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This paper proposes a simplified algorithm for reducing the computational load of the
conventional underwater integrated navigation system. The system usually comprises a three-
dimensional accelerometer, a three-dimensional gyroscope, a three-dimensional Doppler Veloc-
ity Log (DVL) and a data fusion algorithm, such as a Kalman Filter (KF). Since the expected
variations of roll, pitch and depth are small, these quantities are assumed to be constant, and the
proposed system is designed in a two-dimensional form. Due to the low speed of the vehicle, the
nonlinear dynamic equation of the velocity can be simplified in a linear form. We also simplify
the conventional KF in order to avoid matrix multiplications and matrix inversions. The perfor-
mance of the designed system is evaluated in a sea trial by an Autonomous Underwater Vehicle
(AUV). The results show that the proposed system can significantly reduce the computational
load of the conventional integrated navigation system without a significant reduction in position
and velocity accuracy.
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1. INTRODUCTION. Accurate positioning of surface and airborne vehicles such as
ships and airplanes is possible using Global Navigation Satellite Systems (GNSS) such
as the Global Positioning System (GPS) (Grenon et al., 2001). However, since GPS sig-
nals do not penetrate beneath the water, this system cannot be used in underwater vehicles
(Yun et al., 1999; Vasilijevic et al., 2012). For this reason, Inertial Navigation Systems
(INS) are utilised as an alternative solution in many underwater applications (Titterton and
Weston, 2004). The INS computes attitude, velocity and position of the vehicle using an
Inertial Measurement Unit (IMU) which consists of three orthogonal accelerometers and
three orthogonal gyroscopes (Xian et al., 2014; Kaygisiz and Sen, 2015; Wang et al., 2016).
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In order to reduce the accumulative error of an INS, some auxiliary sensors are normally
used (Shabani et al., 2013). In underwater applications, a Doppler Velocity Log (DVL) is
usually utilised as an auxiliary sensor (Kinsey et al., 2006; Farrell, 2008). Incorporation of
INS information with DVL measurements plays an important role in limiting INS errors
(Shabani and Gholami, 2016). In underwater integrated navigation systems, a Kalman Fil-
ter (KF) is the conventional approach for data incorporation. This algorithm is a powerful
and effective approach for incorporating noisy measurements of multiple sensors used for
estimating the state of a time-varying system (Grewal et al., 2007). To date, numerous
studies have utilised the KF for incorporating a DVL with an INS DVL (McEwen et al.,
2005; Lee et al., 2007; Miller et al., 2010; Hegrenaes and Hallingstad, 2011; Shabani et
al., 2015; Gao et al., 2015). Although the development of processor technology enables the
implementation of KF-based INS/DVL integration, a reduction of computation load can
facilitate the selection of processor type and thereby, reduce costs.

In most AUVs and embedded systems, like decoys (deceptive AUVs designed to counter
torpedoes) and some oceanographic AUVs, simplicity is one of the most important aspects
in designing and implementing processing algorithms. For example, the conventional
KF algorithm has not been wildly used in such embedded systems due to its intrinsic
computational complexity (Valade et al., 2017).

There are many features that can restrict the designer in choosing the processor type.
Simplifying the algorithm can overcome some of the limitations such as performance
(Floating Point Operations Per Second - FLOPS), power consumption and heat loss. In this
paper, the KF equations used in navigation have been simplified such that the navigation
algorithm can be implemented on a simple microcontroller.

In conventional INS/DVL systems, three mutually orthogonal accelerometers, three
mutually orthogonal gyroscopes and a Three-Dimensional (3D) DVL are utilised. In prac-
tice, fewer sensors may be used depending on the type of vehicle used and the missions
defined for it (Brandt and Gardner, 1996; Iqbal et al., 2009; Georgy et al., 2010). Underwa-
ter vehicles usually move with only small roll and pitch motions, and the vehicle’s depth
is measured through a pressure sensor. In addition, the sensitivity of navigation equations
with respect to depth variation is very low. Therefore, in this work, the roll and pitch quan-
tities were withdrawn from the navigation equations. In the proposed system, a two-axis
accelerometer, a single-axis gyroscope, and a two-dimensional DVL have been utilised.
Although the Coriolis effect makes the velocity equation nonlinear, in this work, this effect
has been ignored because the discussed vehicles have low speed. This allows the velocity
equation to be linearized; hence, it is not necessary to calculate Jacobian matrices.

Recently, the computational burden of integrated navigation systems has decreased
through reducing the number of inertial sensors and simplifying the INS equations. For
instance, Brandt and Gardner (1996) reduced the number of inertial sensors required for
navigating a land vehicle by defining some constraints on vehicle motion. In their system,
a single-axis accelerometer, a three-axis gyroscope and an odometer were used for estimat-
ing the vehicle’s speed. Iqbal et al. (2008) proposed a low-cost navigation system for land
vehicles including a single-axis gyroscope and a two-axis accelerometer accompanying a
GPS receiver and an odometer. Hoshizaki and Tashiro (2009) decreased the computational
burden of a Micro-Electromechanical System (MEMS) INS by considering the Earth to
be flat and ignoring the Earth’s rotation and the rotation of the local tangent plane with
respect to the Earth. Moreover, they assumed the pitch and roll angles of vehicles to be less
than 90◦. Zhang et al. (2013) proposed a simplified INS/GPS algorithm where the Coriolis
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acceleration in the velocity equation and rotation correction were disregarded. Furthermore,
the sampling frequency of inertial sensors and the number of system states were reduced.

Another way to simplify an INS is to reduce the complexity of the KF algorithm. In
a conventional KF, compared to a fully integrated navigation system, matrix multiplica-
tions and matrix inversions are executed. In this paper, by using some assumptions, the KF
equations have been simplified such that the computational burden has been significantly
decreased compared with the conventional algorithm.

In order to assess the proposed system, a sea test was conducted using an Autonomous
Underwater Vehicle (AUV). Experimental results illustrate that despite a considerable
reduction of computational load, the accuracy of the proposed system does not noticeably
decrease compared with that of a more conventional system. The structure of the paper is as
follows. In Section 2, the conventional INS/DVL integrated navigation system is reviewed.
In Section 3, the proposed algorithm will be presented. The results of the experimental test
are presented in Section 4. Finally, the paper is concluded in Section 5.

2. CONVENTIONAL INTEGRATED NAVIGATION SYSTEM. In this section, first,
the dynamic equations of the system and measurement for the INS/DVL integrated
navigation system are introduced. Then, we review the KF equations based on our model.

2.1. System dynamic equations. The total state vector of the system includes position,
velocity and orientation (roll, pitch and heading) vectors. In general, the dynamic equations
of the navigation system are nonlinear. The general form of the continuous-time nonlinear
state-space model is defined by (Simon, 2006):

ẋ = f (x, u, w) (1)

where x =
[
(pn)T (vn)T (ζ )T

]T is the system state vector; pn =
[
L l d

]T, vn =[
vN vE vD

]T and ζ =
[
φ θ ψ

]T are position, velocity and orientation vectors; L, l
and d are latitude, longitude and depth; vN , vE and vD are velocity components in the north,
east and down directions and φ, θ and ψ are roll, pitch and heading angles, respectively. u

is the control input vector and is given as u =
[(

f b)T (
ωb

ib

)T]T
where f b =

[
fx fy fz

]T
is the vehicle’s specific force vector with respect to the inertial frame resolved in the body
frame and ωb

ib =
[
ωx ωy ωz

]T is the vehicle’s angular rate relative to the inertial frame
represented in the body frame. w is the process noise caused by uncertainty in u. The pro-
cess noise contains a fixed (or slowly time-varying) bias and a zero-mean white noise.
Bias of the sensors can be estimated before movement of the AUV by the method stated
in Farrell (2008). In other words, the bias in navigation equations can be assumed to be
definite and omitted after receiving the measurements of the accelerometer and gyroscope.
So, w can be defined as:

w =
[
wT

a wT
g
]T

(2)

where wa =
[
wax way waz

]T and wg =
[
wgx wgy wgz

]T are zero mean white noise
components of the accelerometer and gyroscope measurements. Hence w is a 6x1 vec-
tor with Power Spectral Density (PSD) matrix Qc which is formed as a diagonal
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matrix:

Qc =
[
σ 2

a I3 03
03 σ 2

g I3

]
(3)

where σa and σg are the standard deviations of the accelerometer and gyroscope noises,
respectively. I3 and 03 are two 3 × 3 identity and zero matrices, respectively. The dynamic
equation of state space, f, is a nonlinear vector function and is given as (Titterton and
Weston, 2004):

f (x, u, w) =

⎡
⎢⎣

�vn

Cn
b

(
f b + wa

)− (2ωn
ie + ωn

en

)× vn + gn

A−1ωb
nb

⎤
⎥⎦ (4)

where

� =

⎡
⎢⎢⎢⎢⎣

1
RN + d

0 0

0
secL

RE + d
0

0 0 1

⎤
⎥⎥⎥⎥⎦ (5)

A =

⎡
⎢⎣

1 0 −sinθ
0 cosφ sinφcosθ
0 sinφ cosφcosθ

⎤
⎥⎦ (6)

ωb
nb = ωb

ib + wg − ωb
in (7)

ωn
ie =

[
�cosL 0 −sinL

]T (8)

ωn
en =

[
vE

RE + d
− vN

RN + d
− vE

RE + d
tanL

]T

(9)

RN =
R(1 − e2)

(1 − e2sin2Lk)1·5 , RE =
R

(1 − e2sin2Lk)0·5 (10)

where R = 6378137m, e = 0·0818191908425 and � = 7·292115 × 10−5 rad/s are the
length of the semi major axis of the Earth, the major eccentricity of the ellipsoid of
the Earth, and the Earth angular rate, respectively. Cn

b is the transformation matrix from
the body frame to the navigation frame as:

Cn
b =

⎡
⎢⎣

cosθcosψ −cosφsinψ + sinφsinθcosψ sinφsinψ + cosφsinθcosψ
cosθsinψ cosφcosψ + sinφsinθsinψ −sinφcosψ + cosφsinθsinψ

−sinθ sinφcosθ cosφcosθ

⎤
⎥⎦ (11)

Moreover, gn =
[
0 0 g

]T is the gravity vector represented in the navigation frame, and
g is defined by:

g =
g0(

1 +
d
R0

)2 (12)
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g0 = 9·780318 × (1 + 5·3024 × 10−3sin2L − 5·9 × 10−6sin22L)

R0 =
√

RN RE

where L and R0 are the latitude and the mean radius of curvature.
2.2. Measurement equations. In the proposed system, the measurements of the DVL

are considered as auxiliary signals which have a nonlinear relationship with the system
states. The measurement model may be expressed as follows:

vb = h (x) + υv =
(
Cn

b

)−1 vn + υv (13)

where vb =
[
vx vy vz

]T is the measurement vector of the DVL represented in the body
frame and υv =

[
υx υy υz

]T is the noise vector of the DVL measurements which is
modelled as a white noise vector with zero mean and covariance matrix R as:

R =

⎡
⎢⎣
σ 2
vx

0 0

0 σ 2
vy

0

0 0 σ 2
vz

⎤
⎥⎦ (14)

where σ 2
vx

, σ 2
vy

and σ 2
vz

are the variances of the DVL measurements.
2.3. Data integration. It is not possible to use a linear KF in an INS/DVL inte-

grated navigation, since the navigation equation are non-linear. In such cases, the Extended
Kalman Filter (EKF) is utilised for data incorporation. The EKF functions in two stages,
the prediction and correction steps, which are described in the following sections. We have
considered the system in discrete time form in which k denotes the present time tk.

2.3.1. Prediction step. In the prediction procedure, the system state is predicted as
(Sarkka, 2013):

x̂−
k =

tk∫
tk−1

f
(
x̂+

k−1, uk−1, 0
)

dt (15)

P−
k = Ak−1P+

k−1AT
k−1 + Qk−1 (16)

where x̂−
k and x̂+

k are the state estimates in prediction and correction steps; P−
k and P+

k are
the covariance matrices of state estimates in prediction and correction steps, respectively,
and dt is the sampling time of the inertial sensors. Discretised matrices Ak and Qk at time
tk are computed as (Maybeck, 1979):

Ak = e(Fk.dt) ≈ I + Fkdt (17)

Qk ≈ GkQkGT
k dt2 (18)

where Jacobian matrices Fk and Gk are computed as follows:

Fk =
[
∂f
∂x

]
x̂−

k

, Gk =
[
∂f
∂w

]
x̂−

k

(19)
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INS

Figure 1. The conventional INS/DVL integrated navigation system. The upper box named INS repre-
sents the dynamic system (Equations (1)–(12)) and the other blocks represent data integration and the
correction step (Equations (13)–(25)).

The prediction Equation (15) can easily be approximated as the follows:

x̂−
k = x̂+

k−1 +
x1 (20)


x1 = f
(
x̂+

k−1, uk−1, 0
)

dt (21)

2.3.2. Correction Step. By receiving new auxiliary data from the DVL, the navigation
state and its covariance matrix at time tk are corrected by the following equations (Sarkka,
2013):

Kk = P−
k HT

k

(
HkP−

k HT
k + R

)−1 (22)

x̂+
k = x̂−

k + Kk
(
vb − h

(
x̂−

k

))
(23)

P+
k = (I − KkHk)P−

k (24)

where Kk is the Kalman gain; I is the identity matrix; and measurement output matrix Hk
is computed through linearizing Equation (13) as:

Hk =
∂
((

Cn
b

)−1 vn
)

∂x

∣∣∣∣∣∣
x̂−

k

(25)

The block diagram of the conventional INS/DVL integrated navigation system is illustrated
in Figure 1.

3. PROPOSED INTEGRATED NAVIGATION SYSTEM. In underwater vehicles,
depth may be measured by a pressure sensor. In addition, in cruise conditions, the vehicle
maintains a state of equilibrium, that is the vehicle’s roll and pitch are small. Furthermore,
the vertical component of the vehicle’s velocity is usually small. This means that, in the
proposed system, the required computations might be reduced to Two-Dimensional (2D)
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space. Hence, the transformation matrix Cn
b would change to

Cn
b =
[

cosψ −sinψ
sinψ cosψ

]
(26)

In the proposed system, the state vector contains vehicle velocities in the north and east
directions as vn =

[
vN vE

]T, and the velocity measured by DVL vb =
[
vx vy

]T is consid-
ered as an auxiliary measurement. After estimating the state vector, latitude and longitude
are calculated through a Dead Reckoning (DR) algorithm. Assuming the vehicle has low
velocity, the Coriolis effect

(
2ωn

ie + ωn
en

)× vn is always small and may be ignored and then
the velocity equation can be rewritten as follows:

v̇n = Cn
bf b + Cn

bwa, f b =
[
fx fy

]T (27)

In the proposed system, the matrices Fk, Ak and Gk, and are obtained from Equation (27)
as follows:

Fk = 0, Ak = I, Gk = Cn
b (28)

where I and 0 are 2 × 2 identity and zero matrices. By assuming similar and independent
accelerometers, Qk is computed as follows:

Qk ≈ Cn
bQc

(
Cn

b

)T dt2 = σ 2
a Idt2 (29)

which shows that Qk is a diagonal matrix with the same elements at all time steps. Matrix
H is computed from Equation (25) as follows:

H =
(
Cn

b

)−1 (30)

By assuming DVL measurements have independent and identically distributed noise in
x and y directions, Equation (16) may be rewritten according to Equations (22) and (24) as:

P−
k = P−

k−1 − P−
k−1HT

k−1

(
Hk−1P−

k−1HT
k−1 + σ 2

v I
)−1

Hk−1P−
k−1 + σ 2

a Idt2 (31)

Since HkHT
k = I and P−

k is assumed to be a zero matrix at k = 0, P−
k at k = 1 is given by the

equation:

P−
1 = σ 2

a Idt2 = P1I (32)

In other words, P−
1 is a diagonal matrix with equal elements. Similarly, according to

Equations (29) and (32), P−
2 may be given as follows:

P−
2 = P1I − P1HT

1

(
P1H1HT

1I + σ 2
v I
)−1

H1P1I + σ 2
a Idt2

= P1I − P2
1

P1 + σ 2
v

I + σ 2
a Idt2 = P2I (33)

The above equation shows that P−
2 is also a diagonal matrix with equal elements. By gen-

eralising the above procedure, it can easily be shown that P−
k is a diagonal matrix with the
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same elements at all time steps as P−
k = PkI. Generally, Equation (31) can be rewritten as:

P−
k = Pk−1I − Pk−1HT

k−1

(
Pk−1Hk−1HT

k−1I + σ 2
v I
)−1

Hk−1Pk−1I + σ 2
a Idt2

=
(
σ 2
v Pk−1

Pk−1 + σ 2
v

+ σ 2
a dt2

)
I =
[

Pk 0
0 Pk

]
= PkI (34)

Although the model of the navigation problem is a time-varying model, it is possible
to prove by mathematical induction that Pk in Equation (34) is an asymptotic ascendant
function which becomes equal to the constant value P:

P =
σ 2

a dt2 +
√(
σ 2

a dt2
)2

+ 4σ 2
v σ

2
a dt2

2
(35)

If the vehicle is kept motionless for long enough before starting navigation, it can be
assumed that Pk equates to P from the first step time of navigation. In other words, from
the instant of starting navigation, the constant value P can be used instead of Pk. Therefore,
Equation (22) may be changed to:

Kk =
P

P + σ 2
v

Cn
b (36)

According to Equation (27), x̂−
k is expressed as follows:

x̂−
k = x̂+

k−1 + Cn
bf b dt (37)

Using Equations (30), (36) and (37), Equation (23) may be expressed as:

x̂+
k = x̂−

k +
P

P + σ 2
v

Cn
b

(
vb − (Cn

b

)−1 x̂−
k

)

=
σ 2
v

P + σ 2
v

x̂+
k−1 + Cn

b

[
P

P + σ 2
v

vb +
σ 2
v dt

P + σ 2
v

f b
]

= Ax̂+
k−1 + Cn

b

[
Bvb + Cf b]

(38)

The scalar coefficients A, B and C in Equation (38) can be computed off-line and it is not
necessary to recalculate them during system operation.

After estimating the velocity components in the north and east directions, the latitude
and longitude are computed by the following equations:

Lk = Lk−1 + dt
vN

RN
, lk = lk−1 + dt

vEsecLk−1

RE
(39)

In Equation (38), Cn
b must be computed at each iteration. However, calculation of sine and

cosine functions is not required for this purpose. The reason is that these functions may be
expressed as follows:⎧⎪⎪⎨

⎪⎪⎩
d (sinψ)

dt
= ψ̇cosψ

d (cosψ)
dt

= −ψ̇sinψ

ψ̇=ωz,k−−−→ (sinψ)k = (sinψ)k−1 + ωz,k dt (cosψ)k
(cosψ)k = (cosψ)k−1 + ωz,k dt (sinψ)k

(40)

where ωz,k is the third component of the vehicle’s angular velocity vector with respect to
the navigation frame represented in the body frame ωb

nb, and is calculated as follows in the

https://doi.org/10.1017/S0373463318000140 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000140


NO. 5 A LOW COMPLEXITY NAVIGATION SYSTEM FOR UNDERWATER VEHICLES 1169

Figure 2. The AUV used in the sea test.

proposed system:

ωz,k = rk +�sinLk + vE,k
tanLk

RE
(41)

where rk is the third component of the angular velocity vector ωb
ib at time step k. So,

Equation (40) may be expressed as follows:{
C1,k = (cosψ)k
C2,k = (sinψ)k

ψ̇=ωz,k−−−→ C1,k = C1,(k−1) + ωz,kdtC2,k

C2,k = C2,(k−1) + ωz,kdtC1,k
(42)

Therefore, according to Equation (26), the transformation matrix at time step k is expressed
as follows:

Cn
b,k =

[
C1,k −C2,k
C2,k C1,k

]
(43)

From Equation (42) we see that the value of C2,k has not yet been specified for computing
C1,k. To remedy this problem, the value C2,(k−1) has been used instead of C2,k. Accordingly,
by using Equation (26) instead of Equation (42), we can reduce the computational load
through omitting the calculation of sine and cosine functions.

4. EXPERIMENTAL RESULTS. In this section, the performance of the proposed inte-
grated navigation system is evaluated. For this purpose, a sea test was conducted using an
AUV as shown in Figure 2. In this test, an Inertial Measurement Unit (IMU) and a DVL
were utilised for navigation. A GPS and a high performance INS were used as the reference
systems. In order to evaluate system accuracy, the position and velocity estimated by the
proposed system are compared with those of a high performance INS/GPS/DVL integrated
system. The technical specifications of the navigation and reference sensors are given in
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Table 1. Technical specifications of the main instruments.

ACCELEROMETER

Bias 100μg
Resolution 1 mg
Data Rate 20 Hz

GYROSCOPE

Bias 0·01 deg/hr
Resolution 3·6 deg/hr
Data Rate 20 Hz

DVL

Accuracy 1% ± 2 mm/s (1σ )
Data Rate 3 Hz

Table 2. Technical specifications of the reference instruments.

INS

Position Accuracy 0·6 NM/hr
Data Rate 20 Hz

GPS

Accuracy <10 m
Data Rate 1 Hz

INS/GPS/DVL

Position Accuracy 0·1% of travelled distance
Velocity Accuracy 0·1%
Data Rate 20 Hz

Tables 1 and 2, respectively. The trajectory travelled in the test is shown in Figure 3, in
which the distance travelled and time are about 55·8 km and 4 hours, respectively.

According to the dynamic equations given in Section 2.1, the depth variable is added
in addition to the radius of the Earth. As submarines and AUVs usually move in depths
less than 500 m, the depth is small compared with the radius of the Earth and drawing out
the depth from the equations has no effect on the position accuracy. Moreover, as shown
in Figure 4 the maximum values of roll and pitch angles of the AUV are 2·03◦ and 0·9◦

respectively and fluctuate around zero. Therefore, eliminating them from the navigation
equations has minimal effect on the position accuracy.

In Figures 5–7, the latitude, longitude and horizontal positions estimated by the proposed
and conventional systems are shown. The position results imply that the accuracy of the
proposed system is approximately equal to the conventional system. Note that the proposed
method considerably reduces the computational burden.

In order to validate the estimated velocity, the horizontal velocity is utilised and the
curves of the horizontal velocity measured by the DVL and estimated by the navigation
algorithms are compared with each other. The horizontal velocity in Knots is computed as
follows:

vh =
√
v2

x + v2
y

/
0·5144 (44)
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Figure 3. Travelled trajectory in the sea test: In this test, approximately 55·8 km was travelled in 4 hours.

Figure 4. Changes of roll and pitch during the test.

where vx and vy in m/s are the velocity components in the x and y directions. In Figure 8,
the curves of the horizontal velocity estimated by the proposed and conventional systems
are shown compared with the reference system.

Although equations indicate that the Coriolis acceleration affects the speed of the AUV,
the figures show that eliminating Coriolis acceleration does not have a great effect on the
speed. This is due to the low speed of the AUV. The results of the estimated velocity also
imply that the accuracy of the proposed system is identical to the conventional system.
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Figure 5. Comparison of latitudes estimated by proposed, conventional and reference systems.

Figure 6. Comparison of longitudes estimated by proposed, conventional and reference systems.

In order to evaluate the performance of the proposed system, the measure of abso-
lute error of the estimated position can be used. The absolute error at time step k is
denoted by:

ek =

∣∣∣∣∣R
(
Le,k − Lr,k

)
cosαk

∣∣∣∣∣ (45)

where Le,k and Lr,k are the estimated and the reference latitudes at time step k, respectively,
and angle αk is obtained as follows (Forssell, 2008):

αk = arctan
le,k − lr,k

ln

⎛
⎜⎜⎝

tan
(

Le,k

2
− π

4

)

tan
(

Lr,k

2
− π

4

)
⎞
⎟⎟⎠

(46)
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Figure 7. Comparison of horizontal positions estimated by proposed, conventional and reference systems.

Figure 8. Comparison of horizontal velocity estimated by the proposed, conventional and reference systems.

where le,k and lr,k are the estimated and reference longitudes at time step k respectively. In
Figure 9, curves of the absolute error of estimated position corresponding to the proposed
and conventional systems are compared. It can be seen that the performances are close
together. In pure inertial mode, Equation (38) changes to:

x̂+
k = x̂+

k−1 + Cn
bf bdt (47)

In Figure 10, curves of the absolute error of the estimated position corresponding to the
proposed and conventional systems in pure inertial mode are compared. Results show that,
after about four hours, the proposed algorithm has increased the error to only 800 m, while
the computational burden has significantly decreased compared with the conventional
algorithm.

In order to quantitatively compare the proposed system with a more conventional sys-
tem, Root Mean Square Error (RMSE) is used for position and velocity estimations defined
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Figure 9. Comparison of the absolute error related to the position estimated by the proposed and conventional
systems.

Figure 10. Comparison of the pure inertial absolute error related to the position estimated by the proposed and
conventional systems.

by the following equations:

Position RMSE = sqrt
(
mean(e2

k)
)

(48)

Relative RMSE =
RMSE

Travelled Distance
× 100 (49)

Velocity RMSE = sqrt
(

mean
((
vh,r − vh,e

)2)) (50)

where vh,r and vh,e are the reference and the estimated horizontal velocity. In the performed
test, the RMSE values of position estimated by the proposed and conventional systems
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Table 3. Summary of the performance evaluation for the proposed and conventional systems in the field tests.

Position Relative Velocity Velocity
Position Maximum Error RMSE Maximum

Distance/Time Algorithm RMSE(m) Error(m) (%) (Knots) Error(Knot)

55·8 Km/4 hr Conventional System 211 403 0·38 0·192 1
Proposed System 223·2 406 0·4 0·214 1·3

Table 4. Comparison of the computational operations in the proposed and the
conventional systems.

Scalar Matrix Trigonometric
Algorithm multiplication inversion functions

Conventional System 4,237 1 6
Proposed System 23 0 0

are 223 m and 211 m, respectively, and their relative values are 0·4% and 0·38%, respec-
tively. The RMSE of velocity estimated by the proposed and conventional systems are
0·214 Knots and 0·192 Knots, respectively.

The point to be focused on here is that the superiority of the proposed system is in having
a low computational load. In order to evaluate the computational complexity, the number of
operations including the scalar multiplication, matrix inversion and trigonometric functions
are compared in both the proposed and conventional systems. The conventional system
needs 4,237 scalar multiplications, one matrix inversion and six trigonometric calculations
while in the proposed system only 23 scalar multiplications are executed.

In order to compare the computational load of the algorithms, the conventional and
proposed algorithms were implemented on an Intel Core2Duo CPU (E7300, 2·66GHz). It
can do 2·9 Giga Floating point Operations Per Second (2·9 GFLOPS). Experimental results
show that each time step of the conventional algorithm takes 0·2 ms on this CPU, while the
proposed algorithm takes 0·015 ms. In other words, the conventional algorithm requires
an execution time 13 times longer than that of proposed algorithm to achieve the same
precision. This shows a significant decrease in the computational load.

A summary of the field results and a comparison of the number of computational
operations are given in Tables 3 and 4.

5. CONCLUSION. The objective of this study was a reduction of the computational
burden in a conventional underwater integrated navigation system. The conventional sys-
tems consist of a 3D INS and a 3D DVL, and in these systems, data incorporation is
performed by a Kalman filter, that is by a 3D form of computations. In the proposed system,
assuming only small variations of roll and pitch angles and depth being available through
a pressure sensor, computations were performed in a 2D form. The nonlinear model of the
system was also simplified to a linear model due to the low speed of the test vehicle. Fur-
thermore, a low complexity KF algorithm was proposed according to the simplifications of
the state covariance matrix. In order to evaluate the performance of the proposed system,
a sea test was conducted. Results demonstrate that the proposed system can have a per-
formance similar to a conventional system, while considerably reducing the computational
burden.
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