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A framework for the computation of linear global modes, based on time stepping of a
linearised Navier–Stokes solver with an Eulerian interface representation, is presented.
The method is derived by linearising the nonlinear solver BASILISK, capable of computing
immiscible two-phase flows, and offers several advantages over previous, matrix-based,
multi-domain approaches to linear global stability analysis of interfacial flows. Using
our linear solver, we revisit the study of Tammisola et al. (J. Fluid Mech., vol. 713,
2012, pp. 632–658), who found a counter-intuitive, destabilising effect of surface tension
in planar wakes. Since their original study does not provide any validation, we further
compute nonlinear results for the studied flows. We show that a surface-tension-induced
destabilisation of plane wakes is observable which leads to periodic, quasiperiodic or
chaotic oscillations depending on the Weber number of the flow. The predicted frequencies
of the linear global modes, computed in the present study, are in good agreement with the
nonlinear results, and the growth rates are comparable to the disturbance growth in the
nonlinear flow before saturation. The bifurcation points of the nonlinear flow are captured
accurately by the linear solver and the present results are as well in correspondence with
the study of Tammisola et al. (J. Fluid Mech., vol. 713, 2012, pp. 632–658).

Key words: gas/liquid flow, computational methods

1. Introduction

Shear flows involving two (or more) immiscible fluids can exhibit distinctively different
stability characteristics compared with their single-phase equivalents. This can be due to
the presence of not only a momentum gradient of the adjacent fluids but also a density and
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viscosity gradient. Furthermore, the presence of a surface tension force at the interface(s)
can influence the stability of the flow.

As a consequence, stability properties of multiphase flows are significantly more
complex and involve a larger parameter space than their single-phase equivalents. The
Weber number can be used to express the ratio of momentum to surface tension force in the
flow. In general, for liquid jets with low Weber numbers, the influence of surface tension
is dominating and, depending on whether the liquid layer is planar or round, can either
stabilise (Squire 1953; Hagerty & Shea 1955) or destabilise the flow (Rayleigh 1878). At
higher Weber numbers, aerodynamic forces, through the momentum or density/viscosity
gradient (Yih 1967; Drazin & Reid 2004; Boeck & Zaleski 2005), overcome the effects
of surface tension. However, in the case of confined plane jets and wakes, a study by
Tammisola, Lundell & Söderberg (2012) found that, for certain configurations, surface
tension might as well destabilise a plane flow which is stable in its absence. These
somewhat surprising results are partially confirmed in a subsequent study by Biancofiore
et al. (2014) who found an unstable global mode for some of the configurations of the
former study. However, for other configurations, they found no global instability, thereby
raising doubts concerning the validity of the surface tension-induced destabilisation found
by Tammisola et al. (2012).

Flow stability is usually assessed through the framework of linear stability analysis,
which seeks solutions of the Navier–Stokes operator, linearised around steady or
time-periodic base flows (see e.g. Schmid & Henningson 2012). By choosing a Fourier
ansatz for the perturbation quantities, the linearised system is recast as an eigenvalue
problem, where the resulting eigenvalues yield information about the exponential growth
or decay of the respective eigenvectors. In a local analysis, the underlying base flow is
assumed to be parallel and therefore only dependent on one spatial coordinate, while for a
global analysis, it might be inhomogeneous in all spatial coordinates.

However, for large-scale flows or three-dimensional base flows, memory requirements
for storing the operator matrix are still prohibitive. In such cases, direct construction
of the Jacobian matrix can be avoided by employing iterative techniques where the
high-dimensional system is orthogonally projected onto a low-dimensional subspace
which in turn allows for direct computation of its eigenvalues. In practice, construction
of the subspace can be achieved using standard time-stepping techniques and in principle
any nonlinear direct numerical simulation (DNS) solver can be utilised, as demonstrated
by Barkley, Blackburn & Sherwin (2008).

Although global analysis has become a standard tool for analysing single-phase flows,
its application to multiphase flow has only rarely been attempted so far. There have been
numerous approaches through local absolute stability analysis (e.g. Söderberg 2003; Rees
& Juniper 2009; Sevilla 2011), and by analysing the growth of small perturbations around
base flows in direct numerical simulations (Tammisola, Loiseau & Brandt 2017). However,
to our knowledge, the work of Tammisola, Lundell & Söderberg (2011); Tammisola
et al. (2012) is one of the very few reported applications of linear global analysis to a
two-dimensional immiscible two-phase flow. In their approach, the linearised operator is
constructed explicitly, and discretisation of the fluid phases is done on separate meshes,
resulting in a conformal interface representation that is aligned with the mesh boundary,
separating the domains. Along the interface, velocity and stress conditions are enforced
to couple the domains. The base flow is computed using a single-phase spectral element
code, and the fluid interface is extracted a posteriori as a streamline to obtain an artificial
two-phase base flow.

In the present work, we explore a different approach, by developing a framework which
allows for computation of global modes by means of time stepping with a linearised
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Global stability and nonlinear dynamics of two-fluid wake flows

DNS solver with an Eulerian interface representation, capable of computing two-phase
flows. The benefits of a successful realisation of this approach are readily seen: base
flow and perturbation computations are obtained using the same numerical schemes, so
that no grid mapping or interpolation is necessary. Further, resource requirements for
perturbation computations scale similarly to nonlinear simulations, such that analysis of
three-dimensional base flows is possible. Finally, the utilisation of an available, highly
optimised, nonlinear solver obviates the need for re-implementing the required schemes in
a new solver.

For our study, we choose the open-source framework BASILISK, developed by
S. Popinet (http://basilisk.fr), which offers a geometrical volume-of-fluid (VOF) interface
representation, combined with a well-balanced surface tension scheme.

The aim of this article is twofold: first, we give a detailed presentation of the derivation
of the novel method for the computation of linear global modes of two-phase flows.
Second, we revisit the wake flows investigated by Tammisola et al. (2012), this time using
nonlinear simulations and our linear solver, thereby shedding more light on the nonlinear
dynamics of the flow and providing a rigorous validation.

In the remainder of this article, we first give an overview of the schemes implemented in
BASILISK and outline the necessary modifications to the solver for computing linear global
modes. We then proceed by presenting nonlinear results of the wake flow configurations
of Tammisola et al. (2012), and compare them with the linear results obtained with
the present method. Finally, we discuss some of the differences between the studies of
Tammisola et al. (2012) and Biancofiore et al. (2014).

2. Numerical methods for two-phase flows

2.1. Governing equations for interfacial two-phase flow
As the stability computations are facilitated using the same numerical methods as the
nonlinear solver, a recapitulation of the discretisation and schemes used in this work is
given here. From a physical viewpoint, it is assumed that both fluid phases are separated by
an interface of negligible thickness. The molecular imbalance of cohesive forces between
both fluids is modelled as a surface tension force, acting on the interface. The numerical
representation of the phases and the interface can be either Lagrangian or Eulerian.
Current nonlinear solvers usually use the level set method (Sussman, Smereka & Osher
1994), the VOF (e.g. Scardovelli & Zaleski 1999) or methods derived thereof, all of
which use an Eulerian representation, resulting in a non-conformal interface representation
of finite thickness. The incompressible continuity and momentum equations, including
variable density and surface tension, are given in unified form as

∂tρ + u · ∇ρ = 0, (2.1a)

ρ(∂tu + u · ∇u) = −∇p + ∇ · (μD) + σκnδ(x − xs) (2.1b)

with u = (u, v, w)T the velocity vector, ρ the density, μ the dynamic viscosity, p the
pressure and xs the position of the interface. The deformation tensor is D = ∇u + ∇Tu.
Density and viscosity differ between the phases but are constant within each phase. The
right-most term in (2.1b) represents the surface tension force along the interface, and is
composed of the surface tension coefficient σ , the local interface curvature κ , the unit
normal vector of the interface n and δ, the Dirac δ-function that is non-zero on the
interface. Using a Heaviside function H(x − xs), that is 1 in phase 1 and 0 in phase 2,
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ρ and μ can be expressed as

ρ = ρ2 + H(ρ1 − ρ2), (2.2a)

μ = μ2 + H(μ1 − μ2). (2.2b)

2.2. Interface representations
Numerically, H and δ are approximated as Hε and δε where ε is a characteristic length
scale related to the local grid size Δ. The method of computing the surface tension term is
closely related to the immersed boundary method, introduced by Peskin (1972) where we
find a volumetric representation of the surface force as

σκnδ(x − xs) = σκ∇Hε(x − xs). (2.3)

While several numerical representations of Hε are possible, we will focus on two
variants of the continuum surface force (CSF) method (Brackbill, Kothe & Zemach 1992).
In the CSF method, combined with the VOF method we set

Hε(x − xs) = c(x) =

⎧⎪⎨
⎪⎩

0, for x in phase 1,

1, for x in phase 2,

0.5, for x at the interface,
(2.4)

where c is the volume fraction field and ε = Δ, the grid size. We then find nδ = ∇c.
Similarly, when combining the CSF method with a level set method, we can find a smooth
approximation

Hε(x − xs) = Hε(φ(x)) =

⎧⎪⎪⎨
⎪⎪⎩

0, if φ < −ε,

1, if φ > ε,
1 + φ/ε + sin(πφ/ε)/π

2
, otherwise,

(2.5)

where φ is usually chosen as a signed distance function with respect to the interface

φ(x) =

⎧⎪⎨
⎪⎩

φ > 0, for x in phase 1,

φ < 0, for x in phase 2,

φ = 0, for x at the interface.
(2.6)

Here, we find nδ = ∇φ/|∇φ|δε where the smooth delta function can be obtained as δε =
dHε(φ)/dφ. Both methods usually lead to a characteristic interface thickness of O(Δ)

(Popinet 2018). Since ρ is directly coupled to c or φ, respectively, (2.1a) is equivalent to
the advection of c or φ

∂tc + ∇ · (cu) = 0, (2.7a)

∂tφ + ∇ · (φu) = 0. (2.7b)

In BASILISK, the CSF method in combination with a VOF interface representation is
used. However, for reasons described in § 3.3, we will adopt aspects of the level set method
for the derivation and solution of the linearised code.

The discretisation of (2.3) warrants special attention as well-balanced schemes
have to be used which are able to recover equilibrium solutions of certain
continuous problems, thus avoiding the problem of so-called parasitic currents
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(Harvie, Davidson & Rudman 2006). An extensive discussion of this matter is given in
Popinet (2018). An essential requirement is that the same discrete operators are used for
the gradients of the pressure p and the Heaviside function Hε . The computation of the
normals and curvature depends on the method used for the interface representation. Since
for the level set method, φ is a continuous function, the curvature is easily computed as

n = ∇φ

|∇φ| , (2.8a)

κ = ∇ · n. (2.8b)

However, for the VOF–CSF method, direct derivation of c leads to problematic curvature
estimates because of its discontinuity. Therefore BASILISK, uses a height-function method
that gives second-order accurate curvature estimates (Cummins, Francois & Kothe 2005).

For illustration, in two dimensions a close-to-horizontal interface can be described by
y = hy(x), where hy is the vertical distance to the interface at a given x. The normals and
curvature of this interface are then computed as

n = (h′
y, 1)

(1 + h2
y)

1/2 , (2.9a)

κ = h′′
y

(1 + h′2
y )3/2 . (2.9b)

For an interface x = hx( y) the procedure is similar. An extension to three dimensions is
straightforward and described in Popinet (2009).

2.3. Discretisation in BASILISK

The equation system (2.1) is discretised on regular Cartesian grids using a
staggered-in-time discretisation, which is second-order accurate, yielding the following
velocity and volume fraction update at every time step (Popinet 2003, 2009):

un+1 = un + 
t(−un+1/2 · ∇un+1/2 − ∇pn+1/ρn+1/2

+∇ · [2(μ/ρ)n+1/2(Dn + Dn+1)] + [σ/ρκ∇c]n+1/2), (2.10a)

cn+1/2 = cn−1/2 − 
t∇ · (cnun). (2.10b)

Pressure and velocity are decoupled using a standard time-splitting projection scheme
(Chorin 1969). The advection term is computed using the Bell–Colella–Glaz (BCG)
second-order unsplit upwind scheme (Bell, Colella & Glaz 1989), as will be described
in § 3.2. A geometric VOF method is used to advect the volume fraction in (2.7a). The
advection of a level set function φ is equivalent to the advection of a passive scalar which
is advected using

φn+1/2 = φn−1/2 − 
t ∇ · (φnun). (2.11)

3. Linearisation procedure

3.1. Derivation of the linearised equations
In order to obtain the linearised equations, we first non-dimensionalise the nonlinear
equations (2.1b) with respect to ρ1, μ1 and a suitable reference length and velocity scale,
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thus obtaining

[ρ̃ + Hε(φ)(1 − ρ̃)](∂tu + u · ∇u)

= −∇p + 1
Re

∇ · [(μ̃ + Hε(φ)(1 − μ̃))(∇u + ∇Tu)] + 1
We

κnδε(φ), (3.1)

where we have used the level set methodology to account for the two phases. The Reynolds
number is Re = ρ1Uref Dref /μ1, the Weber number is We = ρ1U2

ref Dref /σ , ρ̃ = ρ2/ρ1 and
μ̃ = μ2/μ1. Note that, from (3.1) onward, all quantities are assumed to be dimensionless.

Starting point for the assessment of linear stability is the decomposition of the flow
into a basic state and an infinitesimal perturbation, u = U + ζu′ and p = P + ζp′ for the
velocity and pressure respectively, with ζ � 1. A similar linearisation is done for the level
set function φ = Φ + ζφ′. Therewith associated are a perturbed curvature κ = K + ζκ ′
and a normal vector n = N + ζn′. We also make use of the base flow volume fraction C
but, as will be described in § 3.3, the use of a perturbation volume fraction poses several
challenges and is thus avoided.

We insert the respective decompositions into ((3.1), (2.7b)) and retain only leading-order
terms in ζ . Dropping ζ for convenience, we arrive at

[ρ̃ + Hε(Φ)(1 − ρ̃)](∂tu′ + u′ · ∇U + U · ∇u′) + 2[δε(Φ)φ′(1 − ρ̃)](U · ∇U)

= −∇p′ + 1
Re

∇ · [(μ̃ + Hε(Φ)(1 − μ̃))(∇u′ + ∇Tu′)]

+ 1
Re

∇ · [(δε(Φ)φ′(1 − μ̃)(∇U + ∇TU)] + F s(Φ, φ′), (3.2a)

∂tφ
′ + ∇ · (Φu′) + ∇ · (φ′U) = 0, (3.2b)

where we have used the fact that δε(Φ) is obtained as the distributional derivative of
Hε(Φ), during linearisation of terms involving Hε(φ). We further note that, as described in
§ 2.2, Hε(Φ) can be replaced by C. Thereby, we retain an interface thickness of O(Δ). Due
to the involvement of two immiscible phases, the linearised equations contain a number
of additional terms, compared to the linearised incompressible equations of a single fluid
phase: the transport of the perturbation velocity by the base flow velocity and vice versa
is scaled by the base flow density field. Additionally, a new advective term, composed
only of the base flow velocity, appears that is acted upon by the perturbation density field.
When comparing to a usual multi-domain approach of Navier–Stokes or Orr–Sommerfeld
equations, where the interface height appears as a variable, this term corresponds to
multiplication of the same base flow terms with a perturbation of the interface height.
Similarly, a scaling of the perturbation velocity diffusion by the base flow viscosity field
is introduced and a new term, representing the action of the perturbation viscosity field on
the base flow velocity diffusion, appears.

The linearised surface tension force is given as

F s(Φ, φ′) = 1
We

[κ ′Nδε(Φ) + Kn′δε(Φ) + KNφ′∂Φδε(Φ)], (3.3)

where ∂Φ in the right-most term denotes the functional derivative with respect to Φ, and
f (∂Φδε(Φ)) = (∂Φ f )δε(Φ) for some test function f . As long as Φ has signed distance, we
can make use of the fact that, at the interface, any change of Φ is along the normal N ,
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such that ∂NΦ = 1. Hence, we have

∂Φ(KNφ′)δε(Φ) = ∂N (KNφ′)(∂ΦN)δε(Φ) = ∂N (KNφ′)δε(Φ). (3.4)

Consequently, we can write

KNφ′∂Φδε(Φ) = N · ∇(KNφ′)δε(Φ). (3.5)

The three terms representing the linearised surface tension force account for the action
of the perturbation curvature on the basic state normal at the unperturbed interface and
vice versa, as well as the action of the perturbed interface on the basic state curvature and
normal. Similar terms can be identified in the linearised multi-domain formulation, there
multiplied with the perturbation of the interface height (see Tammisola et al. 2012).

3.2. Implementation of linearised advection and diffusion terms
The computation of the linearised advection terms is facilitated using a slightly modified
version of the numerical scheme that is used for the nonlinear advection in BASILISK.
Here, we give a general overview of the scheme and necessary modifications. For the
calculation of the nonlinear advection term un+1/2 · ∇un+1/2 in (2.10a), a prediction of
the velocity on the cell faces un+1/2

f is computed with a variant of the BCG scheme (Bell
et al. 1989), using the pressure gradient and body forces at t = n. Solenoidality of the
predicted velocity is enforced in a projection step. The advection step itself is performed
by an isolated function which takes two arguments, a scalar field, in this case the cell
centred velocity field un, as well as un+1/2

f , to compute the advection fluxes of u.
For the linearised advection step, a prediction of the basic state velocity is not needed,

since it is either stationary or known at all time steps (in case of a time-periodic base
flow). Thus, the two linear advection terms can be computed by calling the advection
routine twice, using u′n and Un+1

f , or Un+1 and u′n+1/2
f . A small technicality is involved

when advecting Un+1. The advection routine is implemented so that it by default adds the
action of the advection to the tracer fields that are advected, i.e. Un+1. However, for both
advection terms, the action needs to be added to u′n. To ensure this, minor modifications
of the routine are necessary.

The second advection term, stemming from the density variation between the fluids, is
computed again using the same BCG scheme. The diffusion term is added explicitly, as it
only contains the basic state velocity.

3.3. Implementation of linearised interface advection
An adaptation of BASILISK’s geometric VOF scheme for linear perturbation analysis is
not straightforward. A naive linearisation of the volume fraction transport equation and
the associated interface fluxes, as well as the geometric interface reconstructions would
retain the scheme’s inherent property of computing finite amplitude waves. The reason is
rooted in the way the interface location is defined in VOF methods. As seen from (2.4), a
cell where 0 < c < 1 contains an interface segment. As soon as this cell becomes either
full (c = 1) or empty (c = 0), the interface segment moves to one of the neighbouring
cells. Thus, without further modifications of the schemes, a growing disturbance c′ in a
cell would eventually lead to c′ = 1 and the disturbed interface would move to an adjacent
cell, producing a finite movement of the perturbed interface with respect to the basic state
interface and makes a evaluation of the interface displacement difficult. As the level set
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function φ is not bounded between 0 < φ < 1, a disturbance φ′ can grow to any value. Its
interpretation is therefore more straight forward: the value of a disturbance φ′ along the
basic state interface is a measure for its displacement.

Another aspect that complicates the use of a linearised VOF method is the
height-function-based curvature computation in BASILISK. Depending on the orientation
of the interface, case distinctions are needed, regarding the choice of the component of
the height functions for computing the curvature (i.e. horizontal or vertical heights in a
two-dimensional problem). The introduction of perturbed height functions to calculate the
curvature of the perturbed interface would add further case distinctions and complexity.
By using a level set representation of the interface, as introduced above, these problems
are avoided.

Since the VOF method is used for the computation of the base flow volume fraction
C, an accurate reconstruction of the basic state level set field Φ from C is needed. In
general, one would need to compute the interface segments in each interfacial cell, where
0 < C < 1, in order to compute the distance to the interface in each cell throughout the
domain. However, in the present study the basic state interface is close to horizontal, and
thus is consistently described by the height-function field hy(x), used to compute the basic
state curvature (see § 2.2). Therefore, we can use Φs = hy(x) as an initial, shifted level set
function, which is re-distanced by solving a Hamilton–Jacobi-type equation

∂Φ

∂t+
= sgn(Φs)(1 − |∇Φ|),

Φ(x, t+ = 0) = Φs.

⎫⎬
⎭ (3.6)

The shifted level set is integrated in a pseudo-time t+ until a steady state is reached.
The resulting level set Φ is a signed distance function, such that |∇Φ| = 1. Note that, for
the nonlinear case, φ loses its signed distance properties during advection. Thus, it needs
to be re-distanced every few time steps. In principle, this carries over to φ′ in the linear
computations. Thus a linearised re-distancing function

∂φ′

∂t+
= −Φ

(
∂φ′

∂x
∂Φ

∂x
+ ∂φ′

∂y
∂Φ

∂y

)
,

φ′(x, t+ = 0) = φ′
s,

⎫⎪⎬
⎪⎭ (3.7)

can be used to re-distance φ′
s. The resulting φ′ has zero gradient in the base flow

surface-normal direction. Since the perturbed level set field corresponds to a displacement
of the basic state level set contours, after re-distancing, all level set contours are displaced
equally. However, we have found that re-distancing has no discernible influence on the
results of the present linear computations. In the nonlinear case, there are several reasons
for re-distancing φ. One aspect is that the delta function, defining the interface, is
calculated from φ. Consequently, as φ loses its signed distance properties, the computation
of the interface location becomes inaccurate. Here, the linearised level set is only used to
compute the perturbed normal vector and curvature, since the base flow interface is known
a priori. Both computations were not affected by the re-distancing in our tests. Another
reason is the possible degeneration of numerical gradients if φ deviates significantly from
a signed distance function. Again, we have not found this to be a source of error in our
computations.
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3.4. Implementation of the linearised surface tension force
For computing the linearised surface tension force, we utilise the volume fraction C of the
basic state interface as well as the level set functions Φ and φ′. In two dimensions, the
normal vectors are computed using the level sets as

N = ∇Φ

|∇Φ| =

(
∂Φ

∂x
,
∂Φ

∂y

)
√(

∂Φ

∂x

)2

+
(

∂Φ

∂y

)2
, (3.8a)

ζn′ =

(
∂ζφ′

∂x
,
∂ζφ′

∂y

)
√(

∂Φ

∂x

)2

+
(

∂Φ

∂y

)2
−

(
∂Φ

∂x
,
∂Φ

∂y

) (
∂ζφ′

∂x
∂Φ

∂x
+ ∂ζφ′

∂y
∂Φ

∂y

)
[(

∂Φ

∂x

)2

+
(

∂Φ

∂y

)2
]3/2 . (3.8b)

Note that, although |∇Φ| = 1, we include the corresponding terms in the computation
of the normal vectors, as this leads to smoother numerical approximations. A detailed
derivation of n′ is given in Appendix A.

The basic state curvature K is computed similarly to κ in the nonlinear case using height
functions as described in § 2.2. The curvature of the perturbed interface is computed from
Φ and φ′ as

κ ′ = ∇ · (ζn′). (3.9)

The full expansion of κ ′ is given in Appendix A. Further, we make use of the fact that

Nδ(Φ) = ∇C and δ(Φ) = |∇C|, (3.10a,b)

to compute terms which involve either Nδ(Φ) or δ(Φ). Consistently with the replacement
of Hε(Φ) by C in § 3.1, this choice as well retains an interface thickness of O(Δ).

4. Formulation and solution of the eigenvalue problem

4.1. Eigenvalue problem
The linear system (3.2) is rewritten in compact form as

∂q′

∂t
= L(Q)q′, (4.1)

where q′ = (u′, φ′)T, and L(Q) is the linearised Navier–Stokes operator, which might be
stationary or non-stationary, depending on the base flow Q = (U, Φ)T. For the former
case, we then seek eigenmodes of L of the form

q′(x, y, z, t) = exp(λjt)q̂j(x, y, z), (4.2)

where both λj and q̂j are generally complex valued. The corresponding eigenvalue problem
may be written as

Lq̂j = λjq̂j. (4.3)

This eigenvalue problem could in principle be solved directly, to give all eigenvalues, or
via various time-stepping techniques, which would yield one or several of the dominant
eigenvalues of the system, i.e. those of largest magnitude. However, the eigenvalues
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determining the stability of the system are the leading eigenvalues, which have the largest
real part, that in turn might be close to zero near a bifurcation point. Following Tuckerman
& Barkley (2000), the dominant eigenvalue can be extracted with the exponential power
method.

The general solution to (4.1) is

q′(t + τ) = Aq′(t) = exp(Lτ)q′(t), (4.4)

where the dominant eigenvalues of A are the leading eigenvalues of L. Thus, we obtain an
alternative eigenvalue problem

Aq̂j = μjq̂j, μj = exp(λjτ). (4.5a,b)

For a stationary base flow, the frequency of an eigenmode is given by the imaginary
part of the eigenvalue Im(λj) whereas its growth rate is given by the real part Re(λj).
Consequently, the system is linearly unstable when any Re(λj) is positive. Since for a
stationary Q, the stability is determined by the long-time behaviour of a perturbation,
τ is an arbitrary value, which, however, should allow for a reasonable evolution of the
perturbation (Barkley et al. 2008).

4.2. Iterative solution
Besides the power method, which is able to recover the single most dominant eigenvalue,
the Arnoldi method (Saad 2011) is a suitable choice to recover a number of dominant
eigenvalues.

The method utilises a standard orthogonal projection of A onto a lower-dimensional
Krylov subspace that allows for an approximate direct evaluation of A. To this end, we
construct a sequence

Kn(A, q0) = [q0, Aq0, . . . , An−1q0] (4.6)

which spans the Krylov subspace on which A is projected. In practice, a direct construction
of A is not needed in order to build Kn. We only need to be able to compute the repeated
action of A on q0 which is precisely described by (4.4). The Krylov sequence can thus be
updated by repeated time stepping of the linearised solver. The methodology to construct
Kn and to compute the corresponding eigenpairs is that of the standard Arnoldi method
with a modified Gram–Schmidt orthogonalisation. Following Barkley et al. (2008), the
part of the initial vector q0 concerning the velocities is prescribed as random fluctuations
and solenoidality is enforced through the linearised solver. We do not impose any initial
fluctuations on the level set field, instead we let the perturbation velocity generate those
fluctuations consistently through (3.2b).

5. Global modes of a planar wake under the influence of surface tension

To validate the derived framework, we revisit the work of Tammisola et al. (2012). As
noted above, this is one of very few works which study linear global modes of interfacial
flows without further simplifications of the linearised equations, contrary to what has been
done for instance in Rubio-Rubio, Sevilla & Gordillo (2013). There, gravitational jets are
studied based on a one-dimensional long-wave model, derived by Eggers & Dupont (1994).

The flows studied in Tammisola et al. (2012) are planar, coflowing shear flows which
resemble jets and wakes, depending on the velocity ratio between inner and outer flow. All
configurations are confined flows, and for all but one flow condition, the flows are reported
to be globally stable in the absence of surface tension. Only in the presence of rather strong
surface tension, a regime of global instability occurs.
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Figure 1. (a) Velocity profile at the inlet and interface separating the fluid phases at subcritical conditions
(We = ∞). (b) Velocity field u and interface at the same conditions.

5.1. Nonlinear simulation
In the study of Tammisola et al. (2012) no numerical or experimental validation of
the studied configurations is performed. Therefore, it remains to be shown whether the
computed linear modes really are present in the nonlinear flow, and if so, whether their
shapes and frequencies are accurately predicted by linear theory. We therefore present
nonlinear results for selected configurations of their study, with a focus on wake-type
flows.

All flows are computed in a long channel with a half-channel height h1 + h2 = 2 where
h1 = h2 = 1 are the heights of the respective fluid streams in the half-channel at the
inlet, and subscripts 1 and 2 refer to the inner and outer fluid stream, respectively. The
resulting confinement ratio is h = h2/h1 = 1. The plug flow velocity ratio of both streams
at the inlet is Λ−1 = (U1 + U2)/(U1 − U2) = −1.4. The density and viscosity ratios are
ρ2/ρ1 = 1 and μ2/μ1 = 1. The configuration and flow field at subcritical conditions are
shown in figure 1. Upon non-dimensionalisation of the linearised equations, using U2 and
h2, the Reynolds number Re and the Weber number We are given as

Re = ρ2U2h2

μ2
, We = ρ2U2

2h2

σ
. (5.1a,b)

We fix Re = 316 and vary We to track the behaviour of the computed instabilities.
For the simulations, we use a uniformly spaced grid of Nx × Ny = 1024 × 128 mesh

points, corresponding to 10 levels of refinement in the streamwise direction and spanning
a non-dimensional area of Lx × Ly = 32 × 4.

The domain is initialised with u = 0 and c = 0. At the left domain boundary Ω1 an inlet
velocity is imposed such that

u|Ω1 =

⎧⎪⎪⎨
⎪⎪⎩

1, if |y| > 1,
1 + Λ

1 − Λ
, if |y| ≤ 1, (5.2a)

∂p
∂x

∣∣∣∣
Ω1

= 0, (5.2b)

c|Ω1 =

⎧⎪⎨
⎪⎩

0, if |y| > 1,

1, if |y| ≤ 1. (5.2c)
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For the right boundary Ω2, a standard outflow condition

∂u
∂x

∣∣∣∣
Ω2

= 0, (5.3a)

p|Ω2 = 0, (5.3b)

∂c
∂x

∣∣∣∣
Ω2

= 0, (5.3c)

is used. The top and bottom boundaries Ω3 are equipped with no-slip conditions. Time
stepping is adaptive, based on a Courant condition


t ≤ 0.5 min

⎧⎨
⎩Δ

u
,

√
ρ1Δ

3

πσ

⎫⎬
⎭ , (5.4)

where Δ denotes the grid spacing. The second term inside the braces accounts for the
propagation of capillary waves along the interface. Note that, especially for high surface
tensions and small cell sizes, this term is significantly more restrictive than the first term.
We monitor the energy of the system via the Euclidean norm ‖u2‖2 to check whether a
steady state or a stable limit cycle has been reached. In the latter case a dynamic mode
decomposition (DMD) is used for a modal decomposition of the flow field (Rowley et al.
2009; Schmid 2010). The DMD yields an approximation of the Koopman operator, a linear
infinite-dimensional operator describing a nonlinear dynamical system. As a consequence,
the frequencies associated with the DMD modes correspond to the modal frequencies
of the dynamical system. Further, with the mean flow subtracted, the DMD modes are
equivalent to modes of a discrete Fourier transformation, but they usually require a lot less
samples (Chen, Tu & Rowley 2012). A sequence composed of 2000 consecutive snapshots
u and c every 
t = 0.5 for t > 1000 is used for computation of the Ritz values λj. The
dependence of the dominant DMD mode on the grid resolution is given exemplarily in
table 2 for We = 12.5.

Following, Tammisola et al. (2012), we compute the nonlinear flow for a variety of
Weber numbers ranging from We = 3.3̄ to We = 16.6̄. In figure 2, the spectra obtained
from the DMD and the corresponding mode shapes with the largest amplitude that
dominate the flow are displayed for several investigated We where an unsteady solution
is found. The interface amplitude is overlayed on the modes. These are the same Weber
numbers that are presented in Tammisola et al. (2012).

For Weber numbers larger than We ≈ 16, all disturbances decay, and the flow settles to a
steady solution. For We = 12.5, a periodic solution is seen that gives rise to a sinuous mode
with its amplitude maximum located around x = 8. For increasing surface tension, at We =
10, three sinuous modes are observed. One mode is the same as seen for We = 12.5, which
has moved slightly upstream (amplitude maximum x = 7.5) and has a lower frequency
and amplitude. The second and third mode show a short-wave structure in the vicinity
of the inlet, with the amplitude maximum located at around x = 1.9, and a long-wave
structure located further downstream with an amplitude maximum around x = 13. These
modes have a higher (almost similar) frequency and a generally larger amplitude than
the first mode. Further, both of these modes display opposite slight asymmetries in the
amplitude in the short-wave structure in the vicinity of the inlet. Note that, in figure
2(b), only one of these modes is shown. For We = 6.6̄ three modes are found. The most
energetic mode has a varicose structure with an amplitude maximum located at around
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Figure 2. (a) Magnitude of the DMD modes at each frequency, extracted from the nonlinear simulation.
(b) Shapes of the dominant modes at the respective Weber numbers.
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Figure 3. (a) Dominant frequencies of the appearing modes extracted from the DMD in the flow for all
investigated Weber numbers. (b) Bifurcations illustrated by the min–max values of v at (x, y) = (5, 0).

x = 4. The other modes are the sinuous modes, observed for We = 12.5 and We = 10, with
their amplitude maximum shifted far upstream. At We = 5 a single varicose mode with its
amplitude maximum close to the inlet at around x = 2.6 is found. For even higher surface
tension the flow becomes globally stable again, so that for We = 3.3̄ a steady solution is
obtained.

To give a broader overview over the complexity of the dynamics in the flow and see
in which Weber number regime the dominant modes are unstable, their frequencies are
plotted vs the respective Weber numbers in figure 3(a). Additionally, in figure 3(b) a
bifurcation diagram is shown by plotting the local minima and maxima of the transversal
velocity v at (x, y) = (5, 0), within the time period after the saturation. From the above
presentation it is seen that, under the influence of surface tension, the flow undergoes
a series of bifurcations that gives rise to an increasingly complex modal interplay that
governs the flow dynamics. Starting from a stable fixed point solution, a first Hopf
bifurcation occurs between We = 16.6̄ and We = 12.5 where the flow reaches a stable limit
cycle, governed by a periodic oscillation produced by sinuous mode 1. In figure 3(b), this
is characterised by a distinct minimum and maximum of v. A second mode, sinuous mode
2 bifurcates between We = 12 and We = 11. Both sinuous modes have incommensurate
frequencies, resulting in a quasiperiodic motion and thus the limit cycle loses its stability
to a torus. As noted above, a separate mode very similar to sinuous mode 2, with a slightly
lower frequency is observed at We = 10. Both modes, sinuous mode 1 and 2, are still active
at We = 6.6̄ and vanish between We = 6.6̄ and We = 5. Between We = 9 and We = 8 a
third mode with an incommensurate frequency, varicose mode 1, emerges that governs
the dynamics until the flow returns to a stable fixed point again between We = 5 and
We = 3.3̄. Additionally, as is seen in figure 2(a) for We = 10 and We = 6.6̄, a dense set
of frequency peaks around the dominating peaks, as well as some very low frequencies
are seen in the spectra. While not shown, this behaviour is also visible in the spectra for
other intermediate Weber numbers. Furthermore, for We = 12.5, 5 a more pronounced
influence of the first harmonic mode is seen as compared to the other presented We. While
a thorough investigation of these additional modes and their dynamics is beyond the scope
of this work, they are likely the result of nonlinear interactions between the described
modes and/or higher harmonics. As a result of the presence of several competing modes
for 11 ≤ We ≤ 6.6̄, in this regime, the flow is attracted towards higher-dimensional states,
characterised by quasiperiodic or chaotic oscillations. This is characterised in figure 3(b)
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Figure 4. (a) Interface position and (b) curvature of the respective base flows.

by an increasingly dense variety of minima and maxima at the respective Weber numbers.
In § 5.4 we will compare linear and nonlinear dynamics.

5.2. Base flows
For the validation of the linear solver, we choose the basic state solution obtained for
Webase = ∞, as it bears closest resemblance to the results of Tammisola et al. (2012) who
obtained the base flow by computing a single-phase flow without interface and surface
tension, exploiting the fact that in the absence of surface tension the flow is globally stable.
The interface was introduced a posteriori by computing a streamline from x = (0, 1)T.
It was argued that, for this particular configuration, the curvature of the unperturbed
interface is generally small, except for a small region very close to the inlet (x < 0.1),
and thus surface-tension-induced pressure gradients are probably negligible even for very
high surface tension.

We have verified this assumption by computing the steady state solution at Webase = ∞,
where the flow is globally stable, and Webase = 12.5, where the flow is only unstable for
sinuous perturbations and thus can be obtained by imposing symmetry conditions at y = 0.
Additionally, we have computed the interface as a streamline on the single-phase base flow.
The interface coordinates of the first two base flows are computed by reconstructing the
piecewise linear interface segments from the respective volume fractions using the same
routines that are used by the VOF advection scheme. The interface is plotted in figure
4(a) and the relative errors, with respect to the single phase flow, where a streamline is
computed as interface, are given in table 1. For both, Webase = ∞ and Webase = 12.5, the
error is below 1 %. The remaining error between the streamline interface and the interface
for Webase = ∞ is probably rooted in the inaccuracy of the advection scheme as will be
addressed in the next paragraph. The relative error of the base flow interface for increasing
grid resolutions is shown in table 2. As is seen, the relative error between the highest
and second highest resolution is again, below 1 %. For the present flow configuration it is
therefore justified to use the base flow at Webase = ∞ for the linear computations.

It has to be noted that, despite the marginal differences between the interfaces of
the basic states, the convergence of the case Webase = 12.5 is worse than for Webase =
∞ or for the case of the single-phase flow. While for the latter two cases an error
‖un+1 − un‖∞ = O(10−16) is reached, for the former it remains above O(10−6). The
reason for this behaviour is probably the occurrence of spurious currents. These are
generally not considered an issue for equilibrium solutions of interfacial flows without
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‖Is − I∞‖/‖Is‖ ‖Is − I12.5|/‖Is‖
0.0078 0.0086

Table 1. Relative error of the basic state interface I. Errors are measured against the streamline-constructed
interface of the single-phase flow Is. The Weber numbers of the respective two-phase solutions are stated as
subscripts.

Level Grid points (Nx × Ny) ‖I∞,Level − I∞,10‖/‖I∞,10‖ Im(λ) (DNS) λ (linear analysis)

8 256 × 32 = 8192 0.0555 0.7392 0.0039 + 0.7431i
9 512 × 64 = 32 768 0.0068 0.7414 0.0092 + 0.7416i
10 1024 × 128 = 131 072 0 0.7414 0.0093 + 0.7416i

Table 2. Convergence of the nonlinear and linear flow for increasing level of refinement. Shown is the relative
error of the basic state interface for Webase = ∞, the convergence of the frequency Im(λ) of the dominant DMD
mode of the nonlinear simulation and of the most unstable eigenvalue λ of the linear analysis for We = 12.5.

velocity of the background fluid, when employing well-balanced schemes for computing
the surface tension term. However, in the dynamic case where the background fluid has
non-zero velocity, the problem persists due to numerical errors of the interface advection.
These induce curvature errors which, again, induce errors in the velocity. As demonstrated
in Popinet (2009) for a translating droplet, the induced error in the velocity field is
relatively insensitive to increased mesh resolution (its L∞ norm shows less than first-order
convergence) and scales approximately with We−1/2. The implications are readily seen in
the curvature plot in figure 4(b). Since the κ involves the second derivative of the height
function of the interface, the numerical errors of the advection scheme produce significant
oscillations in the curvature for Webase = 12.5. These are especially pronounced close to
the inlet where the shear of the fluid streams is largest. To a lesser degree, these oscillations
are also seen for Webase = ∞, but since the surface tension force is zero, there is no
two-way coupling between the curvature and the velocity. Consequently, the disturbances
are weaker and the convergence of the velocity field is not affected.

In preliminary computations we have assessed the effect of using finite Weber number
base flows, as the one for Webase = 12.5, for the linear computations. However, due to
the spurious advection errors in the base flow, spurious modes occurred in our results
that hampered a successful analysis. Abadie, Aubin & Legendre (2015) have shown that
advection of the interface using a level set method may lead to a reduction of dynamic
spurious currents as opposed to the VOF method that is used here. This could be a possible
avenue towards reducing the base flow curvature errors for finite Weber numbers in a future
study.

5.3. Computation of linear global modes
In § 5.1 we have seen that the action of surface tension on the base flow leads to a complex
dynamics, with often several distinct modes being visible in the flow. Here, we investigate
whether linear analysis can successfully predict the destabilisation that gives rise to the
observed nonlinear dynamics. Further, we aim to compare the present linear results with
those of Tammisola et al. (2012). Therefore, we limit the analysis to the We investigated in
their study.
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Figure 5. (a) Comparison of the mode frequencies and (b) growth rates at the respective Weber numbers.

We We−1 λ (present study) λ (Tammisola et al.) Im(λ) (DNS)

16.6̄ 0.06 −0.0042 + 0.7851i −0.01 + 0.788i stable
12.5 0.08 0.0093 + 0.7416i 0.005 + 0.743i 0.7414
10 0.1 0.0214 + 0.8422i 0.021 + 0.843i 0.8419

0.0194 + 0.6946i 0.015 + 0.694i 0.6912
0.0162 + 0.831i — 0.8294

6.6̄ 0.15 0.0250 + 0.6145i 0.02 + 0.63i 0.5781
0.0243 + 0.5819i — 0.5529
0.0097 + 0.5653i 0.007 + 0.567i 0.5278

5 0.2 0.0161 + 0.4413i 0.017 + 0.453i 0.4021
3.3̄ 0.3 −0.007 + 0.2896i 0.008 + 0.302i stable

Table 3. Eigenvalues λ of the present linear analysis, the ones of Tammisola et al. (2012) and frequencies
Im(λ) of the dominant DMD modes of the nonlinear simulation at the respective Weber numbers.

The computation of linear global modes is done by constructing a low-dimensional
subspace representation of the linearised Navier–Stokes operator, using the Arnoldi
method as outlined in § 4.2. The Krylov vectors spanning the subspace are obtained by
time stepping of the linearised solver. The integration time τ between two consecutive
snapshots is arbitrary, however, in order to satisfy the Nyquist criterion, at least two sample
points are needed to resolve the highest desired frequency. Furthermore, too small values
of τ may lead to insufficient temporal separation between consecutive Krylov vectors,
thus hindering convergence of the method within a reasonable subspace dimension. In
practice we choose τ = 1.5. We have checked that the integration time, within the stated
restrictions, does not influence the obtained results to a relevant degree. Arnoldi iterations
are performed until a residual ‖Aq̂j − μjq̂j‖ < 10−6 for all unstable eigenvalues is reached.
The grid independence is demonstrated in table 2 for the unstable eigenvalue, computed
for We = 12.5.

The computed growth rates Re(λ) and frequencies Im(λ) are given in figure 5 for the
stated Weber numbers. Both are compared to the results of Tammisola et al. (2012).
Further, the frequencies are compared to the mode frequencies obtained in the nonlinear
simulation. The area within the dashed vertical lines corresponds to the range of Weber
numbers where the nonlinear flow is unsteady. A direct comparison of the computed
eigenvalues of the present study and those computed in Tammisola et al. (2012) is given
in table 3. Further, in figure 6(a) the growth rates, obtained from the linear analysis for
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Figure 6. (a) Comparison of the velocity disturbance growth of the nonlinear simulation v at (x, y) = (5, 0)

and the exponential growth rate of the most unstable linear global modes of the present analysis. (b) Mode
shapes of the respective eigenmodes. The corresponding eigenvalue λ is given for each mode.
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We = 5, 6.6̄, 10, 12.5, are compared to the disturbance growth in the nonlinear simulation.
In figure 6(b), the shapes of the computed unstable modes are presented for each Weber
number where the corresponding amplitude of the interface is plotted as black line and
where the amplitude is chosen arbitrarily for suitable visualisation.

The frequency values of the linear analysis and their nonlinear equivalents are very
similar in all cases. They compare especially well in the upper regime of unstable Weber
numbers, for We = 10 and We = 12.5. In both cases, all unstable modes are sinuous. In line
with the nonlinear simulation, sinuous mode 1 from We = 12.5 is still unstable for We =
10 and We = 6.6̄ and the appearance of sinuous mode 2, that is the most unstable mode
for We = 10 and remains unstable for We = 6.6̄, is accurately predicted. The predicted
mode shapes at both We show good agreement compared to the DMD modes in figure
2(b), both in terms of shape and streamwise position of the amplitude maximum. For
We = 6.6̄, the most unstable mode is varicose mode 1. In contrast to the computed DMD
modes, the linear global modes at We = 6.6̄ show a more regular and symmetric structure
and their frequencies are slightly over-predicted. We believe this is not a shortcoming
of the linear analysis but rather an indication that the quasiperiodicity of the dynamics
induces non-negligible nonlinear interactions in the flow that lead to a departure of from
the linear dynamics presented here. For We = 5, varicose mode 1 is the only unstable mode
predicted. Its frequency is, again, slightly over-predicted which again can be attributed to
a non-negligible nonlinearity in the flow dynamics.

Turning to the growth rates, in figure 6(a) a comparison of the present growth rates
with the energy growth of the nonlinear simulation is shown. Therefore, we initialise the
nonlinear flow from the steady base flow with Webase = ∞ and monitor the disturbance
growth via the v component of the velocity at (x, y) = (5, 0) where V = 0. The plotted
time series of the nonlinear energy growth is obtained by computing the logarithm of
the envelope of the modulus of the monitored velocity signal. The lines representing the
growth rates of the linear analysis are shifted for suitable alignment with the nonlinear
time series. For We = 12.5, a sufficiently long time interval of approximately exponential
growth is seen that is in agreement with the obtained growth rates. For We = 10 and We =
6.6̄, intervals of exponential growth are less clear which may be due to the competing
modes that are observed at this Weber numbers and that prevent a clear exponential growth
of a single mode from being observed. Furthermore it could be hypothesised that transient
growth leads to short time amplification of additional modes that further influence the
observed energy growth. Nevertheless, the modal growth rates obtained in the linear
analysis agree reasonably well with the overall energy growth, observed in the nonlinear
flow at We = 10, 6.6̄. For We = 5, an interval of clear exponential growth is seen that is in
good agreement with the predicted growth rate of the linear analysis.

Comparing the present results to the study of Tammisola et al. (2012), good agreement
is seen between the computed mode frequencies and those of Tammisola et al. (2012). In
particular, both linear analyses show similar over-predictions of the frequencies for We =
5, 6.6̄. On the other hand, the present growth rates show notable deviations, compared to
their results. For We = 6.6̄, 10, 12.5, 16.6̄ the present growth rates are always higher, up
to almost a factor of 2, whereas for We = 3.3̄ they are notably lower. The prediction of
the bifurcation points also differs. For We = 3.3̄, Tammisola et al. (2012) still predict
an unstable eigenvalue, while in the present study, the flow is already linearly stable,
consistent with the nonlinear simulation. Several reasons for the different growth rates
in both studies may be found. Generally, the growth rates obtained in both analyses
are rather small for all computed Weber numbers. Therefore, slight differences in the
employed numerical schemes may lead to large relative changes in the growth rates.
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From a numerical perspective, the treatment of the interface and surface tension via
separate domains and coupling conditions in Tammisola et al. (2012) might be a source
for differences. Further, the use of Chebyshev polynomials in their study, while spectrally
accurate, introduces a non-uniform grid spacing which leads to a reduced resolution in the
centre of the respective domains. Another possible reason is the use of a streamline-based
reconstruction of the interface which is shown to result in a slightly smaller interface
curvature, as seen in figure 4(b). These differences are especially prominent close to the
inlet, where the global mode at this Weber number is localised.

5.4. Comparison of nonlinear and linear dynamics
In §§ 5.1 and 5.3 we have analysed the nonlinear and linear dynamics of plane wakes under
the influence of surface tension and have found that the linear analysis reliably predicts
the dominant modes, seen in the nonlinear flow, to be linearly unstable. However, from
figure 2(a) it is as well seen that for the intermediate Weber numbers studied there, the
nonlinear dynamics contains significantly more modes than the linear analysis predicts.
Hence, these modes are the result of nonlinear harmonic interactions resulting from the
quadratic nonlinearity of the advection term or the higher-order geometric nonlinearity of
the surface tension term. It is therefore worthwhile to shed more light on the validity of the
linear dynamics for approximating the nonlinear flow. To this end, we use the dominant
DMD modes that are shown in figure 2(b), and which we have seen to closely correspond
to the linear modes presented figure 6(b) and table 3, to construct a low-dimensional
approximation of the nonlinear dynamics of the flow.

The departure of the linear dynamics towards the full nonlinear dynamics can be
analysed by employing the time-averaged mean flow, as has been shown in various works
in recent times (e.g. Barkley 2006; Oberleithner, Rukes & Soria 2014; Boujo, Bauerheim
& Noiray 2018; Schmidt & Oberleithner 2020). According to the theory established
therein, the nonlinear saturation process is driven by the interaction of higher harmonics
with their complex conjugates through the Reynolds stress divergence that modifies the
base flow towards the mean flow. As a consequence, eigenmodes that are unstable with
respect to the base flow become marginally stable on the mean flow. Simultaneously, the
mean flow modification may alter the structure and frequency of the eigenmodes through
the linear perturbation equation. The remaining difference from the full nonlinear flow
is accounted for by nonlinear interactions between different harmonics. In the present
work, the frequencies of the linear modes are in close correspondence to their equivalent
nonlinear modes which indicates that these modes are not significantly affected by the
mean flow modification. Hence, the constructed model can be seen as a representation
of the linear dynamics around the mean flow. The difference between the reduced and
full dynamics is the nonlinear interactions between different harmonics and, thus, it is
reasonable to assume that a comparison of the reconstructed and full dynamics yields an
appropriate qualitative picture of how far the linear and nonlinear dynamics are apart.

In figure 7, we present velocity phase trajectories of the full and reconstructed dynamics
using probes located at the approximate streamwise location of the respective amplitude
maxima of the oscillation of the nonlinear flow. For a clean visual representation, we
plot the velocity histories using a time lag of one period τ = 1/Im(λ) where Im(λ) is
chosen as the frequency of the mode with the largest amplitude for each respective Weber
number (i.e. sinuous mode 1 (We = 12.5), sinuous mode 2 (We = 10), varicose mode 1
(We = 6.6̄, 5)). To get a better view of the cross-sections of the phase space we plot a
variant of Poincaré sections in figure 8. The section is chosen such that the phase trajectory
crosses it every completed cycle n, established by the period τ .
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v
(t

 –
 τ

)

u(t)

We = 12.5 We = 10 We = 6.6̄ We = 5

Figure 7. Qualitative representation of the velocity phase trajectories at (x, y) = (8, 0) (We = 12.5), (x, y) =
(8, 0) (We = 10), (x, y) = (6, 0) (We = 6.6̄) and (x, y) = (4, 0) (We = 5). The upper row in black shows the
full dynamics and the lower row in blue the reconstructed dynamics. All plots are equally scaled.

vn

vn–1

We = 12.5 We = 10 We = 6.6̄ We = 5

Figure 8. Qualitative Poincaré sections of the trajectories presented in figure 7. Sections are chosen such that
trajectories cross every completed cycle n. The upper row in black shows the full dynamics and the lower row
in blue the reconstructed dynamics. All plots are equally scaled.

As is expected from the analysis in § 5.1, for We = 12.5 and We = 5, the full nonlinear
dynamics is represented by a limit cycle. Thus a closed orbit is seen in figure 7
which, however, shows a notable deformation, caused by higher harmonic modes. The
reconstructed mono-frequent dynamics lacks this higher harmonic influence which results
in a slightly smaller orbit and thus a reduced velocity amplitude. As expected for a
limit-cycle solution, both trajectories cross the section plane at a fixed point in figure
8. For We = 10 and We = 6.6̄, the trajectories of the full nonlinear dynamics show
complex patterns and the orbits fill a closed region in the phase space, possibly indicating
chaotic behaviour. The reconstructed dynamics each consists of three incommensurate
frequencies, thus forming a quasiperiodic cycle on a 3-torus. The reconstruction shows
a significantly different behaviour compared to the full dynamics and particularly for
We = 10 results in a overall lower amplitude oscillation. For both Weber numbers, the
section plots in figure 8 show the trajectory crossings clustered broadly around the fixed
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points, observed for We = 12.5, 5. While the crossings of the reconstructed dynamics
show regular closed paths, indicative of quasiperiodicity, the full dynamics does not
exhibit clear paths, again suggesting a chaotic behaviour.

5.5. Discussion and relations to other studies
The linear stability results obtained by Tammisola et al. (2012) are counter-intuitive, in
so far as they find surface tension to be destabilising in a plane two-dimensional flow,
contrary to its common stabilising tendency in plane flows (Squire 1953; Hagerty & Shea
1955). Furthermore, at the studied Reynolds number, the velocity ratio of the adjacent fluid
streams is too low to trigger the Bénard–von Kármán instability which is typically present
in wake flows at higher Reynolds number or velocity ratio. As a result, the flow is globally
stable in the absence of surface tension. Viscosity and density being equal across the fluids
in the present configuration, the only possible destabilising force is surface tension. In
fact, a prospect of a destabilising surface tension force in plane flows is given in studies by
Rees & Juniper (2009) and Biancofiore & Gallaire (2010), based on inviscid local stability
analyses, suggesting that such an effect, induced by a top-hat velocity profile, exists in the
high-Re limit. It was found that for certain configurations, moderate surface tensions both,
wakes and jets, are significantly more unstable than without surface tension. To further
explore this topic, we have conducted detailed nonlinear and linear computations of this
configuration.

The linear analysis is able to predict all dominant modes present in the nonlinear flow,
even for We where several competing modes govern the dynamics. As a consequence, for
the investigated Weber numbers close to the bifurcation points, i.e. We = 12.5, 5, the linear
and nonlinear dynamics are in close correspondence. However, for intermediate Weber
numbers, e.g. We = 10, 6.6, the full nonlinear dynamics has been shown to be significantly
more complex, involving significant nonlinear harmonic interactions. Therefore, in these
regimes, discrepancies between linear and nonlinear dynamics are found.

The presently obtained linear modes are also in very good agreement with the results of
the linear stability analysis of Tammisola et al. (2012). On the other hand, the computed
growth rates show notable differences between both analyses. However, the comparison
of nonlinear and linear analysis suggests that the presently obtained growth rates are
plausible. In the study of Tammisola et al. (2012), the bifurcation occurring between
We = 16.6̄ and We = 12.5 is well captured, as it is in the present results. The stabilisation
of the global mode at We = 3.3̄ is only captured in the present analysis, whereas in their
work the linear analysis still shows a slightly unstable mode. Possible reasons for this
discrepancy have been given in § 5.3.

Comparing the present results to the stability maps for the uniform density case of Rees
& Juniper (2009) (figures 7 and 8 in their work), it is seen that our configuration is in
a region of absolute instability for We−1 > 0.1 (varicose modes) and 0.1 < We−1 < 10
(sinuous modes). Note, that maps for We−1 < 0.1 are not considered in Rees & Juniper
(2009) but the inviscid stability limits should approximately remain similar as We−1 tends
to zero, as is also seen in figure 9 of Biancofiore & Gallaire (2010). While their inviscid
results cannot be expected to translate accurately to the present viscous flow results, the
general trend of varicose modes remaining unstable for higher surface tensions, while
sinuous modes becoming stable again, persists. The dampening effect of viscosity in the
present flow eventually leads to stabilisation of also varicose modes below We ≈ 3.3̄.
Similarly, viscosity renders the flow stable above We ≈ 16.6̄, while in the inviscid limit
it remains unstable.
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The physical mechanism of surface tension-induced instability of plane shear flows has
been explored in Biancofiore, Gallaire & Heifetz (2015); Biancofiore et al. (2017) from a
kernel wave perspective. The resulting system consists of two counter-propagating inertial
and capillary waves. As a general concept, the vorticity perturbation of each wave induces
an effect on its counter-propagating wave. Depending on their phase angle (and speed)
a dampening or amplification is observed. Without surface tension the studied system
showed a single, purely inertial, unstable mode at large wavelengths. With the inclusion
of surface tension a second mode appeared, acting at smaller wavelengths. It was further
found that, at large wavelengths, influence was mainly due to an interaction of the inertial
waves, while for small wavenumbers, interaction was between one inertial wave and its
counter-propagating capillary wave. This was explained using a phase locking of the
two counter-propagating waves, resulting in a continuous amplification. Contrastingly, at
smaller wavelengths, the phase speed was found too high for prolonged interaction to take
place effectively, thus limiting the capillary–inertial interaction to small wavelengths. For
an increasing surface tension, the phase speed reduces and the upper cutoff wavelength
is shifted towards larger wavelengths. Although their studied configurations do not match
the present one, these findings translate conclusively to the present results: the long-wave
sinuous mode 1 corresponds to an inertial wave interaction, likely a von Kármán mode,
modified by surface tension to become unstable. Similarly, the short-wave sinuous mode
2 as well as the varicose mode 1 correspond to an inertial–capillary wave interaction with
increasing wavelength for increasing surface tension.

In light of the present results, it is important to discuss the results of another related
study by Biancofiore et al. (2014), which investigated the same flow configuration with
direct numerical simulation, using a finite element method in conjunction with a level set
method for interface capturing. Their study confirms the global stability of the flow in the
absence of surface tension and shows comparable results for some of the cases studied in
the present work. In particular, for We = 10, they detect a clear sinuous disturbance with
a velocity amplitude of 10−2 which is localised between 5 < x < 15. The periodicity of
this oscillation is T = 9 which corresponds to a mode frequency ω = 0.698. The spatial
appearance and frequency of this instability are close to the sinuous mode 1 computed at
this Weber number in the present study and by Tammisola et al. (2012). In contrast, for
We = 12.5, they detect a weak sinuous disturbance in form of an intermittent, transient
wave packet that has a disturbance amplitude of the velocity of approximately 10−4 and a
disturbance amplitude of the interface of approximately 10−8. Although it is not explicitly
mentioned, the transient character of this disturbance leads to the conclusion that this
is a convective instability. The flow at this Weber number still appears to be globally
stable. For We = 5, a very weak disturbance in close vicinity of the inlet is detected,
which, however, seems to have insufficient amplitude for a reliable frequency estimation.
Moreover, it seems only detectable when axial symmetry is imposed along the channel
axis.

Biancofiore et al. (2014) argue that the differences might stem from the fact that a
single-phase flow without surface tension was computed for the basic states used in
Tammisola et al. (2012), neglecting pressure modifications due to surface tension. In
particular, they point out that the incompatibility of the plug flow inlet condition for the
velocity with the wall boundaries leads to a very localised contraction of the interface
immediately behind the inlet. The resulting curvature thus induces a non-negligible
pressure gradient. While we agree with this rationale, the present nonlinear results suggest
that this pressure gradient is not the cause for the observed differences since the modes
predicted in Tammisola et al. (2012) are clearly present in our nonlinear simulations which
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account for the pressure gradient. It is not entirely clear what causes the differences in
the results of Biancofiore et al. (2014). However, one might speculate that, for instance,
numerical diffusion caused by the employed numerical schemes or insufficient mesh
resolution could attenuate some of the observed modes, leaving only the sinuous mode
1 unstable. Additionally, this could cause the bifurcation points of the detected unstable
mode to move close together such that the flow remains only unstable around We = 10.

6. Conclusions

In this paper we have accomplished three objectives.
First, we have presented a framework for the computation of linear global modes of

interfacial flow, by means of time stepping of a linearised Navier–Stokes solver. The effects
of surface tension, density and viscosity differences between the different phases are fully
accounted for, thereby avoiding a few simplifications that were made in previous studies of
similar interfacial flow situations. The matrix-free time-stepper-based method also avoids
excessive memory requirements, so that the approach is fairly straightforward to apply
to more complex geometries or to three-dimensional flow. As a perspective for future
improvements, robust computations of finite Weber number or non-uniform viscosity or
density base flows are needed. This includes the stabilisation of the unstable flow by
methods like Newton iterations or selective frequency damping as well as a reduction
of spurious advection errors by improved numerical schemes.

Second, we have revisited the work of Tammisola et al. (2012) and conducted nonlinear
simulations to rigorously validate the results of their global linear stability analysis.
Further, we have reproduced the computations with the developed linear solver. The
present linear analysis is in very good agreement with the results of Tammisola et al.
(2012) and both linear predictions are confirmed by the present nonlinear simulations. The
present method accurately captures the bifurcation points as deduced from the nonlinear
analysis and growth rates show good agreement with the initial disturbance growth found
in the nonlinear simulation.

Third, our validation of the configuration provides clarity that a surface-tension-induced
destabilisation of plane wakes can indeed be observed in the nonlinear flow. It is shown
that, in the studied flow regimes, surface tension can induce both, varicose and sinuous
oscillations of the flow which may be present simultaneously at several We, thus leading
to a complex quasiperiodic or chaotic dynamics.
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Appendix A. Derivation of the linearised normal vector and curvature

Here, we give a detailed derivation of the linearised normal vector and curvature, based
on the level set function φ. As introduced in § 3, the decomposition into basic state and
infinitesimal perturbation is given as φ = Φ + ζφ′, and the nonlinear normal vector is
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given as

n = ∇φ
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Then the basic state normal is

N = ∇Φ
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and the perturbed normal vector is found by linear Taylor expansion of n around ε = 0 as
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If we introduce

f (Φ) =
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, (A4a)
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, (A4b)

we can write the perturbed normal vector as

ζn′ =
(
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∂x
f ,
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∂y
f
)

+
(

g f 3 ∂Φ

∂x
, g f 3 ∂Φ

∂y

)
. (A5)

The curvature is the divergence of the normal vector. Consequently, the curvature of the
basic state is given as

K = ∇ · N =
∂2Φ

∂x2

(
∂Φ

∂y

)2

− 2
∂2Φ

∂x∂y
∂Φ

∂x
∂Φ

∂y
+ ∂2Φ

∂y2

(
∂Φ

∂x

)2

[(
∂Φ

∂x

)
+

(
∂Φ

∂y

)]3/2 . (A6)
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Similarly, the curvature of the perturbed state is found as

κ ′ = ∇ · ζn′

= ∂f
∂x

∂ζφ′

∂x
+ f

∂2ζφ′

∂x2 + ∂f
∂y

∂ζφ′

∂y
+ f

∂2ζφ′

∂y2

+ ∂g
∂x

f 3 ∂Φ

∂x
+ g3f 2 ∂f

∂x
∂Φ

∂x
+ g f 3 ∂2Φ

∂x2

+ ∂g
∂y

f 3 ∂Φ

∂y
+ g3f 2 ∂f

∂y
∂Φ

∂y
+ g f 3 ∂2Φ

∂y2 , (A7)

where

∂f
∂x

= −f 3
(

∂Φ

∂x
∂2Φ

∂x2 + ∂Φ

∂y
∂2Φ

∂x∂y

)
, (A8)

∂f
∂y

= −f 3
(

∂Φ

∂x
∂2Φ

∂x∂y
+ ∂Φ

∂y
∂2Φ

∂y2

)
, (A9)

∂g
∂x

= −
(

∂ζφ′

∂x
∂2Φ

∂x2 + ∂2ζφ′

∂x2
∂Φ

∂x
+ ∂ζφ′

∂y
∂2Φ

∂x∂y
+ ∂2ζφ′

∂x∂y
∂Φ

∂y

)
, (A10)

∂g
∂y

= −
(

∂ζφ′

∂y
∂2Φ

∂y2 + ∂2ζφ′

∂y2
∂Φ

∂y
+ ∂ζφ′

∂x
∂2Φ

∂y∂x
+ ∂2ζφ′

∂y∂x
∂Φ

∂x

)
. (A11)
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