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A new model to account for the presence of the test-section wall in wind-turbine or
propeller measurements is proposed. The test section, here assumed to be cylindrical,
is modelled by means of axisymmetric source panels, while the wind turbine (or
the propeller) is modelled with a simplified vortex model (Segalini & Alfredsson,
J. Fluid Mech., vol. 725, 2013, pp. 91–116). Combining both models in an iterative
scheme allows the simulation of the effect of the test-section wall on the flow field
around the rotor. Based on this novel approach, an analysis of the flow modification
due to blockage is conducted together with a comparison of actuator-disk theory
results. Glauert’s concept of equivalent unconfined turbine is reviewed and extended
to account for the angular velocity of the rotor. It is shown that Glauert’s equivalent
free-stream velocity concept is beneficial and can correct most of the systematic
error introduced by the presence of the test-section wall, although some discrepancies
remain, especially in the power coefficient. The effect of the confinement on the
wake structure is also discussed in terms of wake expansion/contraction, pitch of the
tip vortices and forces at the rotor.
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1. Introduction
The estimation of the performance of wind turbines and propellers can be done

in several ways. A simple way is the use of the blade-element method (Glauert
1935; Burton et al. 2001), where the general momentum theory is combined with
the blade-element approximation. However, this approach is limited by the number
of approximations involved (for instance, it assumes a rotor with an infinite number
of blades, usually corrected by means of tip-loss corrections) and by the need of
tabulated aerofoil data. An alternative way that is becoming widespread is the use of
numerical methods to simulate the flow around the rotor (Vermeer, Sørensen & Crespo
2003). This is usually achieved by discretizing the domain in space and time and it is
therefore computationally expensive to perform, especially if a parametric study with
many configurations is pursued. Alternatively, in order to evaluate the performance of
an existing rotor, or to validate the numerical results, experimental data can be used,
coming either from a real turbine/propeller or from a down-scaled one. For real-scale
wind-turbine tests (and to a lesser extent propellers) it is necessary to have available
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data measured over a long time period to have statistically significant results (this
can add up to data spanning up to 1 or 2 years). A more feasible alternative is to
evaluate a down-scaled model of the rotor and do the measurements in an enclosed
and controlled environment, usually a wind or water tunnel (from now on we will
focus only on wind tunnels but the discussion is valid for water tunnels as well).
During the design of these devices, the measurement of the rotor performance in
a wind tunnel is a crucial process. Once the preliminary design of the blades is
done, experiments are performed to assess the actual behaviour of the turbine and to
verify whether or not it operates as designed. During the wind-tunnel experiments,
several operating regimes can be investigated under different controlled conditions
(free-stream velocity, velocity gradient, temperature, turbulence, etc.). These tests are
usually performed on a down-scaled model of the designed wind turbine or propeller,
but the model is as big as possible to avoid low-Reynolds-number effects that will
significantly change the flow near the rotor blades.

The presence of walls in closed test sections does however have an effect on the
flow field around the rotor (see for instance Chen & Liou 2011; McTavish, Feszty
& Nitzsche 2013). This is mainly due to the fact that the wake behind the rotor is
not allowed to expand or contract in a similar way as it would do in unconfined
conditions. In particular, the flow characteristics between the wall and the wake will
be significantly modified. While in unconfined conditions the flow outside the wake
will recover the properties of the incoming free-stream flow, in an enclosed tunnel the
flow behind the wind turbine (propeller) is funnelled into an area with a decreasing
(increasing) cross-section size. This will accelerate (decelerate) the flow outside the
wake compared to the free-stream velocity. Furthermore, the streamtube upstream of
the rotor will expand (contract) less than in the unconfined case, implying a larger
working mass flow rate and a higher aerodynamic efficiency that might even overcome
the Betz limit for wind turbines. These effects are usually referred to as blockage.
It is worth mentioning that this problem also concerns numerical simulations as
the boundary condition in the surface surrounding the simulated domain is of zero
outward velocity (Sørensen & Shen 2002; Troldborg 2008), a condition equivalent to
having a wall that is limiting the flow transversal motions.

A detailed review of blockage-correction schemes was reported by Barlow, Rae
& Pope (1999), with a brief mention to propeller corrections where only the work
of Glauert (1935) was cited. The strategy that was pioneered by Glauert (and later
followed by Mikkelsen & Sørensen 2002; Bahaj et al. 2007; Garrett & Cummins
2007; Werle 2010, among others) was focused on the actuator-disk modelling of
the propeller, assumed to be a porous, inviscid and homogeneous disk. Furthermore,
the flow properties (velocity and pressure) in each cross-section of the streamtube
containing the working fluid were assumed to be homogeneous, restricting the analysis
to rotors with an infinite number of blades. In addition to the flow analysis, Glauert
introduced the definition of the ‘equivalent free-stream velocity’, U′∞, that will give
the same measured thrust force and disk velocity as in an equivalent unconfined
case. The correction of the dimensionless thrust and power coefficients can then be
done by simply rescaling them with an appropriate power of the ratio between the
equivalent and the measured free-stream velocity, σ = U′∞/U∞. Glauert obtained an
implicit formula for the equivalent free-stream velocity and then he linearized it in
the limit of small blockage (ε = Ad/C� 1, where Ad is the disk area and C is the
test-section cross-section). This linearization works well for propellers, but becomes
singular for wind turbines as the thrust coefficient approaches unity. Therefore, it is
sometimes erroneously stated that the Glauert correction does not work for highly
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loaded turbines, although it is more appropriate to refer this to the linearization
that he proposed. Similar derivations with simpler algebra were also proposed by
Mikkelsen & Sørensen (2002), Garrett & Cummins (2007) and Werle (2010). Despite
the age and the limitations for the wind-turbine case, the linearized Glauert approach
is still the most used method in the community and it is the benchmark for all the
other correction schemes.

The analysis of the wake structure becomes more problematic as the confinement
introduces a velocity perturbation in the wake evolution. For instance, tip-loss
corrections (closely related to the near-wake structure) might be affected by the effect
of the confinement, an issue investigated theoretically only by Goodman (1956). As
a rule of thumb, it is often assumed that if ε < 0.1 no significant confinement effect
is present and the wake resembles the equivalent one without confinement (Wilson
1994). The discussion could be further extended to dynamical phenomena like the
wake instability and meandering, although they will not be analysed in the present
work.

Flow analyses and corrections schemes not based on the actuator-disk approximation
are quite rare. Numerical simulations cannot give general results due to the prohibitive
number of cases that need to be evaluated to provide a generalized understanding. On
the other hand, analytical results like the ones proposed by Okulov & Sørensen (2010)
with a prescribed wake structure cannot be applied since it is unknown how the test-
section wall modifies the velocity field around the helical filament.

The availability of a new, fast and accurate numerical model to calculate the near-
wake structure and the performance of a rotor (Segalini & Alfredsson 2013) provides
the opportunity to build a numerical model of a wind turbine or a propeller placed
inside the test-section enclosure. With this it is possible to simulate the effect of the
test-section walls on the near-wake structure and the rotor performance. The results
can be compared with those of an equivalent rotor operating without confinement,
providing a relationship between the two experimental results, and an understanding of
how much the flow will be affected by the confinement, and this idea is pursued in the
present work. Similarly to actuator-disk-based theories, the present model is developed
for axially symmetric flows, so that the results are strictly applicable to circular test
sections and ducted propellers, for instance. However, it is expected that the model
should also describe well blockage effects in rectangular test sections with ε� 1.

The paper is structured as follows. Section 2 reviews some results obtained by
means of the actuator-disk approximation and introduces a new definition of the
equivalent unconfined rotor concept. Basic results of the simple actuator-disk approach
will be briefly recalled in order to provide useful relationships for the comparison
of the model results. Section 3 provides a description of the wind-turbine/propeller
vortex model and of the test-section model, together with their respective numerical
implementation. A discussion of the confinement effect and of blockage-correction
schemes is reported in § 4 followed by § 5 with some concluding remarks.

2. The actuator-disk method
Let us consider the two axisymmetric control volumes depicted in figure 1. Within

the actuator-disk approximation, the flow properties are homogeneous in each cross-
section of the inner streamtube. The derivation will be here focused on the wind-
turbine case, but it is also applicable to propellers, and it is equivalent to the one
proposed by Garrett & Cummins (2007) and Werle (2010). The application of mass
conservation and momentum balance principles provides the simple relationships

AwUw = AdUd, (C− A∞)U∞ = (C− Aw)U2, (2.1a,b)
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FIGURE 1. Schematic representation of the control volumes used.

and

− T + p∞A∞ − pwAw + X = ρAwU2
w − ρA∞U2

∞, (2.2)
p∞ (C− A∞)− pw (C− Aw)− X = ρ (C− Aw)U2

2 − ρ (C− A∞)U2
∞, (2.3)

where X is the unknown pressure force applied on the streamtube surface,
T = (pu − pd) Ad is the thrust force applied by the rotor to the fluid, Ad = πR2

is the rotor area and ρ is the fluid density. A∞ and Aw are the cross-sectional areas
of the inlet and outlet sections of the inner control volume, respectively.

By summing (2.2) and (2.3) it is possible to obtain

T − (p∞ − pw)C= ρCU2
∞ − ρ (C− Aw)U2

2 − ρAwU2
w. (2.4)

By means of Bernoulli’s theorem applied upstream and downstream of the rotor and
outside the inner streamtube, it is possible to obtain that

p∞ − pw = ρ2
(
U2

2 −U2
∞
)

and pu − pd = ρ2
(
U2

2 −U2
w

)
. (2.5a,b)

Equation (2.4), combined with (2.1), (2.5) and with T = (pu − pd) Ad, reduces to

ε
(
u2

2 − u2
w

)= (u2 − 1) (u2 + 2uw − 1), (2.6)

where

ε = Ad

C
, uw = Uw

U∞
, u2 = U2

U∞
. (2.7a–c)

Equation (2.6) can be solved in closed form in terms of the wake velocity ratio and
blockage parameter as

u2 = 1
1− ε

[
1− uw +

√
u2

w + ε
(
1− 2uw − u2

w

)+ ε2u2
w

]
. (2.8)

Other useful expressions concern the velocity at the disk

ud = Ud

U∞
= uw

u2 + uw

u2 + 2uw − 1
, (2.9)
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and the measured thrust coefficient

CT = 2T
ρU2∞Ad

= u2
2 − u2

w, (2.10)

that can be determined as functions of the wake velocity by means of (2.8). As is
usually done in actuator-disk models, the power is determined by considering the work
done by the thrust force, P= TUd, so that the power coefficient can be expressed as

CP = 2P
ρU3∞Ad

= ud
(
u2

2 − u2
w

)
. (2.11)

By means of the actuator-disk approach it is possible to get some insight into the
final state of the wake in terms of the wake radius

rw∞ = Rw∞
R
=
√

ud

uw
, (2.12)

and pitch

p∞ ≈ u2 + uw

2λrw∞
= 1

2λrw∞
(
1− εrw∞2

) [1+ 1− 2εrw∞2

rw∞2
ud

]
, (2.13)

where the approximation is due to the fact that the induced azimuthal velocity is
unknown and only the rigid-body rotation of the vortex system (by means of the rotor
angular velocity Ω , or the tip-speed ratio λ = ΩR/U∞) is accounted for. This can
become a problem in the case of propellers that have high azimuthal velocity and
low wake radius.

By using the actuator-disk theory it is possible to approximately describe the flow
around an enclosed rotor. However, it is of practical importance to understand how to
transfer wind-tunnel measurements (done with confinement) to real turbines (without
confinement). Glauert (1935) introduced the definition of an equivalent free-stream
velocity, U′∞, so that a rotor working without nearby walls would have the same thrust
and disk velocity (and indeed extracted power) as measured with walls (and with a
free-stream velocity U∞). According to momentum theory, the thrust of an unconfined
turbine is

T ′ = 2ρAdU′d
(
U′∞ −U′d

)
, (2.14)

where from now on primes will indicate the equivalent unconfined rotor quantities.
Equation (2.14) can be normalized with ρU2

∞Ad/2 giving CT = 4ud (σ − ud). This
expression provides a simple estimate of the equivalent free-stream velocity ratio
(Mikkelsen & Sørensen 2002) as

σ = U′∞
U∞
= ud + CT

4ud
. (2.15)

In the limit of ε → 0, (2.8), (2.10) and (2.15) can be linearized, leading to the
simple Glauert formula

σ = 1+ ε CT

4
√

1−CT
. (2.16)

As discussed in the introduction, this formula is very useful for propellers (where
CT < 0), but becomes singular for wind turbines with CT→ 1.
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At this point a theoretical drawback of actuator-disk theory appears. As discussed
by Segalini & Alfredsson (2013), the thrust and disk velocity are related to the
free-stream velocity, U∞, the angular velocity, Ω , and the strength of the vortex
system, here identified by means of the blade circulation, Γ , while the rotor radius, R,
and the number of blades are here supposed to be geometric constants. Any derived
quantity, like the disk velocity or the thrust, will be a function of these three
parameters (U∞, Ω and Γ ). In Glauert’s equivalent free-stream velocity concept
there is only the matching between two parameters (T and Ud), with an infinite
number of possible configurations that fulfil the constraints. This problem appears in
practical situations when correcting the power-coefficient curve versus the tip-speed
ratio. In fact, while Glauert’s theory suggests that the power coefficient should be
scaled with σ 3, the tip-speed ratio leaves some ambiguity: is the equivalent free-stream
velocity concept associated with a constant angular velocity, Ω , or with a constant
tip-speed ratio, or with neither of them? Actuator-disk-based approaches cannot give
an answer to this question and, to the authors’ knowledge, nobody has attempted
a description of blockage effects by means of general momentum theory, probably
because of the unknown distribution of pressure force applied on each infinitesimal
streamtube section (see Glauert 1935). In the present work, the equivalent unconfined
turbine is defined as the turbine that will give the same disk velocity, thrust force
and tip-speed ratio so that the conditions

Ud =U′d, T = T ′ and λ= ΩR
U∞
= Ω

′R
U′∞
= λ′, (2.17a–c)

are fulfilled between the confined and the equivalent unconfined rotor. Other
definitions of the equivalent unconfined rotor could be used, for instance by requiring
the matching of the rotor angular velocity rather than the tip-speed ratio. This
alternative has been investigated by the authors and the results of this analysis were
close to the ones obtained for constant λ, although affected by a larger scatter due
to the more complicated procedure to determine the equivalent unconfined rotor (see
§ 4.2 for a discussion about the determination of the equivalent unconfined rotor).

3. Model description

The basic building blocks of the enclosed turbine model are a free-vortex model to
replicate the rotor and its wake (Segalini & Alfredsson 2013), together with a panel
method (composed of discrete sources) to model the test-section wall. Both models
assume a steady-state, incompressible, inviscid and irrotational flow everywhere with
the exception of the region occupied by the vortex filaments that compose the rotor
wake. Differently from the unconfined case, the radial flow is attenuated by the test-
section wall, and thus the wall-normal induced velocity imparted by the rotor at the
wall location needs to be cancelled by the distributed sources. As a side effect, the
sources induce a certain velocity field throughout the domain that is felt in the rotor
wake. This external perturbation velocity has an effect on the wake shape and thus on
the velocity induced by the rotor on the test-section wall, so that the source-strength
distribution has to be adapted iteratively to the new induced velocity from the rotor.
Since the vortex method is an iterative scheme, the complete model of rotor and tunnel
will be solved by means of an iterative approach as well.

To account for the turbine rotation, a rotating reference frame is introduced,
according to figure 2. In such a reference frame, the x-axis is aligned with the first
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FIGURE 2. Schematic representation of the vortex model and its reference frame.

blade, the z-axis is oriented normal to the rotor plane and the y-axis is chosen normal
to both the x- and z-axes. The origin of the reference frame is chosen to be located at
the rotor hub. The angular velocity of the rotor is aligned with the z-axis, Ω =Ω∗e3
(with e3 = [0, 0, 1]). The unperturbed free-stream velocity is also oriented along
the z-axis, so that Ue = U∗e e3. This unperturbed (also referred to here as external)
free-stream velocity is different from the one that could be measured inside the test
section (indicated with U∗∞, consistently with the notation of the previous section) that
is affected by the turbine’s presence. Consider for instance the unperturbed stream
with velocity U∗e and a frictionless pipe aligned along e3: the velocity inside the pipe
(here denoted U∗∞) will be equal to U∗e as well. However, if inside the pipe there is
a force T 6= 0, the velocity inside the pipe will be U∗∞ 6= U∗e . In general, if T > 0
(namely the force is directed upwind and slowing the flow down), U∗∞6U∗e and vice
versa. U∗∞ can only be determined a posteriori by computing the mass flow inside
the test section upstream of the rotor (in the present implementation it is evaluated
at z∗ = −50R∗) so that the radial and azimuthal variation of the blockage from the
turbine itself can be neglected (Medici et al. 2011).

From this section to the end of the paper, all dimensional quantities (indicated with
an asterisk superscript) will be scaled with the fluid density, ρ∗, the external free-
stream velocity, U∗e , and the rotor radius, R∗, to obtain the non-dimensional variables

λe = Ω
∗R∗

U∗e
, Γe = Γ ∗

U∗e R∗
, δ = δ∗

R∗
, Rt = R∗t

R∗
, x= x∗

R∗
, (3.1a–e)

where Γ ∗, δ∗ and R∗t are the circulation along the blade, the constant radius of
the vortex tube along the blade (and the tip vortex) and the test-section radius,
respectively; x = [x, y, z] is the dimensionless position vector. For practical use, the
model is formulated in terms of U∗e so that quantities normalized with this velocity
scale will be marked with a subscript e, otherwise quantities will be reported using
U∗∞ as velocity scale. Consistently with the previous section, primed quantities will be
generally associated with unconfined conditions including the equivalent unconfined
rotors.

3.1. Rotor vortex model
The vortex model used here is based on discrete vortex filaments to simulate the
rotor wake, originally proposed by Joukowsky (1912) and extended by Segalini &
Alfredsson (2013), schematically depicted in figure 2. The model assumes a constant
circulation along the blade implying that the modelled turbine operates approximately
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at maximum efficiency for a given set of operating conditions (Okulov & Sørensen
2010). The main goal of the model is to calculate the tip-vortex path iteratively,
allowing for the wake expansion or contraction. Once the tip-vortex path is known,
the velocity induced by the vortex system in the domain can be calculated by means
of the Biot–Savart law (Batchelor 1967).

The blades are modelled with Nb vortex lines with constant circulation, Γ ∗. The
vorticity is assumed to be oriented parallel to the vortex-line axis and it is distributed
uniformly within a radius δ∗ from the axis. The value of δ∗ is constant along each
filament, so that viscous diffusion and vortex stretching are neglected. The root-vortex
path is assumed to be straight and described by γroot= ze3, while the tip-vortex path is
assumed to be helix-like shaped with a variable radius and pitch. For the first blade,
this vortex path can be described by

γtip = rw(z)Ψ + ze3, (3.2)

with the orthogonal unitary vectors

Ψ = [cos φw, sin φw, 0], Ψ̃ = [− sin φw, cos φw, 0], (3.3a,b)

where φw = φw(z). The description of the three-dimensional tip-vortex filament is
therefore reduced to knowledge of two scalar functions, representing the local wake
radius, rw(z), and filament phase, φw(z), respectively, that, together with (3.2) and
(3.3), allow the tip-vortex path description in the rotating reference frame. By means
of flow symmetry, the tip-vortex paths associated with the other blades have the same
radial function, rw(z), while the phase function, φw(z), is shifted for each blade by
1φ = 2π/Nb.

Each blade is modelled as a straight vortex line, described mathematically by
γblade,i= r[ cos αi, sin αi, 0 ] where αi= 2π (i− 1) /Nb is the azimuthal position of the
ith blade and r= (x2 + y2)1/2 6 1 is the normalized radial location at the rotor disk.

The tip-vortex radial function, rw(z), and angular function, φw(z), can be determined
by means of the Helmholtz theorems, by considering that the tip-vortex filament must
be a flow streamline. The velocity vector at each point of the tip vortex can be
computed by adding three contributions, namely the free-stream contribution, e3, the
velocity induced by the test-section wall presence, uwall,e, and the velocity induced by
the vortex system itself, uf ,e. In a rotating reference frame, the streamlines are steady
and the following kinematic equation holds:[

uf ,e(γtip)+ e3 + uwall,e(γtip)− λee3 × γtip
]× dγtip

dz
= 0, (3.4)

where the first three terms indicate the normalized velocity contributions discussed
above and the fourth term indicates the change to a rotating reference frame. Given
that

dγtip

dz
= drw

dz
Ψ + rw

dφw

dz
Ψ̃ + e3, (3.5)

equation (3.4) can be rearranged to obtain the following two ordinary differential
equations for rw(z) and φw(z):

drw

dz
=− [(uf ,e + uwall,e)× e3] · Ψ̃

1+ [(uf ,e + uwall,e)×Ψ ] · Ψ̃
, (3.6)

rw
dφw

dz
= λerw − [(uf ,e + uwall,e)× e3] · Ψ

[(uf ,e + uwall,e)× Ψ̃ ] · Ψ − 1
. (3.7)
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Since solving this set of equations requires knowledge of γtip, an iterative scheme is
needed. Initially the tip vortex is assumed to be a helix with constant radius and linear
phase. The induced velocity is therefore computed and, by means of (3.6) and (3.7),
two updated distributions of rw(z) and φw(z) are determined. The process is iterated
several times until the changes in the path geometry fall below a certain threshold.

To compute the induced velocity due to the presence of the vortex lines, the Biot–
Savart law is applied. As discussed by Segalini & Alfredsson (2013), the velocity
induced by the vortex system must be computed at all points of the tip vortex. For a
generic point of γtip, the line-vortex approximation of the Biot–Savart law can be used
if the filament is far enough from the point of interest. Otherwise, finite core effects
must be accounted for, especially concerning the self-induced velocity calculation (see
for instance Callegari & Ting 1978; Fukumoto & Miyazaki 1991; Ricca 1994; Kuibin
& Okulov 1998; Leishman 2000).

The thrust and power coefficients, here defined as

CT,e = 2T∗

ρ∗
(
U∗e
)2

A∗d
, CP,e = 2P∗

ρ∗
(
U∗e
)3

A∗d
, (3.8a,b)

can be calculated by the integration over the normalized blade length, r, of the
following expressions:

CT,e = 2
π

NbΓe

∫ 1

0

[(
uf ,e(γblade)+ e3 + uwall,e(γblade)− λere2

)× e1
]
· e3 dr, (3.9)

CP,e = 2
π
λeNbΓe

∫ 1

0

[(
uf ,e(γblade)+ e3 + uwall,e(γblade)− λere2

)× e1
]
· e2r dr. (3.10)

3.2. Test-section model
Since the vortex model determines the steady-state condition, the test-section wall
must also impose a boundary condition that is independent of the rotation of the
turbine. This restricts the analysis to cylindrical test sections with the cylinder axis
coinciding with the rotor axis. With this particular shape, the use of a rotating
reference frame will have no implications with respect to the tunnel presence as the
condition imposed by the wall concerns only the radial velocity which is unaffected
by the rotation. This particular scenario also approximates non-circular test sections
if ε� 1 as well as ducted propellers.

Initially, the wall was modelled with quadrilateral source panels (Katz & Plotkin
1991) located at the tunnel wall, but this methodology was soon abandoned. When the
variation of the radial velocity at the wall location is small (compared to its average
value), the induced radial velocity can be assumed to be axisymmetric, implying
that the circumferential distribution of the source strength can be assumed to be
axisymmetric as well. When this is the case, cylinder-shaped sources of constant
strength can be used to enforce the wall boundary condition, significantly reducing
the number of unknowns to be determined.

Figure 3 shows the azimuthal average of the radial velocity (and its azimuthal
peak-to-peak variation) for a one-bladed and a two-bladed wind turbine operating in
unconfined conditions, both evaluated at a given z position and at two fixed radial
distances from the wind-turbine axis of 2R∗ and 3R∗ (no effect of the test-section
wall presence is taken into account here). As visible from the figure, both the
single-bladed and the two-bladed rotors have a small peak-to-peak variation at 3R∗,
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FIGURE 3. Axial distribution of the azimuthally averaged radial velocity, Ur, induced by
an unconfined wind turbine operating at λ′ = 5 and λ′NbΓ

′ = 8π/9 with (a) Nb = 1 and
(b) Nb = 2 at a radial distance of 2R∗ (grey lines) and 3R∗ (black lines). The error bars
indicate the maximum–minimum variation of Ur (denoted by 1Ur) evaluated at several
azimuthal positions. (c) Radial distribution of 1Ur/Ur at z= 0 for ◦, Nb= 1; +, Nb= 2;
O, Nb = 3; ∗, Nb = 5; and �, Nb = 7.

but at 2R∗ the azimuthal variation is non-negligible in the single-bladed case. The
same trend is observed at a certain radial distance below 2R∗ for the two-bladed
case also, and similarly for cases with a higher number of blades. Indeed, the radial
velocity distribution can be generally assumed to be axisymmetric for radial distances
greater than 3R∗, while for Nb > 2 this bound is lowered to 2R∗. At the rotor axial
location, the variation is usually the greatest and it decays quickly as the radial
location moves further away from the rotor axis. The figure demonstrates the validity
of the axisymmetric approximation for the cylindrical test-section wall with Nb > 1
when the test-section radius is larger than a certain threshold (always smaller than
3R∗) that strongly depends on the number of blades.

Let us now consider the velocity induced by an axisymmetric source cylinder on a
generic point P≡ [x0, y0, z0

]
. The cylinder axis is assumed to lie along the z-axis and

the cylinder mid-axial point is assumed to be the origin of the local reference frame
used. The radius of the cylinder, length and source strength will be denoted by Rr, 2Lr
and χ , respectively. By means of symmetry considerations, the velocity induced by the
cylinder at point P can only be axially and radially directed depending on the axial
and radial position of P (the radial position will be indicated by r0 =

(
x2

0 + y2
0

)1/2).
A rotation of the reference frame can be done so that P lies in the xz-plane with
coordinates P= (r0, 0, z0). The potential of the source cylinder is

Φ (r0, z0)=−χRr

4π

∫ 2π

0
dθ
∫ Lr

−Lr

dη√
(r0 − Rr cos θ)2 + (z0 − η)2 + (Rr sin θ)2

, (3.11)

which can be integrated to give

Φ =−χRr

4π

∫ 2π

0

[
sinh−1

(
Lr − z0

G

)
+ sinh−1

(
Lr + z0

G

)]
dθ, (3.12)

with G2 = R2
r + r2

0 − 2Rrr0 cos θ .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

44
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.440


120 A. Segalini and P. Inghels

The axial and radial velocity can be calculated after some algebra as

uz = ∂Φ

∂z0
= χRr

π
[F1 − F2], (3.13)

ur = ∂Φ

∂r0
= χRr

2πr0

[
(Lr − z0)F1 + (Lr + z0)F2 + r0 − Rr

r0 + Rr
(F3 + F4)

]
, (3.14)

with

F1 = 1√
(Rr + r0)2 + (Lr − z0)2

K
[

4Rrr0

(Rr + r0)2 + (Lr − z0)2

]
, (3.15)

F2 = 1√
(Rr + r0)2 + (Lr + z0)2

K
[

4Rrr0

(Rr + r0)2 + (Lr + z0)2

]
, (3.16)

F3 = Lr − z0√
(Rr + r0)2 + (Lr − z0)2

Π

[
4Rrr0

(Rr + r0)2
,

4Rrr0

(Rr + r0)2 + (Lr − z0)2

]
, (3.17)

F4 = Lr + z0√
(Rr + r0)2 + (Lr + z0)2

Π

[
4Rrr0

(Rr + r0)2
,

4Rrr0

(Rr + r0)2 + (Lr + z0)2

]
, (3.18)

where K(α) and Π(α, β) are the complete elliptic integrals of the first and third kind,
respectively defined as

K(α)=
∫ π/2

0

1√
1− α sin2 θ

dθ, Π(α, β)=
∫ π/2

0

1
1− α sin2 θ

1√
1− β sin2 θ

dθ.

(3.19a,b)

The resulting velocity field for a positive unitary source cylinder is shown in
figure 4. As expected, close to the cylinder the velocity vector is radially directed
and large in magnitude while it becomes more axially directed away from it, with
a stagnation point at the origin. Furthermore, the velocity perturbation vanishes at
large distances from the cylinder surface, although the surface integral of the outward
flow must remain constant, imposing a decay of the perturbation velocity as the
square of the distance. It should be noted now that the region close to the cylinder
surface deserves some special treatment as the elliptic integrals become singular as
r0→ Rr and z0 =O(Lr). This is problematic if the source cylinder coincides with the
test-section wall of the present model. This issue has been circumvented by setting
the source-cylinder radius to be Rr > Rt (in the present implementation Rr = 1.1Rt)
so that the test-section control point is located away from the source surface and the
singularity is avoided.

The cylindrical test-section wall has been discretized into n segments and the
associated source-cylinder position determined: the source cylinders are placed at the
same axial locations as the discretized test-section wall elements but at a larger radial
distance to avoid singular behaviour. To determine the strength of the n distributed
sources, χi, n control points located at the test-section wall are needed. At these
control points the condition of zero normal velocity is enforced. For each control
point P, the boundary condition can be written as

n∑
i=1

χiVi(P) · er =−Vext(P) · er, (3.20)
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0 1 2 3 4

1

FIGURE 4. Vector field of a unitary cylinder-shaped panel with Rr = Lr = 1.

where n is the total number of sources, χi the source strength of the ith-panel, Vi(P)
the velocity component induced by the ith-source (with unitary source strength) at
point P and Vext(P) is the external induced velocity at point P due to the turbine
vortex system. The unit vector er is radially directed to indicate that the condition
must be applied only in the radial direction for this particular test-section geometry.

In order to have a smooth transition from a fine discretization (needed in the
proximity of the rotor where the radial velocity is the largest) to a coarse discretization
(to be used at large distances from the rotor plane), a linear axial refinement of the
cylinder length, 2Lr, is introduced. In this work, the cylindrical test section extends
upstream and downstream of the turbine for 100 rotor radii (z ∈ [−100, 100]) with
196 cylinder elements that are 0.05R∗ long close to the rotor (z = 0) becoming 2R∗

long at z=±100.

4. Results
4.1. Effect of confinement

The effect of the test-section confinement radius, Rt, is analysed in the present section
by comparing several confined wind turbines equivalent to the same unconfined one
(the case of propellers is discussed in the next section from a general point of view).
As discussed in § 2, the equivalent unconfined turbine has the same disk velocity,
thrust force and tip-speed ratio as the confined one. Figure 5 shows a comparison
of the wake structure observed in unconfined and confined conditions (Rt= 2, namely
ε = R−2

t = 0.25). The wake expansion is visibly reduced by the presence of the wall
and it achieves its final size much earlier than the unconfined turbine. On the other
hand, the flow outside the wake is accelerated and, consequently, the pitch of the
tip vortices is significantly increased, so that the tip vortices travel a longer distance
during one revolution.

The systematic trend in wake radius and pitch (here defined as p−1 = rw (dφw/dz))
is further investigated in figure 6 for different test-section radii. It is clearly visible
that the change in the wake structure is monotonic in both parameters. While the
wake radius decreases, the pitch increases compared to the equivalent unconfined
case. Consistently with the discussion above, by increasing the blockage the wake
is also achieving its asymptotic state more quickly. The comparison of the model
outcome with the actuator-disk results is reasonably good, demonstrating that the
existing actuator-disk theory is able to provide an estimation of the wake structure
reasonably close to the one obtained with the present model.
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FIGURE 5. Axial velocity field around a three-bladed wind turbine operating at λ′= 7 and
λ′NbΓ

′ = 8π/9 for the unconfined and its equivalent confined case (with ε = 0.25). The
observation plane is located at the azimuthal position between two consecutive blades (θ =
π/3). The thin solid black line indicates the radial position of the wake edge while the
vertical dashed white lines indicate the axial position of the same tip vortex intersecting
the plane.
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FIGURE 6. Effect of the test-section radius on (a) the wake radius and (b) pitch
for a three-bladed wind turbine operating at λ′ = 7 and λ′NbΓ

′ = 8π/9. The arrows
indicate decreasing test-section radius for the confined equivalent cases (ε = 0, 0.01,
0.04, 0.11, 0.25). The dashed lines indicate the associated actuator-disk results from (2.12)
and (2.13) obtained by matching the measured thrust coefficient for the cases with these
ε values.

Force distributions are also expected to be affected by the confinement: this is
visible in figure 7 where the normal (to the disk) and tangential (to the disk) force
coefficients (Cn and Ct, respectively) are shown. Such coefficients are calculated by
normalizing the aerodynamic infinitesimal forces (applied to an annular section of the
rotor) by ρ∗(U∗∞)

2A∗d/2 so that the thrust coefficient infinitesimal contribution is given
by dCT =NbCndr for instance. Both forces are enhanced for increasing blockage, as a
consequence of the increased mass flow through the rotor, and this is something that
should be considered during wind-tunnel tests with force or pressure measurements
along the blades.

A quantitative assessment of the blockage effect is given in table 1 where the
various velocity scales and integral parameters are reported for confined turbines
equivalent to the optimal unconfined turbine. It is illustrative to consider first U∞/Ue,
namely the ratio between the free-stream velocity inside the tunnel and the velocity
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FIGURE 7. Effect of the test-section radius on (a) the normal and (b) tangential force
coefficients for a three-bladed wind turbine operating at λ′ = 7 and λ′NbΓ

′ = 8π/9.
The arrows indicate decreasing test-section radius for the confined equivalent cases (ε =
0, 0.01, 0.04, 0.11, 0.25). The shaded area indicates the region affected by core-size effects
of the tip vortices.

ε U∞/Ue Ud/U∞ Uw/U∞ U2/U∞ σ rw∞ CT CP

0 1.000 0.665 0.328 1.000 1.000 1.412 0.916 0.574
0.01 0.994 0.668 0.353 1.012 1.005 1.379 0.926 0.586
0.02 0.989 0.672 0.368 1.024 1.012 1.348 0.938 0.597
0.04 0.978 0.680 0.392 1.044 1.024 1.304 0.960 0.617
0.11 0.950 0.706 0.467 1.104 1.061 1.220 1.031 0.684
0.25 0.908 0.749 0.567 1.201 1.125 1.139 1.160 0.813

TABLE 1. Effect of confinement for an unconfined three-bladed wind turbine with λ′ = 7
and λ′NbΓ

′ = 8π/9 and the equivalent confined ones.

outside: their discrepancy is related to the force applied by the rotor to the flow and
it increases as ε increases. As U′∞ = σU∞ ≈ Ue, a simple physical interpretation of
the equivalent free-stream velocity can be proposed as the velocity present outside
the test-section enclosure, so that the measured free-stream velocity, U∞, results
from the combination of Ue with the induced velocity imparted by the rotor and the
cylindrical wall. The approximation is good for lightly loaded rotors and small ε
values, becoming increasingly inaccurate as CT and ε increase.

Both the disk and wake velocity increase for increasing blockage parameter due to
the flow acceleration inside the tunnel. Furthermore, the tunnel attenuates transversal
motions (as indicated by the wake radius at z→ +∞, rw∞) and consequently the
aerodynamic efficiency is artificially higher due to the test-section wall presence. This
is particularly visible in the thrust and power coefficients, where the latter has already
exceeded the Betz limit for ε > 0.02. It is clear from the table that a highly loaded
rotor shows visible blockage effects even for small ε. Consequently it can be stated
that the area ratio ε alone is not sufficient to determine the blockage effect and at least
the thrust coefficient should also be accounted, as is clear in the linearized Glauert
formula (2.16). In fact, the actual blockage-correction methods use both ε and CT to
correct wind-tunnel measurements, providing a first-order correction.
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4.2. Blockage effects
To assess the effect of the confinement on both the wake structure and rotor
performance, more than 2500 configurations were tested for different values of
Nb, λe, Γe and ε (note that before the simulation the ratio U∞/Ue is unknown so
only the external free-stream velocity is initially used to scale the data). For all cases,
the vortex-core radius, δ, was determined from Nb, Γe and λe from the roller-bearing
analogy of Okulov & Sørensen (2010). Consequently, only four parameters determined
the rotor configuration and its blockage: in each case, a set of (λe, Nb, Γe, ε) was
investigated. By collecting a large number of cases, a detailed map in the parameter
space was determined, allowing the identification of the blockage effect and its
sensitivity to the loading condition.

An important aspect of interest for wind-tunnel measurements is the equivalent free-
stream velocity, U′∞, or its ratio with the measured free-stream velocity, σ =U′∞/U∞.
Since λ = Ω∗R∗/U∗∞ is matched and the equivalent turbine has the same number
of blades, only the circulation of the equivalent unconfined turbine, Γ ′, and σ are
unknown. These have been obtained by mapping the functions U′d/U

′
∞= f1 (λ

′,Nb, Γ
′)

and C′T = f2 (λ
′,Nb, Γ

′) (obtained from the unconfined simulations) and by solving the
system of equations

Ud/U∞ = σ f1
(
λ,Nb, Γ

′)
CT = σ 2f2

(
λ,Nb, Γ

′) .
}

(4.1)

Given the tip-speed ratio, λ = λeUe/U∞, the disk velocity, Ud/U∞, and the thrust
coefficient, CT = CTeU2

e/U
2
∞, of the confined turbine, the system (4.1) was solved to

determine σ and Γ ′ and the equivalent unconfined rotor was determined. The accuracy
of the solution of the nonlinear system can be assessed by means of the ratio U′d/Ud≈
T ′/T ≈ 1.0000± 0.0015 where the reported uncertainty is the 95 % confidence interval
and it is due to the numerical approximation involved in obtaining f1 and f2 (as they
are known at discrete points) and in the solution of the nonlinear system (4.1).

Figure 8 shows a comparison between the equivalent free-stream velocity measured
with the present model and the two estimations provided by (2.15) and (2.16) for
two different ε values. The two analytical expressions almost overlap in the propeller
regime while they diverge in the wind-turbine regime as CT increases. The equivalent
free-stream velocity estimated by the present model agrees reasonably well with (2.15)
although it should be noted that, as ε decreases, some scatter is observed (particularly
in the propeller configurations) perhaps due to the secondary effect of different tip-
speed ratios and number of blades. Overall, it should be noted that the wind-turbine
cases follow the actuator-disk result (2.15), albeit on the lower side, implying that σ
is overestimated by the actuator-disk approximation.

Once σ has been determined, the corrected thrust and power coefficients (namely
the corresponding equivalent unconfined coefficients) can be determined according to
the expressions C′T =σ−2CT and C′P≈σ−3CP: while the first is an identity, as the thrust
force between equivalent turbines is matched and σ is actually determined from the
system (4.1), the second is an approximation as it assumes that the extracted power
is equal to the work of the thrust force alone, without any exchange of angular
momentum between the rotor and the flow. Figure 9 shows the effect of such a
correction on the performance coefficients: while the uncorrected data indicate a
significant positive systematic error with respect to the equivalent rotor coefficients,
the use of the equivalent free-stream velocity is beneficial and compensates for most
of the blockage effect also for the wind-turbine case. Another interesting practical
aspect of the correction scheme is shown in figure 10 where the ratio between the
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FIGURE 8. Normalized equivalent free-stream velocity ratio measured with the present
model (symbols) for (a) ε = 0.25 and (b) ε = 0.04. The solid line is (2.15) while the
dashed line is the linearized solution proposed by Glauert (2.16).

corrected and equivalent thrust and power coefficient is plotted against CT , with
σ estimated by solving the system (4.1) or by means of (2.15). The actuator-disk
expression is able to correct the performance parameters within ±3 % with a larger
scatter than the σ estimated in the present model. It is also clear that the discrepancy
increases for increasing rotor loading.

The wake structure, and its modification due to blockage, is investigated in figure 11
in terms of wake radius downstream of the rotor, rw∞, and scaled pitch, λrw∞p∞. As
discussed in the previous section, the wake radius is greatly affected by the presence
of the test-section wall. Depending on the magnitude and sign of the circulation,
the wake expands/contracts more but this is damped compared to the equivalent
unconfined case. The actuator-disk approximation is able to determine this trend
for lightly loaded conditions, but the discrepancies increase as CT increases or,
equivalently, as the product λNbΓ increases. Even at the smallest ε = 0.01, usually
considered as a condition not affected by blockage, the highly loaded turbine wake
radius is noticeably reduced.

The discussion about the pitch is not trivial as it is not obvious why the test-section
wall should affect it, especially when the tip-speed ratio and the disk velocity are
matched. The actuator-disk theory is quite limited since (2.13) does not account for
the azimuthal velocity of the tip vortices, which can become a significant contribution
for high blockage or in propeller configurations, as in both cases the wake radius is
small and the azimuthal velocity imparted by the root vortex is significant. However, it
is found that the simple relationship λrw∞p∞≈λ′r′w∞p′∞σ

2 is already able to provide a
quick estimation of the scaled pitch of the equivalent unconfined turbine within ±2 %
at ε = 0.11.

5. Conclusions

In the present paper the effect of confinement in wind-tunnel measurements of
wind turbines and propellers is discussed by means of a simplified numerical model.
The rotor presence is simulated by means of the free-vortex system proposed
by Segalini & Alfredsson (2013), where the wake is free to modify its shape
according to the combination of the free-stream velocity, the perturbation velocity
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FIGURE 9. Measured (×) and corrected (•) (a) thrust and (b) power coefficients against
the equivalent unconfined value for ε = 0.25. (c, d) The same as in (a) and (b) but for
the wind-turbine cases only.
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FIGURE 10. Ratio between the corrected (a) thrust and (b) power coefficients and the
equivalent unconfined ones: (•), measured σ ; ×, σ estimated from (2.15).

due to the wall presence and the velocity field of the vortex system. The rotor is
placed on the axis of a cylindrical test section that cancels the wall-normal velocity
component at the wall location. For test-section radius larger than a certain threshold

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

44
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.440


Confinement effects in wind-turbine and propeller measurements 127

1.6 1.3

1.2

1.1

1.0

0.9

0.8

1.4

1.2

1.0

1.0 1.2 1.4 1.6 0.8 1.0 1.2 1.4

(a) (b)

FIGURE 11. (a) Comparison of the wake radius of the enclosed rotor against the wake
radius of the equivalent unconfined turbine for Nb > 2. The solid lines are the estimation
provided by actuator-disk theory for ε = 0, 0.01, 0.04, 0.11, 0.25. (b) Comparison of the
scaled pitch for ε = 0.25. The dashed lines indicate an error of ±2 %.

(approximately Rt > 3 for Nb = 1 and Rt > 2 for Nb > 2), the radial velocity is
approximately axisymmetric and this approximation improves for larger distances
from the axis. As a consequence of this axial-symmetry approximation, the cylindrical
test-section wall was replaced by source cylinders that generate a velocity field able
to cancel the radial velocity induced by the rotor. The strength of each cylinder is
constant over its surface, ensuring the axial symmetry and allowing an analytical
solution in terms of complete elliptic integrals. The unknown source-strength
distribution is therefore determined by forcing zero radial velocity at several control
points (located at the test-section wall and at least one per cylinder) iteratively. The
rotor wake adjusts to the wall-velocity perturbation, modifying in turn the induced
velocity at the wall and the source strength. The process is iterated until convergence
is reached in both the tip-vortex shape and the source-strength distribution.

The results have been first compared to the traditional actuator-disk approximation
and subsequently to the established concept of equivalent unconfined rotor. It has been
noted that such a concept is incomplete as it leaves out any information about the
number of blades (assumed to be infinity) and the angular velocity of the turbine (no
angular momentum transfer takes place between the flow and the rotor in actuator-
disk theory). Therefore, a new definition of equivalent unconfined rotor is introduced
as that with the same number of blades, disk velocity, thrust force and tip-speed
ratio as the confined one. Several tests have been conducted to span the parameter
space and to determine the confinement effect on both the rotor performance and the
wake structure. The comparison demonstrated reasonable agreement with actuator-disk
results, providing some validation of the present methodology, but underlining some
of the limits of the existing theory. Thrust and power coefficients are increased by the
blockage effect and it was found that the concept of equivalent free-stream velocity is
beneficial to correct such parameters, although the traditional theory provides a slight
overestimation of U′∞ compared to the present model. For highly loaded wind turbines,
it is observed that the power coefficient can have already exceeded the Betz limit for
ε> 0.02, which is much smaller than the rule of thumb used in experimental practice
which assumes that blockage effects are negligible for ε < 0.1 (Wilson 1994).

Several aspects of the wake structure, like the wake radius and the wake pitch
evolution (and their asymptotic states) have been discussed and it was found that the
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wake radius is reasonably well estimated by the actuator-disk approximation, but the
pitch is not and an empirical correction scheme has been proposed here based on the
available simulations. It is worth noting that the wake structure achieves its asymptotic
state more quickly in the confined condition than in the unconfined one, probably
due to the attenuation of radial motions imparted by the wall presence, an effect that
can also have dynamical implications as it might attenuate the paring process of tip
vortices.
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