitted values
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FIGURE 9. DA velocity along y in linear scaling for regular (– – –) and random (——)
interfaces. Inset magnifies the distribution at y≈−d.

of κ and d are listed in table 2; these values are close to the results (κ = 0.31–0.32
and d/δ= 0.06–0.1) reported by Breugem et al. (2006), Suga et al. (2010) and Manes
et al. (2011) at similar ReK . It is well established that κ for turbulence bounded by a
porous wall is smaller than the corresponding value for an impermeable wall, which is
usually within 5 % of 0.41 for both smooth and rough walls. Despite sharing similar κ
values, Cases 2 and 3 differ significantly in d. Recalling that d is measured from the
sediment crest height, the higher d in Case 3 is probably due to the larger variance
in local sediment heights associated with the random interface. In the following plots
we offset y by the amount of d to effectively collapse the logarithmic regions between
the two cases.

The DA velocity profiles in linear scaling (figure 9) show the differences in the
velocities near the interface. The velocity in the vicinity of the regular interface is
negative with a small magnitude. This can be related to the organized recirculation
regions induced by each sphere at the top layer (discussed in § 3.2.3). This is an
important observation with implications for interfacial exchange of solutes. Also,
simpler models, especially those that ignore inertial effects, may not be able to
capture these features. Such a flow pattern is also described in the conceptual model
of Pokrajac & Manes (2009). For lower y, the velocity decreases and eventually
reaches a constant, positive value inside the sediment. For the random interface, the
velocity variation is monotonic. Both velocity profiles exhibit an inflection point near
the sediment crest, consistent with observations of Manes et al. (2011), Voermans
et al. (2017).

The depth of shear-layer penetration, δb, is defined as the distance from the y=−d
to the y location separating the constant-velocity region in the bed and the shear layer
above; δb is also referred to as the Brinkman-layer thickness. Here, δb is calculated in
the same way as in Voermans et al. (2017), 〈u〉y+d=−δb = 0.01(Ui−Up)+Up, where Ui

is the DA velocity at y=−d and Up is the constant velocity deep in the sediment; δb

is the penetration depth measured from y=−d. The value measured from the crest,
δ∗b = δb + d, for the two cases is shown in table 2, equalling 0.138δ (regular case)
and 0.165δ (random case). They are of the same order as the grain diameter, as also
observed by Goharzadeh, Khalili & Jørgensen (2005).
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FIGURE 10. Components of (a) the Reynolds-stress tensor and (b) the anisotropy tensor
for regular (– – –) and random (——) interfaces.

The friction coefficient is defined as

Cf = 2
(

uτ
Uδ

)2

. (3.2)

Table 2 shows that the friction coefficient on the random interface is 70 % higher
than the regular one. A higher Cf for the random interface is expected as the larger
interface length scales (σ+h and λ+) lead to higher total drag, similar to the effects of
an impermeable wall with a larger roughness length scale.

3.2.2. Turbulent fluctuations
Figure 10(a,b) compares the Reynolds-stress tensor and its anisotropy between the

two cases. The Reynolds-stress anisotropy tensor is defined as

bij =
〈u′iu′j〉

〈u′ku
′

k〉
−
δij

3
. (3.3)

It is shown that Townsend’s wall-similarity hypothesis for a wall-bounded flow applies
to the outer layer (y/δ > 0.2). As y decreases from the sediment crest, for both cases
all components of the Reynolds-stress tensor are damped rapidly, together with a
decrease of tensor anisotropy. In the interface region, the random interface results in
a lower Reynolds-stress anisotropy with a higher fraction of TKE residing in v′ and
w′ motions.

The more isotropic turbulence near the random interface is linked to the augmented
disturbance from the sediment obstruction to the near-wall turbulent coherent
structures. Figure 11 compares the contours of u′+ at the respective locations of
the 〈u′2〉 peaks in the two cases. The low-speed streaks near the random interface
are significantly shorter in wall units than those near the regular interface due to the
physical blockage from the spheres serving as roughness elements.

The penetration depth of turbulent shear stress into the bed, δp, is obtained from
〈u′v′〉y=−δp = 0.01〈u′v′〉i, following Voermans et al. (2017), and shown in table 2;
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FIGURE 11. Contours of instantaneous u′+ in the (x, z) plane at the respective 〈u′2〉-peak
elevations for the (a) regular and (b) random interfaces.
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FIGURE 12. Integral length scales of u′ motions along the streamwise direction for regular
(– – –) and random (——) interfaces.

〈u′v′〉i is the value of 〈u′v′〉 at y=−d; δ∗p is the same depth measured from the crest.
The flow over the random interface gives significantly deeper turbulence penetration,
as shown by a 47 % higher δ∗p and 20 % higher δp compared to the regular interface.

To quantitatively compare turbulent scales, the integral length scales are shown in
figure 12. It is defined as

Lij,xk(y)=
∫
∞

0
Rij(y, 1rk)d(1rk), (3.4)

where

Rij(y, 1rk)=
〈u′i(y, xk)u′j(y, xk +1rk)〉

σui(y)σuj(y)
(3.5)

(no summation over repeated indices). Here, 1rk is the separation along the xk
direction and σui(y), σuj(y) are the root-mean-square of turbulent fluctuations. The
integration is carried out to the value of 1rk at which the correlation coefficient first
crosses 0.3. A threshold value between 0.3 and 0.5 is usually used to calculate the
integral lengths from two-point correlation coefficients (see, for example, Krogstad &
Antonia (1994), Christensen & Wu (2005) and Volino, Schultz & Flack (2011)). It has
been checked that varying this threshold from 0.2 to 0.5 would not noticeably affect
the comparison. It is shown that, for the random interface, at y = −d the coherent
motions are more extensive in x due to a deeper flow penetration. At the sediment
crest, however, the coherent motions are noticeably shorter in x for the random
interface, due to the disturbances of the larger roughness height.

Farther away from the interface ((y+ d)/δ > 0.15), the difference in the x integral
length between the two cases systematically increases with y, indicating a lack
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FIGURE 13. Components of the form-induced stress tensor: (a) streamwise, (b)
wall-normal and (c) spanwise components, for regular (– – –) and random (——)

interfaces.

of Townsend’s wall-similarity hypothesis for this flow quantity. One reason is the
relatively high roughness. Jiménez (2004) has proposed that Townsend’s hypothesis
applies when the roughness height is less than 0.02δ. In the present study, the
roughness height (measured from y=−d) is at least 0.06δ. Another possible reason
is the limited Reynolds number used in the present DNS. The experimental study of
Krogstad & Antonia (1994) showed a lack of similarity in the outer layer L11 in x
between a smooth-wall and a rough-wall turbulent boundary-layer flow. However, a
repeated experiment of boundary layer flows by Krogstad & Efros (2012) at a higher
Reynolds number indicated reduced discrepancy in the outer layer L11.

3.2.3. Form-induced fluctuations
The form-induced stresses are shown in figure 13. The peak values of all

components are much smaller than the corresponding Reynolds stresses, consistent
with observations of Manes et al. (2009b), Voermans et al. (2017) and Fang et al.
(2018). The streamwise form-induced stress near the regular interface region is
concentrated in a narrower layer near the crest elevation with a much higher peak
value. This is due to the vertical alignment of the wake regions of the grains, as
shown in figure 14(b,c). Large values of 〈ũ2

〉 are found in the troughs of the top
sediment surface and in the wake regions of the surface protuberances. Since these
regions are located in a narrow layer near the crest, the distribution of 〈ũ2

〉 is narrower
with a larger peak. In contrast, figure 15 shows that, for the random interface, the
mean recirculation regions can reach much larger sizes and that the penetration of
the time-mean flow is much deeper. In addition, 〈ṽ2

〉, 〈w̃2
〉 and 〈ũ ṽ〉 are higher

near the random interface. This may be explained by the higher spatial variation of
ũ associated with the disordered blockage, which leads to more intense ṽ and w̃
through continuity.
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FIGURE 14. (a) Time-averaged streamlines for the regular interface. (b) Streamlines on
Slice A ((x, y) plane across the crests of the grains). (c) Streamline distribution on Slice B
((x, y) plane across the valley between two rows of grains). Dashed lines indicate y=−d.
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FIGURE 15. (a) Time-averaged streamlines for the random interface. Panels (b) and (c)
show streamlines on two (x, y) planes, Slice C and Slice D. Dashed lines indicate y=−d.

To analyse the importance of form-induced stresses to the mean momentum balance,
we compare the magnitudes of the various shear stresses in figure 16. For the
regular interface, the form-induced shear stress is negligible; the viscous shear stress
contributes significantly to the total shear stress at the sediment crest. However, for
the random interface the viscous shear is weaker due to the milder DA velocity
gradient associated with the thicker shear layer; a much stronger form-induced stress
is present.

It is important to note that, in the vicinity of the random interface, the form-induced
shear stress reaches a similar magnitude of the Reynolds shear stress (figure 16b). The
fact that the form-induced stress potentially affects the DA velocity near the interface
and that it strongly depends on the interface geometry calls for a systematic study of
the generation of the form-induced stresses; however, this is beyond the scope of the
present work.
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FIGURE 16. Shear stresses for cases with (a) regular and (b) random interfaces: - - - (blue)
Reynolds shear stress, – – – viscous shear stress and —— (red) form-induced shear stress.

3.2.4. Reynolds-stress budgets
The budget equations of the normal Reynolds stresses, 〈u′2α 〉s, can be written as

(Raupach & Shaw 1982; Mignot et al. 2009; Yuan & Aghaei Jouybari 2018)

0 = −2〈u′αv′〉s
∂〈uα〉
∂y︸ ︷︷ ︸

Ps

−2〈u′αu′j〉s

〈
∂ ũα
∂xj

〉
︸ ︷︷ ︸

Pm

−2
〈

ũ′αu′j
∂ ũα
∂xj

〉
s︸ ︷︷ ︸

Pw

−

〈
∂

∂xj
ũ′αu′αũj

〉
s︸ ︷︷ ︸

Tw

−

〈
∂

∂xj
u′αu′αu′j

〉
s︸ ︷︷ ︸

Tt

+ν

〈
∂2u′2α
∂xj∂xj

〉
s︸ ︷︷ ︸

Tν

−2
〈

u′α
∂P′

∂xα

〉
s︸ ︷︷ ︸

Π

−2ν
〈
∂u′α
∂xj

∂u′α
∂xj

〉
s︸ ︷︷ ︸

ε

. (3.6)

On the right-hand side, the first three terms are, respectively, shear production (Ps)
and additional productions due to the form-induced shear (Pw and Pm). The following
three terms are the transport terms due to the form-induced (wake) fluctuations (Tw),
turbulent fluctuations (Tt) and viscous diffusion (Tν); Π is the pressure work and ε
is the viscous dissipation. Summing over the equations of the three Reynolds-stress
components yields the budget equation of the TKE; the sum of the Π terms yields
the pressure transport, Tp. The production terms and viscous dissipation of the TKE
are shown in figure 17(a), whereas the transport terms are shown in figure 17(b). The
residuals are around 3 % of Ps peak values.

For (y+ d)/δ> 0.2, the shear production is balanced by the viscous dissipation (not
shown). The Ps terms reach their maximum values close to the sediment crest. The
total amounts of form-induced production (Pm+Pw) are significant near the interface,
becoming dominant a short distance below the crest. Fang et al. (2018) also observed
non-negligible form-induced TKE production for regular interface particle distribution
with ReK = 0–27.

In the vicinity of the regular interface, Tν , Tt and Tp remove TKE from the high-
TKE region slightly above the crest and transfer it into the low-TKE region in the
bed; Tν dominates other TKE transports due to high ∂U/∂y, while Tw is negligible.
In contrast, for the random interface Tν is negligible and the augmented ṽ fluctuations
(figure 13) lead to a non-negligible form-induced transport, which works against the
other transport processes by moving TKE upward from low-TKE region in the bed
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FIGURE 17. Terms in the TKE budget equation. (a) Production and viscous dissipation
for regular (symbols and thin lines) and random interface (thick lines) cases; Ps (——,
A), Pm + Pw (—— (red), E (red)) and ε (– – –, @). Transport terms for (b) regular and
(c) random interfaces; Tw (—— (red)), Tt (- - -), Tν (——) and Tp (– – –). All terms are
normalized by u3
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FIGURE 18. (a) Form-induced production and (b) pressure–strain-rate term in regular
(– – –) and random interface (——) cases for the budgets of 〈u′2〉s (E), 〈v′2〉s (@) and 〈w′2〉s
(A); normalization is done with uτ and δ.

to the crest region corresponding to the TKE peak. Such process contributes to a
more equilibrium turbulence (with more energy dissipated at the location where it is
generated).

The total form-induced production (Pw + Pm) for individual normal Reynolds
stresses are compared in figure 18(a). For both cases below the crest, it predominantly
contributes to 〈u′2〉 other than the wall-normal and spanwise components, more so for
the regular interface. Pm can be rewritten as −2〈u′αv′〉〈uα〉dθ/dy. Thus, Pm remains
positive for 〈u′2〉 and is zero for 〈v′2〉 and 〈w′2〉. The negative Pw + Pm in both cases
in the vicinity of the crest is then due to negative Pw, indicating conversion of TKE
to the kinetic energy of form-induced fluctuations, since this term also exists in the
form-induced stress budgets with a positive sign (Raupach & Shaw 1982). Such
conversion is probably due to the work of particle drag against the turbulent motions
of scales larger than the particles, generating form-induced fluctuations at the scale of
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FIGURE 19. Time-averaged spanwise vorticity ωz normalized by uτ/δ at (a) Slice B of
the regular interface and (b) Slice D of the random interface.

the particles. Deeper into the porous bed, the scales of turbulent motions are rapidly
reduced and are smaller than that of the particles (as shown by the integral scales
in figure 12); here, the particle-scale form-induced shear layers generates turbulence,
represented by positive Pw.

The pressure work for a normal Reynolds stress is decomposed into the pressure
transport and a pressure–strain-rate term, R= 2〈P′∂u′α/∂xα〉s. The latter is compared
in figure 18(b); R distributes energy among different normal components of the
Reynolds-stress tensor and forms the primary source for the v′- and w′-energy budgets
that balances the viscous dissipation. The main difference is that, at the crest of the
regular interface, the u′ energy converts mostly to that of w′, with R22 ≈ 0, while
R22 and R33 are of comparable magnitudes at the crest for the random case. Liu
& Katz (2018) observed experimentally that, in a shear layer formed over an open
cavity, the magnitude of R11 is an order of magnitude higher than R22. The similar
observation herein may also be attributed to the local mean shear layers formed above
the topmost-layer particles, shown in figure 19 using time-mean spanwise vorticity
in an (x, y) plane. Such shear layers are stronger and aligned in y above the regular
interface, while the random distribution of particle for the random interface results in
a spread in such effect on energy redistribution.

3.3. Implications for the mechanism of flat-bed hyporheic exchange
3.3.1. Variation of apparent permeability

As a convention of the oil and gas industry (Edwards et al. 1990; Huang &
Ayoub 2006; Javadpour 2009), the apparent permeability, K∗, is used to establish
a relationship between mean velocity and macroscopic pressure gradient in a finite
Reynolds number flow inside a porous medium. Here, the local value of K∗ is
obtained based on the local volume-averaged velocity and the gradient of the local
volume-averaged pressure,

〈u〉s (x, y, z)=−
K∗(x, y, z)

µ

∂〈p〉(x, y, z)
∂x

, (3.7)
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FIGURE 20. Horizontal variation of the apparent permeability K∗ in the Brinkman layer
in the random interface case.

where 〈·〉s and 〈·〉 indicate, respectively, the superficial and intrinsic volume averaging
performed locally (within a volume much larger than a grain size). Normalized by uτ
and δ, equation (3.7) becomes

〈u〉+s =−Reτ

(
K∗

δ2

)(
∂〈P〉+

∂x/δ

)
, (3.8)

keeping in mind that P = p/ρ. For convenience, from here on we write the
dimensionless K∗/δ2 as K∗. Note that K∗ is not the Darcy permeability, but a
macroscopic descriptor of the complex flow at the interface, including the influences
of both diffusion of the mean momentum (traditionally modelled using the Brinkman
correction (Brinkman 1949)) and microscopic inertial and drag forces (traditionally
modelled using Forchheimer’s correction (Hassanizadeh & Gray 1987)).

Since the Brinkman layer (measured from crest) has a thickness (δ∗b ) of the order
of a sphere diameter, K∗ in this layer is considered constant along y, but varying in
x and z. To calculate such a K∗(x, z), we divide the Brinkman layer horizontally into
small segments with a size of 2D × 2D in x and z. Enlarging the segment size to
4D × 4D or 8D × 8D does not fundamentally change the observation. The velocity
and pressure values in (3.7) are spatially averaged in each small segment; the pressure
gradient for each segment is obtained using a second-order central difference. The
(x, z) distribution of K∗ for the random interface is shown in figure 20; the variation
for the regular interface is between 1 × 10−3 and 2 × 10−3, barely visible using
the same colour bar and is thus not shown. The random interface leads to a much
more heterogeneous permeability distribution with a higher mean value. Based on
its natural logarithm, the mean, µln(K∗), and the variance, σ 2

ln(K∗), are calculated and
summarized in table 2. For the regular and random interfaces, respectively, the µln(K∗)

values are −6.5 and −5.4 (or twice higher in mean apparent permeability for the
random case) and the σ 2

ln(K∗) values are 0.005 and 0.055. Since the square root of
permeability has the physical meaning of the effective pore size (Breugem et al.
2006), the results here show that the random interface increases the effective pore
size at the interface associated with a larger apparent permeability. This is consistent
with the larger streamwise integral length scales of u′ motions at y ≈−d, as shown
in figure 12.

The K∗ value is also calculated below the Brinkman layer using (3.8). Here, K∗
becomes the bulk permeability, K, associated with laminar flow inside the porous
medium, which is typically predicted using a semi-empirical model such as the
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FIGURE 21. Terms in the DA u-momentum equation (3.9), normalized by u2
τ/δ for (a)

regular and (b) random interfaces: Reynolds-stress term(—— (red)), viscous stress term
(– – – (red)), total drag (——), form-induced stress term (– – –) and pressure-gradient term
(- - -).

Kozeny–Carman equation. The value of ln(K∗) obtained using the DNS data is
almost a constant of −10.9, regardless of location. Such value indicates a K∗ that
is almost two orders of magnitude smaller than the value in the Brinkman layer. In
comparison, the Kozeny–Carman equation predicts a ln(K) value of −10.0 inside the
bulk of the sediment, overestimating the bulk permeability by almost 1.5 times.

In the next section, it will be shown that the spatial variation of apparent
permeability in the Brinkman layer of the random interface is correlated with the
roughness geometry. As K∗ in the Brinkman layer incorporates the effect of both
macroscopic diffusion and microscopic inertia on the macroscopic (volume-averaged)
velocity, we focus on the spatial variation of these two mechanisms as affected by
the roughness geometry.

3.3.2. Momentum transport mechanisms and dependence on roughness geometry
The double-averaged u-momentum equation can be written as (Raupach & Shaw

1982)

−
∂〈P̄〉s
∂x
+

(
ν
∂2
〈ū〉s
∂y2

−
∂〈u′v′〉s
∂y

)
︸ ︷︷ ︸

D

−

(
∂〈ũṽ〉s
∂y
+ FD

)
︸ ︷︷ ︸

I

= 0, (3.9)

where FD is the total drag per unit mass (sum of both pressure drag and viscous drag
around the grains). According to Whitaker (1996), the viscous and Reynolds shear
stress terms represent the effects due to diffusion of the mean momentum, usually
modelled using the Brinkman correction; the sum of these two terms is denoted herein
as D, representing ‘diffusion’. The terms related to the form-induced fluctuations (i.e.
the form-induced shear stress and the total drag) represent the effects of fluid inertia
at the grain scale on the mean momentum, usually modelled by the Forchheimer
correction. Their sum is denoted as I , representing (microscopic) ‘inertia’.

Figure 21 shows the balance of equation (3.9) across the interface, with the spatial
averaging performed using area averaging in the (x, z) plane of the whole domain.
The residual is less than 2.3 % of the peak magnitude of the total force term for
the two cases. For both cases, the spatial-averaged values of D and I are both

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

17
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.173


892 A20-22 G. Shen, J. Yuan and M. S. Phanikumar

z/∂

3

2

1
z/∂

h�/∂

0 2 4 6
x/∂

3

2

1

0 2 4 6
x/∂

3

2

1

0 2 4 6
x/∂

0.04

0.02

0

-0.02

-0.04

15

10

5

0

15

10

5

0

10

5

0

-5

-10

-0.05

|i
|� ∂/

u2 †, 
d

� ∂/
u2 †

0 0.05

(i)(ii)

(iii) (iv)

(a) (b)

(c) (d)

FIGURE 22. Horizontal variation of local volume-averaged D (a) and |I| (b), both
normalized by u2

τ/δ. (c) Sediment surface height fluctuations h′ normalized by δ for the
random interface case. (d) Correlations of D′ (red) and |I|′ (black) with h′.

significant inside the Brinkman layer, approximately balancing each other as the
pressure gradient is comparatively weak. The total drag is the main contributor to I
for both cases. For the regular interface, D is contributed to almost equally by both
Reynolds and viscous stresses, while it is predominantly due to the Reynolds stress
for the random one; this is consistent with the observations made for shear stress
distribution (figure 19). The total drag peaks at the crest for the regular interface. This
is because the main contributor of FD – the pressure drag – is caused by recirculation
regions, which are distributed uniformly near the crest for this case. For the random
interface, recirculation regions of various sizes are formed due to various scales of
roughness protuberances, leading to a peak of FD below the crest.

We now explore potential correlation between the geometry of the random interface
and the (x, z) variation of locally averaged D and I magnitudes inside the Brinkman
layer. The same local volume-averaging method described in § 3.3.1 is used. The
results for the regular interface are not shown, as the variations are barely visible
using the same range of contour levels. Figures 22(a) and 22(b) compare the (x, z)
distribution of locally averaged D and |I|, respectively. The spatial average is similar
for both contours, a result of a relatively weak pressure gradient discussed earlier. The
spatial variation is much more intense for |I| than for D. This indicates that, although
roughness leads to local augmentation of u′v′ (predominantly through wake-induced
production), such spatial variation is rather weak and does not significantly affect the
(x, z) pattern of wall-normal 〈u〉s transport. In contrast, the pressure drag is generated
by the small-scale wake of each grain. Therefore, |I| is more sensitive to the local
roughness height. Visual comparison with the roughness height distribution h′(x, z)
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FIGURE 23. (a) Wall-normal flux at y=−d normalized by uτδ2 with different averaging
window sizes Tuτ/δ for regular (– – –) and random (——) interfaces. (b) Pressure work
term of 〈ṽ2

〉s budget normalized by u3
τ/δ for regular (– – –, E) and random (——)

interfaces.

in figure 22(c) shows that the distributions of |I| and h′ are somewhat correlated.
Indeed, the scatter plot (figure 22d) of h′ and the spatial fluctuation of |I| (departure
from the x–z mean) displays a positive correlation (with preferred distribution in
quadrants I and III). This is consistent with the expectation that a high roughness
protuberance tends to generate a large (in y) recirculation region and, consequently,
a higher-than-average value of pressure drag at the corresponding (x, z) location.

As K∗ describes the global effect of both I and D, the K∗ contour in figure 20 also
displays correlation with h′(x, z) distribution; the correlation is negative as a higher
local drag serves as a stronger momentum sink.

3.3.3. Mechanisms producing vertical mass flux
The hyporheic flux (QH) quantifies the magnitude of mass exchange across the

interface during a period of time; it is defined as the wall-normal volumetric flow rate
at y=−d directed out of the permeable bed (Elliott & Brooks 1997),

QH(T)=
1
A

∫
(x,z)

v(t, x)|v>0
T

dA, (3.10)

where ()
T

denotes running time averaging within a window size T and A is the fluid
area of the (x, z) plane at y=−d. Figure 23(a) shows the variation of the vertical flux,
QH , as a function of T . The error bars quantify the variance of the values obtained
from the DNS data for each T; the variance is zero for T equal to the total simulation
time and increases with decreasing T . For T much larger than the large-eddy turn-over
time, δ/uτ , the form-induced wall-normal velocity (ṽ) is the only contributor of QH ,
while for T < δ/uτ the turbulence fluctuation (v′) also contributes to the exchange.
Evidently, the contribution of ṽ is more significant than that of v′ for both interfaces.
Also, QH is around five times larger for the random interface compared to the other,
consistent with the more intense Reynolds and form-induced stresses near y=−d.

The mechanisms governing v′ energy transport have been discussed in § 3.2.4
using the stress budget. For the transport of ṽ energy, studies on impermeable flows
over rough surfaces (Raupach & Shaw 1982; Yuan & Piomelli 2014b) showed
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FIGURE 24. Time-averaged pressure variation and three-dimensional mean streamlines for
(a) regular and (b) random interfaces. Blue arrows indicate examples of hyporheic flow
paths.

that the process is governed by the work done by the form-induced pressure,
Π̃ = −2〈ṽ∂P̃/∂y〉s, as the main source, the wake production predominantly as a
sink. The wall-normal variation of Π̃ is compared in figure 23(b); the much higher
overall value for the random interface is due to the more intense P̃ fluctuations
(shown in figure 24 in an (x, y) slice for each case) leading to significant ∂P̃/∂y near
the interface.

Thus, the main difference between the QH generation in the two cases is that the
random particle arrangement leads to larger-scale and more intense time-mean pressure
variations which, by working against the time-mean velocity, generate more intense ṽ
near the interface and promote vertical momentum exchange. Meanwhile, v′ is also
intensified by the pressure work near the interface, also contributing to QH , although
with a smaller magnitude.

The hyporheic flow paths are also of interests due to their impact on important
macroscopic exchange parameters such as the residence-time distribution and the
penetration depth. Below the region of turbulence penetration (1D below the crest),
the flow is steady and, consequently, the mean streamlines shown in figure 24 can
be interpreted as the hyporheic flow paths of particles released from the upstream.

For the regular interface, the spatial variation of P̃ shows distributions with
alternating negative and positive values with a length scale of one sphere diameter,
representing organized mean recirculation regions that are shown in figure 14(b,c).
The main mechanism of vertical time-mean exchange is due to these organized

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

17
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.173


Turbulence and hyporheic mixing 892 A20-25

recirculation regions at the interface. The relatively low K∗ at the uppermost layer of
the regular interface limits communication between the flows inside the sediment and
in the region above; thus, in the sediment, there is little vertical exchange and the
lateral flow paths are long.

In contrast, for the random interface, the hyporheic flow paths display a multiscale
pattern with short flow paths near the interface and longer flow paths in the shape of
circular arcs reaching deeper into the bed. These paths are similar to those visualized
through dye transport for a flat bed in the experiments of Packman, Salehin &
Zaramella (2004). Near the bed, the strong P̃ gradients of larger coherence length
induce flow infiltration near the bed, reminiscent of bedform-induced advective
pumping (Packman et al. 2004). This also results in more intense ṽ, increasing
form-induced mixing. The streamwise lengths of the flow paths appear to be reduced
as the wall-normal communication is strengthened.

4. Conclusions and discussion
We reported DNS results for fully developed turbulent flows in an open channel on

grain-resolved sediment beds with either regular or random grain positioning at the
sediment–water interface. The random interface results in a particle roughness with
significantly larger root-mean-square height and longer horizontal correlation lengths.
These length scales are much smaller compared to those typical of a bedform.
Thus, the interface height variation is considered as roughness. A comparison with
experimental measurements using randomly poured spheres shows that the case with
random interface yields matching flow statistics. It is thus considered as a good
approximation of a realistic sediment.

Detailed DNS results obtained with regular and random interfaces with matching
Reτ =395 and ReK=2.6 are compared. The differences in the effects on the turbulence
and the mass and momentum exchange across the interface are summarized as
follows. (i) As a main difference between the two cases, the larger roughness length
scales brought by the random interface result in a less organized distribution of mean
recirculation regions at the interface and more intense P̃ variations at larger scales. The
result is a higher ṽ production and, consequently, a more isotropic form-induced stress
tensor and significant form-induced shear stress (that is comparable to the Reynolds
shear stress). It is shown that ṽ, as opposed to v′, is the main contributor to the
wall-normal hyporheic flux across the interface for both regular and random interface
roughnesses. Consequently, the hyporheic flux is significantly higher for the random
interface than for the regular one. (ii) The vertical spread of the mean shear-layer
distribution near the random interface leads to a more even TKE redistribution for
v′ and w′ fluctuations and consequently a more isotropic Reynolds-stress tensor.
The form-induced fluctuations also modulate the total production of Reynolds stress
through conversion between TKE and wake kinetic energy, as well as introducing an
additional diffusion process that transports energy from the low-TKE region to the
high-TKE region. (iii) More intense mixing is observed near the random interface due
to augmented Reynolds and form-induced shear stresses; this is reflected in a deeper
turbulence penetration (44 % higher δ∗p ) and a higher apparent permeability (twice
higher K∗) in the Brinkman layer. The local apparent permeability in this layer is
negatively correlated with the local height of roughness. Moreover, the strengthened
communication between the surface and subsurface flows for the random interface
leads to shortened and deeper-reaching hyporheic flow paths.

Regarding how the type of interface roughness influences the effects of wall
permeability, the results show that the penetration depths of mean shear and turbulence
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are significantly increased by the random roughness. However, the roughness type
does not appear to noticeably modify the von Kármán constant (which is lower on a
permeable wall than on an impermeable one), as long as the same type of packing is
used inside the sediment. Lastly, the Kelvin–Helmholtz (K-H) instability due to wall
permeability and the K-H rollers, if present, may also be affected differently by the
two roughness types. The K-H instability is, however, expected to be very weak in
this work as ReK ≈ 2.5. Manes et al. (2011) systematically evaluated the effects of K
with ReK varying from 0 to 17. Within this range, the K-H instability and signature
of the rollers were observed for ReK ≈ 17 and not for ReK ≈ 8, for example. The
effects of interface roughness on K-H instability and the resulting coherent motions
for flows with high ReK are interesting questions for future work.

It should be noted that the specific configuration of the regular packing may also
affect the drag, turbulent statistics and structure. For example, the hexagonal particle
packing is expected to give more drag and higher resistance to the streamwise
velocity fluctuations. We have run an additional DNS simulation with a hexagonal
arrangement at the interface (not shown herein) and compared various flow quantities
with the cubic arrangement. It was observed that, although the hexagonal arrangement
gave slightly higher Cf and anisotropy of the form-induced stresses, such differences
were much smaller compared to the difference between the cubic and the random
arrangements. The reason is probably due to the similar roughness length scales
among various regular arrangements and the organized mean-velocity pattern (e.g.
mean recirculation regions) they generate. For this reason, the cubic arrangement
discussed in details herein is considered as a representative example of regular type
of packing.

The results demonstrate that subtle details of the particle roughness alone, in
the absence of bedform, can affect significantly the dynamics of the turbulence
and the form-induced fluctuations. Such effects translate to large differences in
apparent permeability, hyporheic flux, and subsurface flow paths of passive scalars.
Future work is needed to fully understand the effects of particle roughness on scalar
and momentum transport with systematically varying roughness lengths (σ+h , λ+),
roughness texture, as well as the effect of varying bulk permeability with random
interface roughness.
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Appendix. Details of porous-bed syntheses
Both the porous beds with random and regular interfaces are generated by

simulating the pouring of hard spheres of the same diameter, D, into the MD
simulation domain. The particles are subject to the gravitational force in the y
direction and the forces between particles determined by the Hookean-style granular
potential with history effects. The top and bottom boundaries are fixed, where the
repulsive boundary condition is imposed; the periodic boundary condition is imposed
on the x and z boundaries.

For the bed with the random interface packing, the particles are released at each
time step from the top boundary and move towards the bottom boundary due to
imposed gravity (figure 25). The simulation ends as the sediment-bed domain is
filled with randomly packed spheres. For the bed with the regular interface, special
treatment is required at the bottom boundary. Specifically, a layer of regularly packed
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FIGURE 25. Bed synthesis with random interface packing.
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FIGURE 26. Bed synthesis with regular interface packing.

spheres is initially positioned on the bottom boundary (figure 26a); a second layer of
spheres is also manually positioned following hexagonal close packing (figure 26b).
However, as is, the first two layers of spheres lead to a locally low value of θ at such
elevation. To maintain the running average of θ(y) (with an averaging window size
of D) as almost a constant value of θavg, the second layer of spheres is shifted away
from the wall by a small amount determined by the targeted θavg value (of the order
of o(0.1D) with 3 % fluctuations added, figure 26c). Then, the similar procedure as
in figure 25 is employed to fill the rest of the porous bed with randomly packed
spheres. In the end, the MD simulation domain is flipped upside down to yield a
regularly packed uppermost layer. Once the particle positions are determined using
the aforementioned procedure, the particles are overlaid with the DNS grid and the
volume of fluid for each grid cell is determined for the immersed boundary method
of the fluid solver.
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