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We consider the problem of routing and admission control in a loss system featuring two
classes of arriving jobs (high-priority and low-priority jobs) and two types of servers, in
which decision-making for high-priority jobs is forced, and rewards influence the desirabil-
ity of each of the four possible routing decisions. We seek a policy that maximizes expected
long-run reward, under both the discounted reward and long-run average reward criteria,
and formulate the problem as a Markov decision process. When the reward structure favors
high-priority jobs, we demonstrate that there exists an optimal monotone switching curve
policy with slope of at least −1. When the reward structure favors low-priority jobs, we
demonstrate that the value function, in general, lacks structure, which complicates the
search for structure in optimal policies. However, we identify conditions under which opti-
mal policies can be characterized in greater detail. We also examine the performance of
heuristic policies in a brief numerical study.

Keywords: markov decision processes, queueing control, stochastic dynamic programming, two-
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1. INTRODUCTION

A common decision faced by operators of service systems is the problem of dynamically
allocating system resources to incoming demand. Complicating matters is the fact that in
such systems, customers and servers are typically heterogeneous. Servers may have differ-
ent capabilities, or receive training in varying sets of skills. Similarly, different types of
customers may have varying needs, or take priority over other customer classes. This situa-
tion arises, for instance, in telecommunications (Altman, Jimenez, and Koole [1], Bhulai and
Koole [6], Örmeci and van der Wal [22]), healthcare (Berman [4], McLay and Mayorga [20]),
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and rental systems (Gans and Savin [13], Papier and Thonemann [23], Savin et al. [27]).
Decision-making in such an environment has typically been modeled in the literature as a
problem of admission control or routing in a queueing system, canonical examples of which
include the models by Harrison [15] and Miller [21].

However, there may be restrictions in the decisions that can be made in certain system
states. One example of this (the original motivation for the model we present in this paper)
arises in emergency medical service (EMS) systems. In this setting, arriving calls (customers)
are categorized into priorities, based upon severity, and ambulances (servers) are staffed
by personnel who receive varying levels of medical training. EMS providers are primarily
evaluated by their responsiveness to calls of the highest priority: emergencies for which
patients’ lives are potentially at stake (such as cardiac arrest). As a result, decision-making
with these types of calls is typically forced, in that they receive an immediate response
if resources are available. Moreover, if multiple ambulances can respond to such a high-
priority call, EMS providers prefer to dispatch one staffed by paramedics (who receive the
highest level of medical training), as doing so can have a measurable effect on patient
outcomes. (See, for instance, Bakalos et al. [2] or Jacobs et al. [16] for discussions of these
effects.) However, EMS providers are often required to provide a minimum level of service to
lower-priority calls. As a result, decision-makers face a trade-off between keeping resources
available to serve higher-priority calls, and allocating these resources to adequately serve
lower-priority calls.

We study this situation through a loss system featuring two types of servers (Types A
and B), that is tasked with processing two classes of jobs: Type H (or high-priority) jobs
and Type L (or low-priority) jobs, in which decision-making with Type H jobs is forced,
and Type L jobs are subject to admission control. Although this model cannot be directly
used to guide decision making in practical contexts (as the locations of ambulances must
also be taken into account), it is theoretically interesting in its own right. This is because
the element of forced decision-making in our model presents significant technical challenges.
In particular, standard techniques for characterizing the optimal admission control policy,
which involve formulating our model as a Markov decision process (MDP) and analyzing the
corresponding value function, are inadequate. Although there are conditions under which
standard techniques suffice, in general, the value function associated with our model lacks
classical structural properties, such as convexity or supermodularity. Moreover, this lack of
structure can be directly attributed to our requirement that decision-making with Type H
jobs is forced.

To address these difficulties, we instead identify situations in which we can provably
recover structure in the optimal policy, and proceed in two directions. First, we provide a
sufficient (but not necessary) condition on our model inputs under which our value function
is convex and supermodular. Second, we demonstrate that when we restrict attention to a
certain intuitive class of policies, the optimal policy in this class is “monotone” in a way
that we later specify, the proof of which relies on a novel argument using renewal theory.
One may wonder whether the technical challenges our model presents can be circumvented,
for instance by devising an effective heuristic policy, but numerical experiments suggest that
in service systems such as ours, that there is value in taking into account heterogeneity of
both servers and jobs.

The remainder of this paper is organized as follows. After a review of relevant literature
in Section 2, we explicitly formulate our model as a Markov decision process in Section 3,
and present the corresponding optimality equations. We identify basic structural properties
in our value function in Section 4, which we leverage in Section 5 to identify conditions
under which the optimal policy can be characterized. Following a brief numerical study in
Section 6, we conclude in Section 7.
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2. LITERATURE REVIEW

Routing and admission control in queueing systems has been widely studied in the literature.
Surveys, such as those by Stidham [29] and Stidham and Weber [30], provide excellent
overviews of work in this area; we restrict our attention to models closely related to our own –
specifically, models featuring multiple classes of arriving jobs. Perhaps the most influential
model of this type is due to Miller [21], who studies the problem of admission control to
a loss system featuring homogeneous servers and n job classes, as well as class-dependent
rewards. Extensions to Miller’s model have been studied (see, for instance, Carrizosa, Conde,
and Muñoz-Márquez [8], Feinberg and Reiman [12], and Lewis, Ayhan, and Foley [18]), and
his model has also been adapted to study telecommunications systems and call centers
(examples of which include Altman et al. [1], Bhulai and Koole [6], Blanc et al. [7], Gans
and Zhou [14], and Örmeci and van der Wal [22]). Our model differs from those previously
mentioned in two respects. First, it features two types of servers, and we allow rewards to
depend on the type of server to which jobs are assigned. Second, one of our arrival streams
is uncontrolled, as Type H jobs must be admitted whenever possible. While Blanc et al.
[7] also consider a model with a similar element of forced decision-making, and Bhulai and
Koole [6] and Gans and Zhou [14] impose a service level constraint on Type H jobs, they
do so in a system with homogeneous servers.

One system from this body of literature that bears a particularly close resemblance to
ours is the N-network, which can be viewed as a variant of our model in which RHA = RHB ,
type L jobs cannot be routed to Type A servers, and jobs can queue. See, for instance, Bell
and Williams [3], Down and Lewis [11], and Harrison [15]. While our model does not feature
a queue, we allow for servers to be flexible, in that they can serve both types of jobs, and
discourage certain routing decisions through the reward structure we impose.

As previously mentioned, models of this type have also been used to study real-time
decision making in EMS systems, for which the goal is to identify policies for dispatching
ambulances to emergency calls, or to relocate idle ambulances to improve the system’s
responsiveness to future call arrivals. See, for instance, the models by Berman [4,5], Jarvis
[17], McLay and Mayorga [20], and Zhang [31]. These models are detailed, and take into
account the effects of ambulance locations (and heterogeneity) when making decisions, and
thus, can be used to guide decision-making in practical contexts. Although our model lacks
this applicability, we consider a more nuanced objective function that incorporates the
system’s responsiveness to high-priority and low-priority calls, as well as the level of service
that different types of ambulances can provide to these calls. It can also be used to draw
basic insights; we use this model in Chong, Henderson, and Lewis [9] to study the effects
of fleet composition (the mixture of “Type A” and “Type B” ambulances deployed) on the
performance of EMS systems. Our choice to model the system as a loss system is partly
due to tractability, and partly due to the fact that some systems divert calls to an external
service (such as a fire department) during periods of congestion.

Another application area includes capacity management in rental systems, a relatively
small subfield of revenue management in which individual resources are not perishable
(as is the case, for instance, with seats on a particular flight), but can be reused to generate
revenue from multiple customers. In this setting, servers are viewed as resources that can
be rented to customers for random (exponentially distributed) durations of time. When
resources are scarce, there is a decision as to which resources (if any) to make available
to arriving customers. This problem has been studied, for instance, by Gans and Savin
[13], Savin et al. [27], and Papier and Thonemann [23], all of whom model resources as
homogeneous. In this context, our model can be viewed as that of a rental system with
two classes of resources, in which product substitutions can be made during periods of high
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demand. For instance, assigning a Type L job with a Type A server may correspond to
upgrading a low-priority customer, whereas assigning a Type H job to a Type B server may
correspond to downgrading (and compensating) a high-priority arrival.

Finally, we draw a connection between our model and a body of literature relating
to the stochastic sequential assignment problem, a generalization of the coupon collection
problem in which coupons must be placed into “buckets”, a coupon may be eligible for
placement in more than one type of bucket, and coupons cannot be removed once assigned
to a bucket. Ross and Wu [25,26] seek an assignment policy that minimizes the expected
number of coupons that arrive before every bucket is filled. Derman, Lieberman, and Ross
[10] consider a variant in which there are no eligibility constraints, and instead maximize
a reward function that depends on the coupon, and the bucket to which it is assigned.
Although our model is similar in spirit to this problem, in that “coupons” of varying types
must be assigned to heterogeneous “buckets”, coupons also leave the system after completing
service, and we seek a policy that is optimal over an infinite horizon.

3. MODEL FORMULATION

Consider a system operating NA Type A and NB Type B servers. Type H and L jobs arrive
according to independent Poisson processes with rates λH and λL, respectively. An arriving
Type H job must be admitted into the system if at least one server is idle, and if this is
the case, must be processed by a Type A server if one is available. Routing a Type H job
to a Type B server is less desirable, but is permitted when all Type A servers are busy, to
provide the job with some level of service during periods of congestion. Type L jobs can
be processed by either type of server, but can be diverted from the system upon arrival, so
as to reserve system resources for future Type H jobs. If a job (of either type) is admitted
(with either type of server), then it leaves the system after a time that is exponentially
distributed with rate μ. Jobs that are diverted or that arrive when all servers are busy
immediately leave the system.

Let RHA and RHB denote the reward associated with assigning a Type H job to a
Type A and Type B server, respectively. Similarly, let RL denote the reward associated
with admitting a Type L job (and assigning it to either type of server). We assume RHA ≥
max{RHB , RL}, but we make no assumptions about the relative ordering of RHB and
RL. Our goal is to find an admission control policy for low-priority jobs that maximizes
the expected long-run reward collected by the system, and consider both the discounted
reward and the long-run average reward criteria. We use this objective to quantify the level
of service that the system is able to provide. By setting RHA to be the largest reward in
our model, we prioritize serving Type H jobs adequately, and we can model the trade-off
between serving Type H jobs and Type L jobs through the value of RL (relative to RHA

and RHB).
We formulate the problem described as an MDP. Let S = {0, 1, . . . , NA} ×

{0, 1, . . . , NB} be the state space, where (i, j) ∈ S denotes the state in which i Type A
servers and j Type B servers are busy. To determine the actions A(i, j) that are available
when the system is in state (i, j), it suffices to only consider arriving Type L jobs. If either
i < NA or j < NB , two actions can be taken: admitting (action 1) or rejecting (action 0)
the next Type L job, if one arrives during the next decision epoch. If j < NB , action 1
entails assigning the job to a Type B server. Although we do not allow Type L jobs to be
assigned to Type A servers in this situation, this is without loss of optimality; we prove this
in Proposition 4.3 below. If j = NB , but i < NA, then action 1 entails a Type A service.
Finally, if i = NA and j = NB , only a dummy action (action 0) can be taken.
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Because interevent times are exponentially distributed with a rate that is bounded
above by Λ := λH + λL + (NA + NB)μ, our MDP is uniformizable in the spirit of Lippman
[19] and Serfozo [28], and we can consider an equivalent process in discrete time. Without
loss of generality, assume Λ = 1. We define a policy to be a sequence of decision rules
π = {π0, π1, . . .}, where πk : S → {0, 1} specifies a deterministic action to be taken during
the kth decision epoch, given the state of the system. Let Π be the set of all such policies.
Given a fixed policy π ∈ Π and an initial state (i, j), let Sπ

k be the state of the system at
the start of the kth decision epoch, and Aπ

k be the action πk(Sπ
k ) selected by policy π at this

time. Consider first the case of discounted rewards. We define the expected total discounted
reward collected by π to be

vπ
α(i, j) = E

[ ∞∑
k=0

αkr(Sπ
k , Aπ

k )
∣∣∣∣ Sπ

0 = (i, j)

]
, (1)

where r(s, a) is the reward collected when the system is in state s ∈ S and action a ∈ A(s) is
taken, and α ∈ [0, 1) is the discount factor. This quantity is well-defined for each initial state
(i, j), since 0 ≤ r(s, a) ≤ RHA for each s and a. Next, we define vα(i, j) = supπ∈Π vπ

α(i, j).
Because state and action spaces are finite, the supremum is attained, and so vα(i, j) denotes
the total discounted reward obtained by an optimal policy, given the system is initialized
in state (i, j). Theorem 6.2.6 of Puterman [24] implies that the value function vα is the
unique solution to the optimality equations:

vα(i, j) = Tαvα(i, j) (2)

:= λH

[
1{i<NA}

[
RHA + αvα(i + 1, j))

]
+ 1{i=NA, j<NB}

[
RHB + αvα(i, j + 1)

]
(3)

+ 1{i=NA, j=NB}αvα(i, j)]
]

+ λL

[
1{j<NB} max{RL + αvα(i, j + 1), αvα(i, j)}

+ 1{i<NA, j=NB} max{RL + αvα(i + 1, j), αvα(i, j)} + 1{i=NA, j=NB}αvα(i, j)
]

+ iμ αvα(i − 1, j) + jμ αvα(i, j − 1) + (NA + NB − i − j)μ αvα(i, j).

The first term on the right-hand side of (3) corresponds to the case when a Type H arrival
occurs in the next decision epoch. The reward collected and the resulting transition depends
on the system state; we capture this dependence using indicators for brevity. The remaining
four terms correspond to cases where a Type L arrival, a Type A service completion, a Type
B service completion, and a dummy transition occur, respectively. Note that the optimality
equations (3) imply that it is optimal to accept a Type L arrival when either j < NB and
RL > α[vα(i, j) − vα(i, j + 1)] or i < NA, j = NB , and RL > α[vα(i, j) − vα(i + 1, j)].

We also consider a finite-horizon analogue of this problem, in which we terminate the
decision process after n decision epochs. Define the functions vπ

n, α and vn,α analogously to
vπ

α and vα, but with the sum in (1) terminating at n instead of ∞. Here, we allow α = 1.
The optimality equations for this problem can be constructed analogously by replacing vα

on the left-hand side of (3) with vn,α, and occurrences of vα on the right-hand side of (3)
with vn−1,α (and specifying the boundary condition v0,α(i, j) = 0 for all i and j).

Given any initial state (i, j) and a policy π, we define the long-run average reward
attained to be Jπ = limn→∞ vn, 1(i, j)/n. By Theorem 8.3.2 of Puterman [24], Jπ is well-
defined and independent of (i, j), as the Markov chain induced by π is irreducible. To see
this, suppose (i, j), (i′, j′) ∈ S. Then state (i′, j′) can be reached from state (i, j) under π
via i + j consecutive service completions, followed by i′ + j′ Type H arrivals. Next, define
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J = supπ∈Π Jπ, the long-run average reward attained by an optimal policy. By Theorem
8.4.3 of Puterman [24], this can be found by solving the optimality equations

J + h(i, j) = T1h(i, j) (4)

for J and h(·), where we defined the operator Tα in (2). One property of h that we use
extensively is

h(i, j) − h(i′, j′) = lim
n→∞ [vn,1(i, j) − vn,1(i′, j′)] , (5)

which is proven, for instance, in Section 8.2.1 of Puterman [24].

4. BASIC STRUCTURAL PROPERTIES

We begin our analysis by identifying structural properties of the value functions vα and
h. The first such property we examine confirms two intuitive notions: that additional idle
servers are beneficial to the system, and that an idle Type A server is preferable to an idle
Type B server (implying that we prefer to assign Type L jobs to Type B servers, rather
than to Type A servers).

Lemma 4.1: For all α ∈ [0, 1), and w = vα, vn,α, or h (depending on the optimality
criterion):

1. w(i, j) − w(i + 1, j) ≥ 0, i = 0, . . . , NA − 1, j = 0, . . . , NB,
2. w(i, j) − w(i, j + 1) ≥ 0, i = 0, . . . , NA, j = 0, . . . , NB − 1, and
3. w(i, j + 1) − w(i + 1, j) ≥ 0, i = 0, . . . , NA − 1, j = 0, . . . , NB − 1.

Proof: We show Statement 2 holds using a sample path argument; the proofs of State-
ments 1 and 3 are similar. Suppose w = vα; the case where w = vn,α follows via a nearly
identical proof, from which the case where w = h follows by leveraging Eq. (5). Fix α ∈ [0, 1),
i ∈ {0, . . . , NA}, and j ∈ {0, . . . , NB − 1}. We construct two processes on the same proba-
bility space. Process 2 begins in state (i, j + 1) and follows the optimal policy π∗, whereas
Process 1 starts in (i, j) and uses a potentially suboptimal policy π that imitates the actions
taken by Process 2.

By construction, arrivals occur simultaneously in both processes, and any job admitted
by Process 2 is also admitted by Process 1. Furthermore, any service completion occurring
in Process 1 also occurs in Process 2. Thus, both process move in “parallel” (in that the
same changes in state occur simultaneously in both processes) until one of the following
events occurs:

1. Process 2 sees a service completion that is not observed by Process 1.
2. A Type H arrival when Process 1 is in state (NA, NB − 1), and Process 2 is in state

(NA, NB).

Either event causes both processes to couple, in that they transition into the same state, and
behave identically from this time onward. Let Δ be a random variable denoting the difference
in reward collected by the two processes until coupling occurs. By (1), EΔ = vπ

α(i, j) −
vα(i, j + 1). Thus, it suffices to show that EΔ ≥ 0, as this implies vα(i, j) − vα(i, j + 1) ≥
vπ

α(i, j) − vα(i, j + 1) = EΔ ≥ 0. Indeed, prior to the coupling event, both processes observe
the same transitions and collect the same rewards. When coupling occurs, Process 1 collects
a reward at least as large as that by Process 2. This implies Δ ≥ 0 pathwise, and so EΔ ≥ 0,
as desired. �
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We next establish two upper bounds: one on the benefit of an idle Type B server, and
one on the benefit associated with substituting an idle Type B server with an idle Type A
server.

Lemma 4.2: For all α ∈ [0, 1), and w = vα, vn,α, or h, we have that

1. w(i, j + 1) − w(i + 1, j) ≤ RHA − RHB, i = 0, . . . , NA − 1, j = 0, . . . , NB, and

2. w(i, j) − w(i, j + 1) ≤ max{RHB , RL}, i = 0, . . . , NA, j = 0, . . . , NB − 1.

Proof: We show Statement 1 holds via a sample path argument; the proof of Statement 2
is similar. As in the proof of Lemma 4.1, it suffices to show that the above properties hold
when w = vα. Fix α ∈ [0, 1), i ∈ {0, . . . , NA − 1}, and j ∈ {0, . . . , NB − 1}. Construct two
processes on the same probability space. Process 1 begins in state (i, j + 1) and follows the
optimal policy π∗, whereas Process 2 begins in state (i + 1, j), and imitates the actions
taken by Process 1.

There is a Type A server that is idle in Process 1, but busy in Process 2, and a Type B
server that is busy in Process 1, but idle in Process 2. We construct our probability space
so that both units complete service simultaneously. Both processes move in parallel until
one of the following occurs:

1. The coupled Type A server (in Process 1) and Type B server (in Process 2) complete
service.

2. A Type H arrival occurs when Process 1 is in state (NA − 1, j′ + 1), and Process 2
is in state (NA, j′), for some j′ ∈ {0, 1, . . . , NB − 1}. (In this case, Process 1 admits
the job with a Type A server, and Process 2 admits the job with a Type B server.)

3. A Type L arrival occurs when Processes 1 and 2 are in states (i′ − 1, NB) and
(i′, NB − 1), respectively, for some i′ ∈ {1, 1, . . . , NA} and Process 1 admits the
job with a Type A server. (In this case, Process 2 admits the job with a Type B
server.)

Let Δ be the difference in reward collected by the two processes until coupling occurs.
Since EΔ = vα(i, j + 1) − vπ

α(i + 1, j), it suffices to show that EΔ ≤ RHA − RHB. We
observe that Δ(ω) = 0 on all paths ω in which events 1 or 3 occur, and RHA − RHB on
paths in which event 2 occurs (modulo the effects of discounting). Thus Δ ≤ RHA − RHB

pathwise. �

Lemma 4.2 has two implications on the structure of optimal policies.

Proposition 4.3: If a Type H job arrives when both types of servers are available, then it
is preferable to assign a Type A server. Moreover, if RHB ≤ RL, then it is optimal to admit
low-priority jobs when at least one Type B server is idle.

Proof: We prove the first claim; the second follows using a similar argument. It suffices
to show that our claim holds under the discounted reward criterion. Let (i, j) be such that
i < NA and j < NB , and suppose, contrary to the optimality equations (3), that we serve
an arriving Type H job in this state with a Type B server. It is preferable to assign a Type A
server if RHA + αvα(i + 1, j) ≥ RHB + αvα(i, j + 1), which by Statement 1 of Lemma 4.2,
always holds. �
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5. OPTIMAL POLICY

If NB = 0, then we can use the main result of Miller [21] to characterize the optimal policy.

Proposition 5.1 Miller 1960: If NB = 0, then there exists an optimal policy with the prop-
erty that if it admits Type L jobs when i servers are busy, then it also does so when i′ < i
servers are busy.

Stated another way, threshold-type policies are optimal. When NB > 0, it is reasonable to
conjecture that a multi-dimensional analogue to this class of policies is optimal:

Definition 5.2: A policy is of “monotone switching curve” type if there exists a monotone
curve s(·) dividing the state space into two connected regions, one in which action 0 is taken,
and one in which action 1 is taken.

Threshold-type policies are special cases of monotone switching curve policies. We
analyze the cases RL ≤ RHB and RL > RHB separately.

5.1. The Case RL ≤ RHB

If RL ≤ RHB , the optimal policy is fairly structured, and our main result in this section as
follows:

Theorem 5.3: If RL ≤ RHB, then there exists an optimal monotone switching curve policy
with slope of at least −1 under both the discounted reward and long-run average reward
criteria.

A monotone switching curve policy can be viewed as one that keeps some number of
Type B servers in reserve to respond to future Type H arrivals, and grows this reserve as
more Type A servers become busy. A bound on the slope of the switching curve implies the
size of this reserve does not change dramatically in response to “small” changes in system
state. In particular, if a Type A server becomes free or busy, the size of the reserve can
change by at most one. To prove Theorem 5.3, we use the fact that our value functions
vα, vn,α, and h have the following structural properties:

Lemma 5.4: If RL ≤ RHB, then for all α ∈ [0, 1) and w = vα, vn,α, or h, we have that

1. (Convexity in j) For all i ∈ {0, 1, . . . , NA} and j ∈ {0, 1, . . . , NB − 2}, we have that

w(i, j) − w(i, j + 1) ≤ w(i, j + 1) − w(i, j + 2). (6)

2. (Supermodularity) For all i ∈ {0, 1, . . . , NA − 1} and j ∈ {0, 1, . . . , NB − 1}, we
have that

w(i, j) − w(i, j + 1) ≤ w(i + 1, j) − w(i + 1, j + 1). (7)
3. (Convexity in i when j = NB) For all i ∈ {0, 1, . . . , NA − 2}, we have that

w(i, NB) − w(i + 1, NB) ≤ w(i + 1, NB) − w(i + 2, NB). (8)

4. (Slope property) For 0 ≤ i ≤ NA − 1 and 0 ≤ j ≤ NB − 2:

w(i + 1, j) − w(i + 1, j + 1) ≤ w(i, j + 1) − w(i, j + 2). (9)
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The proof, which we defer to the online supplement, follows by demonstrating that prop-
erties (6)–(9) hold when w = vn,α, via a straightforward induction argument on n, then
reasoning as in Lemma 4.1 to show that the same properties hold for the value functions
vα and h.

Proof of Theorem 5.3: We consider only the discounted reward criterion, as the proof
for the long-run average reward criterion is nearly identical. Consider an optimal policy
π∗, and let (i, j + 1) be a state in which π∗ takes action 1 – that is, admits Type L jobs
into the system. (If such a state does not exist, then our claim trivially holds.) If j + 1 <
NB , then the optimality equations (3) imply RL + αvα(i, j + 2) ≥ αvα(i, j + 1) ⇐⇒ RL ≥
α[vα(i, j + 1) − vα(i, j + 2)]. Statement 1 of Lemma 5.4 implies that RL ≥ α[vα(i, j) −
vα(i, j + 1)], and so it is also optimal to take action 1 in state (i, j). If j + 1 = NB , then
action 1 routes the Type L job to a Type A server, and

RL + αvα(i + 1, j + 1) ≥ αvα(i, j + 1) ⇐⇒ RL ≥ α[vα(i, j + 1) − vα(i + 1, j + 1)]

=⇒ RL ≥ α[vα(i, j) − vα(i + 1, j)]

=⇒ RL ≥ α[vα(i, j) − vα(i, j + 1)],

where the second line follows by Statement 2 of Lemma 5.4, and the third by Statement 3 of
Lemma 4.1. Thus, it is again optimal to admit Type L jobs in state (i, j). Similar reasoning
yields that the same holds in all states (i, j′) where j′ < j.

Now consider a state (i + 1, j) at which π∗ admits Type L jobs (assuming without loss
of generality that one exists). If j < NB , then RL ≥ α[vα(i + 1, j) − vα(i + 1, j + 1)], and
Statement 2 of Lemma 5.4 implies RL ≥ α[vα(i, j) − vα(i, j + 1)]. If j = NB , then RL ≥
α[vα(i + 1, j) − vα(i + 2, j)], and Statement 3 of Lemma 5.4 implies that RL ≥ α[vα(i, j) −
vα(i + 1, j)]. In either case, it is optimal to admit Type L jobs in state (i, j). Similar
reasoning can be used to show that Type L jobs are also admitted in state (i′, j) where
i′ < i.

Thus, if π∗ admits Type L jobs in state (i, j), then it also does so in all states (i′, j′)
for which i′ ≤ i and j′ ≤ j. For each i ∈ {0, 1, . . . , NA}, define the function s(i) = max
{j : π∗(i, j) = 1}; we claim this function is non-increasing. Indeed, if this is not the case,
then there exists an i for which s(i + 1) > s(i), implying that for some j, the policy admits
Type L jobs in state (i + 1, j + 1), but not in state (i, j + 1). Contradiction.

To prove that s has slope of at least −1, it suffices to show that if π∗ admits Type
L jobs when the system is in state (i, j + 1), then it also does so in state (i + 1, j). Let
(i, j + 1) be such a state, and suppose first that j + 1 < NB . Then RL ≥ α[vα(i, j + 1) −
vα(i, j + 2)], and Statement 4 of Lemma 5.4 implies RL ≥ α[vα(i + 1, j) − vα(i + 1, j +
1)]. If j + 1 = NB , then Lemma 4.1 implies RL ≥ α[vα(i, j + 1) − vα(i + 1, j + 1)] ≥ α[vα

(i + 1, j) − vα(i + 1, j + 1)]. �

We conclude this section by noting that in the special case where RL = RHB, the
optimal policy is simpler to characterize, as Lemma 4.2 implies that this policy must admit
Type L jobs whenever Type B servers are idle. Combining this insight with Theorem 5.3
implies the existence of an optimal threshold-type policy.

5.2. The Case RL > RHB

As in the case where RL = RHB, we can leverage Lemma 4.2, and consider decision-
making only in states (i, NB), where i < NA. We conjecture that a threshold-type policy
is optimal here. However, we cannot reason as in Section 5.1, as the value function vα is,
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in general, neither convex nor supermodular. We demonstrate this with an example. While
we specifically consider the discounted reward criterion, we can adopt the example below
to the case of long-run average rewards.

Example 5.5: Let λA = 40, λB = 30, RHA = 1, RHB = 0.1, RL = 0.9, NA = 2, NB = 28,
μ = 1, and α = 0.995. Policy iteration yields vα(2, 28) = 28.479, vα(1, 28) = 29.545,
vα(2, 27) = 28.914, vα(1, 27) = 30.125, and vα(0, 28) = 30.620, Thus,

0.580 = vα(1, 27) − vα(1, 28) > vα(2, 27) − vα(2, 28) = 0.435 and

1.075 = vα(0, 28) − vα(1, 28) > vα(1, 28) − vα(2, 28) = 1.066,

and so vα is neither supermodular nor convex. �

Example 5.5 establishes that the value functions vα and h, in general, are unstructured.
It can be shown that this lack of structure can be directly attributed to our assumption
that decision-making with Type H jobs is forced. In particular, if the decision-maker could
subject Type H jobs to admission control, then we return to a setting in which standard
techniques suffice to characterize optimal policies:

Proposition 5.6: Consider a modified system in which Type H jobs are subject to admis-
sion control, in that they can be rejected upon arrival in any system state. Let ṽα, ṽn,α, and
h̃ denote the value functions associated with optimal policies in this setting. If RL > RHB,
then for all α ∈ [0, 1), these functions are convex (i.e., convex in i, and convex in j when
i = NA) and supermodular, and there exists an optimal monotone switching curve policy
for Type H jobs.

The proof, which we again defer to the online Appendix, is similar to that used to
prove Lemma 5.4, in that we prove that the value function vn,α (and consequently, vα

and h) has certain structural properties via induction on n. Although forced-decision making
complicates the analysis of our model, to ensure the existence of an optimal threshold-type
policy, it is only necessary to show that the value functions vn,α, vα, and h satisfy the
“single-crossing” property

vα(i − 1, NB) − vα(i, NB) ≤ RL

=⇒ vα(i − 1, NB) − vα(i, NB) ≤ RL ∀i ∈ {0, . . . , ≤ NA − 2}. (10)

We conjecture that this holds, but we have been unable to develop a proof. Nor have we
found a counterexample, as extensive numerical experiments on a wide range of problem
instances have all yielded optimal threshold-type policies. We proceed by imposing addi-
tional assumptions that allow us to identify structure, and conclude this section with two
results in this vein.

5.2.1. A sufficient condition for convexity. Example 5.5 corresponds to an unrealistically
overloaded system in which the arrival rate greatly exceeds the system’s service capacity.
It may not be of practical interest to study such systems, even if threshold policies can
be shown to be optimal. By restricting our attention to more reasonable parameter values,
we identify conditions under which the value functions vα and h are convex, implying the
optimality of threshold-type policies. One such condition is the following:
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Proposition 5.7: Fix α ∈ [0, 1). If

RL ≤ RHB +
μ

λL
RHB +

μ

λH

(
1 +

μ

λL
+

λH

λL

)
RHA, (11)

then for all i ∈ {0, 1 . . . , NA − 2}, j ∈ {0, 1, . . . , NB}, and n ≥ 0, the value functions
vα, vn,α, and h are all convex in i.

The proof, which we provide in the online supplement, is a sample path argument. The
intuition is that vα(i, j) − vα(i + 1, j) can be viewed as the expected difference in rewards
collected by two stochastic processes defined on the same probability space – one initialized
in state (i, j), the other in state (i + 1, j) – until coupling occurs; call this expectation
EΔ. The quantity vα(i + 1, j) − vα(i + 2, j) can be interpreted in a similar fashion; call
the corresponding expectation EΔ′. There may be sample paths on which Δ > Δ′, and if
the probability of this collection of paths is too large, we may have EΔ > EΔ′; this is the
case in Example 5.5. Condition (11) guards against this possibility. While this condition is
sufficient to prove convexity, it is certainly not necessary; numerical experiments suggest
that convexity holds for a wide range of parameter values violating inequality (11).

5.2.2. Threshold policies. Policies that are not of threshold type are unappealing from a
practical standpoint, and so it may be reasonable to omit them from consideration. Restrict-
ing attention to the set of threshold-type policies may still yield value functions that are
neither convex or supermodular; the optimal policy in Example 5.5 never admits Type L
jobs when j = NB , and thus is of threshold type.

Nonetheless, the optimal policy in this setting satisfies a monotonicity property, in that
the optimal choice of threshold is non-increasing in RHA, non-decreasing in RHB , and non-
decreasing in RL. More formally, for i ∈ {−1, 0, . . . , NA}, let πi denote the threshold-type
policy that admits Type L jobs in all states (i′, NB) where i′ ≤ i. (Policy π−1 never assigns
Type A servers to Type L jobs.) Since the set of threshold-type policies is finite, there exists
an optimal policy, but it may not be unique; we break ties by selecting the policy with the
highest threshold.

Proposition 5.8: Consider a system with rewards RHA, RHB, and RL, and let πi∗ denote
the largest optimal threshold-type policy. Suppose we modify the system so that it has rewards
R′

HA, R′
HB, and R′

L, where R′
HA ≥ RHA, R′

HB ≤ RHB, and R′
L ≤ RL. Let π�∗ be the largest

threshold-type policy that is optimal in the modified system. Then �∗ ≤ i∗.

The proof, which we again defer to the online supplement, involves a novel application
of renewal theory. We define two stochastic processes on the same probability space (under
the original reward structure), one using the optimal policy πi∗ , and one using a suboptimal
policy π�, where � > i∗. We initialize both systems in some state (i0, j0), and define renewal
epochs to be the points in time at which both processes return to state (i0, j0). When
we consider the difference in rewards collected by the two processes during a single renewal
epoch (this suffices, due to the Renewal Reward Theorem), the gap widens when we increase
RHA, decrease RHB , or decrease RL. Thus, any policy with a larger threshold than i∗

remains suboptimal when when we modify the reward structure in this way.
Proposition 5.8 is intuitive, as if we modify rewards in our system so as to more heavily

prioritize Type A responses to Type H jobs, or to decrease the importance of serving Type
L jobs, we would be less willing to assign Type A servers to Type L jobs.

https://doi.org/10.1017/S0269964817000195 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000195


174 K. C. Chong, S. G. Henderson, and M. E. Lewis

Our proof of Proposition 5.8 does not hinge upon our assumption that RL > RHB ,
and so it can be easily extended into a statement about the monotonicity of optimal
monotone switching curves when RL ≤ RHB . In particular, given two monotone switch-
ing curve policies s1 and s2, we define s1 to be strictly larger than s2 if s1(i) ≥ s2(i) for
all i ∈ {0, 1, . . . , NA}, with strict inequality holding for at least one i. That is, the set of
states in which s1 admits Type L jobs into the system is a strict superset of that associated
with s2. If we modify the reward structure as in Proposition 5.8, then the optimal monotone
switching curve policy cannot increase.

Corollary 5.9: Consider again the original and modified systems from Proposition 5.8,
and suppose that RL ≤ RHB. Let π∗ be an optimal monotone switching curve policy for the
original system, and s∗ be the corresponding curve. Also, let π be a policy described by a
monotone switching curve s ≥ s∗. Then π is not optimal for the modified system.

The proof follows via reasoning that is identical to that used in the proof of Proposi-
tion 5.8. Note that Corollary 5.9 does not preclude the existence of an optimal monotone
switching curve s̃∗ for the modified system in which s̃∗(i) > s∗(i) for some (but not all)
values of i. It only excludes strictly larger switching curves from consideration.

6. COMPUTATIONAL STUDY

In this section, we compare our optimal policy to three heuristic policies:

• A myopic policy that admits every incoming job, regardless of the system state
(as long as servers are available),

• A single threshold policy that admits Type H and Type L jobs whenever i < NA,
but admits Type L jobs according to a threshold policy when i = NA.

• A diagonal threshold policy that always admits Type H jobs whenever possible, but
rejects Type L jobs if the total number of busy servers in the system exceeds a
predetermined threshold t – that is, in all states (i, j) where i + j > t.

The primary motivation for the latter two policies is that they are two-dimensional analogues
of the threshold-type policies that were shown to be optimal in Miller [21]. The single
threshold policy considers a one-dimensional cross-section of the state space, whereas the
diagonal threshold policy does not distinguish between busy Type A and busy Type B
servers.

We evaluate the performance of these three policies on a system with ten Type A and
Type B servers, each of which operate at a rate of μ = 1. Without loss of generality, we
assume RHA = 1, and consider two reward regimes: one that favors Type H jobs (RHB =
0.6, RL = 0.4), and one that favors Type L jobs (RHB = 0.4, RL = 0.6). We also consider
performance under varying levels of congestion, ranging from a severely underloaded system
(in which λH = λL = 0.5) to a severely overloaded system (in which λH = λL = 15). In
each of the MDP instances we consider, we solve for the optimal policy numerically using
policy iteration. We find the optimal single threshold policy by computing the stationary
distribution of the Markov chain induced by the policy with threshold t (from which long-run
average reward can be easily calculated), and finding the threshold in the set {0, 1, . . . , NA}
that maximizes reward. We compute the optimal diagonal threshold policy in a similar
fashion. Our findings are summarized in Figures 1 and 2.

When the system is lightly loaded, our heuristic policies perform optimally, as there
is no need to reserve servers for Type H jobs when the system is rarely congested. As the
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Figure 1. RHB = 0.4, RL = 0.6

Figure 2. RHB = 0.6, RL = 0.4

system load increases, the optimal policy performs noticeably better, as routing decisions
affect performance primarily during periods of congestion. The greedy policy, unsurprisingly,
performs the poorest, particularly as arrival rates increase. In moderately-loaded systems,
the myopic policy appears to struggle more when RL < RHB. This is also not surprising,
given that setting RL < RHB decreases the number of states in which it is optimal for the
decision-maker to behave greedily.

The single threshold policy is optimal when RHB > RL, but this is a consequence of
Proposition 4.3. When RHB ≤ RL, it performs comparably to the optimal policy, but also
struggles in more heavily loaded systems. The diagonal threshold policy performs quite
well when RHB ≤ RL, likely due to the fact that the structure of the policy closely mimics
the monotone switching curve (with slope of at least −1) that was shown to be optimal
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in Theorem 5.3. However, it performs noticeably poorer when RHB > RL, as the policy
becomes too conservative in terms of admitting Type L jobs.

Although we could consider a combination policy that uses either the single threshold
or diagonal threshold policy, depending on the reward structure, the above experiments
demonstrate that there is value in taking the heterogeneity of resources into account when
making decisions in our system. We observe similar behavior when we consider different
systems (that are less “balanced” in terms of the relative values of NA and NB , and of
λH and λL), and perform sensitivity analyses, but we omit the corresponding results for
brevity.

7. CONCLUSION

In this paper, we consider the problem of routing and admission control in a service system
featuring two classes of arriving jobs and two types of servers, where one arrival stream
is uncontrolled, and our reward structure influences the desirability of each of the four
possible routing decisions. We seek a policy that maximizes long-run reward, and consider
both the discounted reward and long-run average reward criteria. We search for structure in
the optimal policy by formulating the problem as an MDP. When RL ≤ RHB , we prove the
existence of an optimal monotone switching curve policy with a slope of at least −1. When
RL > RHB , we conjecture that threshold-type policies are optimal, but encounter difficulties
because the value function, in general, is neither convex nor supermodular. These difficulties
can be attributed directly to our modeling assumption that decision-making with Type H
jobs is forced. We instead prove a sufficient (but not necessary) condition for convexity,
and show that when we restrict attention to the set of threshold-type policies, the optimal
policy is monotone in our choice of reward structure. Numerical experiments suggest there
is value in taking heterogeneity of servers into account when making decisions.

We propose two directions for future research. The first involves finding, for the case
RL > RHB , stronger conditions under which threshold-type policies are optimal. This may
entail strengthening the sufficient condition (11) presented in Section 5.2.1, via a more
refined analysis of sample paths, as our upper bound on the probability of the collection of
“bad” paths is somewhat loose. Alternatively, this may involve proving our conjecture that
the value functions vα and h satisfy the single-crossing property (10). A second direction for
future research is to study a model in which jobs can be placed in buffers. This is especially
relevant in EMS systems, as Type L emergency calls may be queued during periods of
congestion until ambulances finish with more urgent calls. Incorporating buffers into our
model would likely increase the dimension of the state space. Although it may still be
possible to study such a system analytically, work in this direction may entail a numerical
study of near-optimal heuristic policies.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/
S0269964817000195.
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