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Abstract

Seed longevity is influenced by many factors, a widely discussed one of which is the seed lipid
content and fatty acid composition. Here, linear and non-linear regressions based on machine
learning were applied to analyse germinability and seed composition of a set of 42 oilseed rape
(Brassica napus L.) accessions grown under the same single environment and at the same time
following a period of up to 31 years storage at 7°C. Mean viability was halved after 27.0 years
of storage, but this figure concealed a major influence of genotype. There was also wide vari-
ation with respect to fatty acid composition, particularly with respect to oleic, α-linolenic,
eicosenoic and erucic acid. Linear regression (rL) revealed significant correlation coefficients
between normal seedling appearance and the content of α-linolenic acid (+0.52) and total
oil (+0.59). Multivariate regression using artificial neural networks including a radial basis
function (RBF), a multilayer perceptron (MLP) and a partial least square (PLS) recognized
underlying structures and revealed high significant correlation coefficients (rM) for oil content
(+0.87), eicosenoic acid (+0.75), stearic acid (+0.73) and lignoceric acid (+0.97). Oil content
or a combination of oleic, α-linolenic, arachidic, eicosenoic and eicosadienoic acids and glu-
cosinolates resulted in highest model fitting parameters R2 of 0.90 and 0.88, respectively. In
addition, the glucosinolate content, predominantly in the Brassicaceae family and ranging
from 4.6 to 79.5 µM, was negatively correlated with viability (rL = ‒0.43). Summarizing, oil
content, some fatty acids and glucosinolates contribute to variations in average half-life
(15.2 to 50.7 years) of oilseed rape seeds. In contrast to linear regression, multivariate regres-
sion using artificial neural networks revealed high associations for combinations of parameters
including underestimated minor fatty acids such as arachidic, stearic and eicosadienoic acids.
This indicates that genetic and seed composition factors contribute to seed longevity. In add-
ition, multivariate regressions might be a successful approach to predict seed viability based
on fatty acids and seed oil content.

Introduction

The concept of machine learning was introduced in the late 1960s as a means to detect pat-
terns in data (Shalev-Shwartz and Ben-David, 2014). This field of computational statistics aims
for a deeper exploration of datasets by clustering data into groups or solving a classification or
(multivariate) regression tasks.

Depending on the complexity of the dataset, different approaches are used to solve regres-
sion tasks. For a simple regression analysis, a linear model might be already sufficient to
describe the dataset completely and obtain valid predictions. If the dataset is more complex,
e.g. various inputs that are not independent from each other, non-linear approaches have
shown to be superior to describe the underlying principles between input and output data.
The aim of a multivariate regression analysis is to predict the output behaviour based on
the dataset correctly. For such cases, the input data are a set of numerical features, e.g. metab-
olite or substrate concentrations, chemical compounds or viability data (Andre, 2003; Hall,
2011; Rivas-Ubach et al., 2012) and is referenced as a set of feature vectors. These input vectors
can be based on different units and may be continuous or discrete. Therefore, input data are
normalized to cope with varying magnitudes and specific properties. The desired output vector
can be a discrete quantity or continuous (Worley and Powers, 2013), e.g. a correlation value
between zero and one, where larger values indicate higher correlations. Note, using only
one input vector in a multivariate regression analysis still differs from a standard linear regres-
sion analysis as the correlation between input and output vector is a non-linear function. Next
to the multivariate regression analysis, clustering is an unsupervised approach and the princi-
pal component (PCA) or linear discriminant analysis (LDA) are well-known examples. In
PCA or LDA, data are divided into groups based on a similarity measure in the dataset
(Rojas, 1996). In contrast, classification of data is usually a supervised approach, where a

https://doi.org/10.1017/S0960258518000259 Published online by Cambridge University Press

https://www.cambridge.org/ssr
https://doi.org/10.1017/S0960258518000259
mailto:Nagel@ipk-gatersleben.de
mailto:Nagel@ipk-gatersleben.de
https://doi.org/10.1017/S0960258518000259


desired output to input data is known in advance. This enables
mapping of inputs to outputs to assign data of unknown classes
to one of the given input classes. Thus, class membership in a
classification task is a binary decision, e.g. seeds are viable or not.

Machine learning offers a variety of different algorithms to
solve complex regression tasks. The simplest one would be a par-
tial least squares (PLS) algorithm, where the sum of square resi-
duals is minimized (Wold et al., 2001). More complex models
using non-linear relations are modelled on biological neurons,
e.g. in multilayer perceptrons (MLP) the input data are propa-
gated through multiple layers of activation functions (neurons)
(Cybenko, 1989). Other artificial neural networks incorporate
radial basis functions (RBF) and group similar feature vectors
by approximation before regression is performed (Moody and
Darken, 1989). To represent dependencies between input and out-
put of a given dataset correctly, first, a mathematical model is cho-
sen, then adapted during a training phase using an optimization
algorithm, such as stochastic gradient descent or back propaga-
tion, and finally applied on validation dataset.

To assess the quality of the multivariate regression analysis the
correlation coefficient rM can be used to describe the relationship
between the input value or matrix and the desired output. A fur-
ther quality measure is the distance between the desired output
and the predicted output, often referred to as R2. The correlation
coefficient rM is restricted to values between ‒1 and 1, where
values equal to ‒1 describe a negative correlation, values equal
to 1 describe a positive correlation and values equal to 0 show
no correlation. A quality measure R2 < 0 shows that a horizontal
line drawn in a correlation plot explains the correlation better
than the results of the chosen model, R2 = 0 represents an equal
explanation as the line, and R2 > 0 provides a better explanation
than the horizontal line.

Multivariate regression analysis can produce false positive cor-
relations. To validate the results from non-linear analysis, a cross
validation scheme is employed. The available dataset is split ran-
domly into multiple distinct subsets, where analysis is performed
on each subset independently. Choosing a subset in a random way
guarantees that the procedure does not produce good results by
coincidence. Achieving high correlation coefficients for all cross-
runs ensures that there is indeed a non-linear correlation for the
overall dataset and not just the chosen random test sample.
Another problem in machine learning algorithms is overfitting
when models are perfectly adapted to the training data but the
generalization of the obtained model is not feasible. Overfitting
of artificial neural networks can be indicated by coefficients
equal to 1 or highly disparate r and R2 (Worley and Powers,
2013). To avoid overfitting effects, it is crucial to select model
parameters appropriate to the structure and size of the available
data.

Seed longevity, i.e. the ability of seeds to remain viable over
certain storage periods, is determined by an intricate network of
genetic and environmental factors. The genetic factors are asso-
ciated with seed morphology and composition, whereas the envir-
onment affects by a combination of conditions prevailing during
seed development, ripening, at harvest and during storage.

The major cause of the deterioration of seed quality over time
is the oxidative stress, which results from a build-up of reactive
oxygen species (Bailly, 2004; Kranner et al., 2010; Waterworth
et al., 2015). Certain antioxidant compounds act to scavenge
these molecules and thereby are able to protect lipids and proteins
from degradation. A prominent such protectant in seeds is the fat-
soluble tocopherol (Hwang et al., 2014; Sattler et al., 2004) which

react with lipid peroxy and alkoxy radicals and so terminate the
chain reaction of lipid peroxidation (Falk and Munné-Bosch,
2010). The assumption that oil-rich seeds are particularly sensi-
tive to deterioration has been present for many years.
Supporting evidence was originally based on the finding that
auto-oxidation of polyunsaturated fatty acids produces free radi-
cals, thereby compromising membrane integrity (Priestley and
Leopold, 1979). The rate of oxidation is strongly dependent on
oxygen concentration and temperature (Crapiste et al., 1999).
However, in general, the correlation between seed oil content
and longevity has been described as weak (Nagel and Börner,
2010; Priestley et al., 1985; Walters et al., 2005).

Oilseed rape (Brassica napus L.) provides a substantial quan-
tity of the world’s vegetable oil production; about 44% of seed
dry matter is oil (http://faostat.fao.org, 2015). The most abundant
fatty acids present are linolenic (C18:3), linoleic (C18:2), oleic
(C18:1) and erucic (22:1) acid. Other classes of compounds pre-
sent are tocopherol (vitamin E), cellulose, phenolic acids, phytate
and glucosinolates (Wittkop et al., 2009). Seed longevity at cold
storage (‒18°C) is relatively low with a half-viability of about 25
years (Walters et al., 2005).

Here, the longevity following long-term storage (7°C, 5.0%
seed moisture content) of 42 oilseed rape gene bank accessions
have been investigated. Accessions were grown in the same
field, harvested in 1983 and stored at comparable storage condi-
tions until 2014. The aims were: (1) to obtain an estimate of
how long oilseed rape takes for seed viability to fall to 50%
(P50, half-viability period) during storage at 7°C; (2) to compare
key seed components and fatty acid composition of the stored
material; and (3) to link seed viability with the content of key
fatty acids and/or seed compounds by linear and non-linear cor-
relation analyses using machine learning.

Materials and methods

Four replicate batches of 50 seeds of a set of 42 B. napus ssp.
napus var. napus f. biennis accessions were tested for their ability
to germinate in 2014. The accessions had last been multiplied
together in a single field and experienced the same maternal
environment in 1983. Fully mature seeds were harvested, cleaned
and have been maintained at 7 ± 3°C and 5.0 ± 0.3% seed mois-
ture content at the IPK gene bank Satellite Collection North
(Malchow, Germany). The viability tests were conducted by laying
seeds on moist filter paper, then keeping them under a 12 h
photoperiod at 22°C. The proportion of normal seedlings (%
NS) which emerged was counted, following the protocol recom-
mended by ISTA (2014), while the overall proportion of germi-
nated seed (%TG, total germination) was assessed after 7 days
had elapsed. The %TG were compared with historic viability
data collected from the same accessions in 1983, 1990, 1993
and 2009. For %NS, a comparison was only possible for historic
data from 2009. Based on available %TG data, a probit analysis
was conducted to estimate the half-viability periods (P50) for
each and overall accessions. The probit germination percentage
at storage time ps was given by the expression Ki – (1×σ−1) ps,
where Ki represented the initial probit germination percentage
and σ the standard deviation of the distribution of dead seeds
in time (Ellis and Roberts, 1980). Percentage values of 100%
response (three accessions) were corrected using 99.997% corre-
sponding to 4.01 probit.

Seed fatty acid composition (% of total fatty acids present) was
investigated in 2014, based on three replicate 200 mg samples of
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37 out of the 42 accessions, each representing the progeny of three
to five plants. Following Rücker and Röbbelen (1996), seed oil was
extracted using petroleum benzine and triglycerides transmethy-
lated by isooctane to fatty acid methyl esters, which were subjected
to gas liquid chromatography (GC) using a polyethyleneglycol-2-
nitroterephtalsacidester column. The concentrations of oil, protein,
moisture and the content of glucosinolate in μmol g−1 dry weight
(DW) were measured using near infrared reflectance spectroscopy
(NIRS, Foss-NIRSystem 5000, Foss GmbH, Germany). NIRS cali-
bration was adjusted by the Thuringian State Institute for
Agriculture (TLL, Jena, Germany) and both NIRS and GC results
are frequently evaluated by the Canadian Grain Commission.

Statistical analysis was carried out using routines implemented
in GenStat software (VSN International, 2013). In particular, the
data were tested for normal distribution and subjected to analysis
of variance, least significant differences at P < 0.05 (LSD5%) and
linear correlation analysis were calculated between accessions.
Correlation coefficients (rL) are only given for significant correla-
tions at P < 0.05.

Non-linear statistical analysis was carried out using the neural
network toolbox in MATLAB. To compute principal components,
the dataset wasminimized to a complete set. Here, not all data points
could be provided for all accessions over a storage period of 31 years,
e.g. %TG for 1990was not available for CR 743, CR 818 andCR 822.
These accessions were left out of PCA and further non-linear ana-
lyses. To determine associations between seed viability and seed
composition a linear regression analysis and a multivariate regres-
sion using artificial neural networks were applied. Both correlation
analyses were performed between %NS and %TG from 2014 and a
single compound as input vector x. Note, in mathematical defini-
tions lower case characters (x) are used for single values or vectors
and upper case characters (X) are used for matrices. In a second
step, various combinations of fatty acids and/or major components
and/or historic viability results (%TG for 1983, 1990, 1993 and%NS
for 2009) were used as input matrix X for a multivariate regression
based on artificial neural networks (Krzanowski, 2000). Traits
were chosen in a biological meaningful manner: a combination of
unsaturated fatty acids, oil content and glucosinolates were expected
to have highest predictability for %NS 2014 and %TG 2014. Further
combinations were partly based on results of the linear regression
analysis. To account for variance in the dataset due to sampling,
sample size, and calibrations, each input vector x was normalized
using vector L2 norm (Euclidian norm):

x‖ ‖2=
∑
i

xi| |2
( )1

2

Furthermore, to avoid biased analysis during correlation ana-
lysis, e.g. due to different concentrations or units, all inputs
were standardized (S) using z scoring as follows:

S = x − E x[ ]
s x( ) ,

with E[x] the expected value and σ(x) the standard deviation of
the input vector (Worley and Powers, 2013). The significance
level P was set to values ≤0.01.

An RBF using 3, 5, 7 and 10 centres, a MLP using 5 or 10 in a
single hidden layer, as well as 3 and 5 neurons in the first and
second layer, and a PLS using 5 components were tested for

best performance. All artificial neural networks were run on the
same unreduced data for reasons of comparability, where RBF
models failed for some input vectors (where %TG data was miss-
ing). Each mathematical model (RBF, MLP, PLS) was run using a
10-fold cross validation. For each mathematical model and their
different layouts, datasets were split into a training and generaliza-
tion set (ratio 0.7). Models were trained on the training dataset.
Afterwards, models were validated on the generalization dataset.
Comparing results for all test runs on the training, generalization
and cross-validation datasets ensures a minimization of overfit-
ting. To evaluate performance results for the multivariate regres-
sion, the correlation coefficient rM and the fitting parameter R2

were chosen. Here, R2 does not correspond to the square value
of rM but describes the correlation between predicted output
and input vector, i.e. a quality measure. Still, values of rM and
R2 should be similar. Furthermore, rM and R2 over all cross-
validations should be comparable, with a desired R2 between
0.4 and 1. With Ya, the desired output vector, e.g. %NS 2014,
Yp, the predicted output vector by the neural network and
mean values indicated by bars, rM is given by:

r = Yp − Yp
( )

Ya − Ya
( )

������������������
Var Yp

( )
Var Ya( )

√ ,

and R2 is given by:

R2 = 1−
∑

i (y p,i − ya,i)2∑
i (ya,i − Ya)2

.

Next to rM and R2, mean values and standard deviations of
these two factors were computed and checked for overall behav-
iour of the non-linear correlation. In addition, all cross-runs
and correlation plots for all input configurations were examined.
If these were found to lie in a certain range (rM > 0.6, R2 > 0.4),
results were considered to be mathematical meaningful (Johnson
and Wichern, 2007) and overfitting could be excluded.

Results

The viability of freshly harvested seed in 1983 was 80–100% for
the 42 accessions (mean 97.4 ± 5.4%) and between 2 and 97%
by 2014 after 31 years of storage (Fig. 1, Table S1). The probit

Figure 1. The decline in seed viability of oilseed rape after 31 years in long-term stor-
age. The data are shown as the arithmetic mean derived from four replicates of 42
accessions. The curve derived from probit analysis of the data appears as a bold
yellow line with the equation y =−0.06x + 1.67, where total germination (%) is on a pro-
bit scale. The half-viability period (P50) calculated from the probit curve is 27.02 years.
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analysis based on %TG of the five germination tests produced
estimated half-viability periods between 15.2 and 50.7 years for
an overall mean of 27.0 years. Highest correlation (rL = 0.71, P
< 0.001) was found between %TG performed in 2014 and 2009
and lowest correlation (rL = 0.30, P < 0.01) between %TG per-
formed in 2014 and initial germination tested in 1983 (Fig. S1).
Although the accessions were submitted to the same maternal
and storage environment, the low correlation coefficient between
the initial and final germinability implied that factors other than
initial germination were also involved.

Seed composition was significantly different (P < 0.05)
between accessions (Table S1) and is visualised in Figs 2a,b and
S2. A predominant group (29 of the 37 accessions analysed) con-
tained high amounts of palmitic (4.7 ± 0.3%), oleic (60.4 ± 1.9%),
linoleic (19.9 ± 1.4%) and α-linolenic (9.7 ± 0.9%) acids. The
remaining eight accessions contained less oleic (47.1 ± 7.8%),
linoleic (17.8 ± 1.8%) and α-linolenic (8.1 ± 0.7%) acids, along
with more eicosenoic (7.6 ± 3.0%), eicosadienoic (0.3 ± 0.1%)
and erucic (12.0 ± 6.9%) acids. The content of oil (44.6 ± 1.9%),
protein (24.2 ± 1.9%) and moisture (5.0 ± 0.3%) hardly varied
between accessions, while the glucosinolate content ranged from
9.1 to 85.1 μmol g−1 DW.

Linear regression revealed moderate associations between indi-
vidual compounds and seed viability after storage (Fig. 3). Highest
significant correlations were found between %NS and the con-
tents of α-linolenic acid (rL = +0.52, P < 0.01), oil content (rL =
+0.59, P < 0.01) and glucosinolate (rL = −0.61, P < 0.001).
Correlation coefficients were slightly lower when %TG and P50
were compared. In addition, there was an unexpected significant
negative correlation between %NS and thousand seed weight
(rL =−0.49, P < 0.05).

In contrast to the linear regression, multivariate regression
analysis revealed higher correlations between input vectors and

seed viability. Standard approaches of machine learning were
used including RBF, MLP and PLS to analyse underlying non-
linear functions between the input vector or matrix and desired
output vector. Networks were set up for MLP with 5, 10, or 3
and 5 neurons, PLS with 5 components, RBF with 5 centres.
Due to incomplete datasets for %TG 2014, no correlation
could be found for RBF networks for some compounds
(Table S2). In addition, a tendency to lower R2 for larger net-
work set-ups could be seen for MLP. Therefore, five components
were chosen for all networks and values were in the desired
range of rM > 0.6 and R2 > 0.4 after cross-validations over all
datasets (Table S3). In Tables 1, S4 and S5, superscripts indicate
which network set-up produced the given results. Thereby, a
high correlation coefficient rM shows a strong relation between
the input vectors and %TG 2014 or %NS 2014 whereas R2 is
a fitting parameter for the model and describes the correlation
between the input vector and the predicted output vector. A
negative R2 indicates a bias in fitting of the model. The highest
correlations with %TG 2014 were found with the following input
vectors: lignoceric acid (rM = 0.97, R2 =−0.03, Fig. 4), nervonic
acid (rM = 0.96, R2 = 0.33), glucosinolates (rM = 0.96, R2 = 0.58)
and oil content (rM = 0.87, R2 = 0.39) (Table 1). Likewise, with
%NS 2014, the highest correlations were found with oil content
(rM = 0.99, R2 = 0.90), eicosenoic (rM = 0.99, R2 = 0.62) and ste-
aric acid (rM = 0.97, R2 = 0.42) as single input vectors. Overall,
correlation varied for %TG 2014 and %NS 2014 from rM =
0.24 to 0.97 and from rM = 0.04 to 0.99, respectively (Table 1).
Correlation and R2 increased strongly when %NS 2014
(Table S4) and %TG 2014 (Table S5) were combined with thou-
sand seed weight (TSW) and historic viability data, respectively.
In these cases, correlation ranged for %TG 2014 and %NS 2014
between rM = 0.74 and 1.00 and between rM = 0.56 and 1.00,
respectively (Tables S4 and S5).

Figure 2. Fatty acid composition of 37 oilseed rape accessions measured after 31 years of storage. Fatty acid compositions are given as percentage (%) of the total
fatty acid content. (a) Major fatty acids were declared when content was >4%. (b) Minor fatty acids.
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A PCA on the complete dataset, i.e. the dataset without incom-
plete %TG 1990 data, provided a measure for the data structure
(Fig. S3). In general, no cluster for certain accessions or the oil
contents can be found. In addition to the composition performed
by PCA, datasets are highlighted according to highest non-linear
correlation coefficients rM for %TG 2014 and %NS 2014.
Individual P50 values, calculated for each access, were not used
as an input variable because rL between P50 and viability was
not higher than the measured input parameters. Furthermore,
the P50 is only an estimate of the half-viability period and stand-
ard deviation is high, and thus might lead to inaccuracies in the
predictions.

Using a combination of parameters as an input matrix further
improved results of the multivariate regression. The best combi-
nations to predict seed viability after 31 years of storage (i.e %
TG 2014) were: (1) myristic, stearic, oleic, α-linolenic, arachidic,
eicosenoic, eicosadienoic, lignoceric and nervonic fatty acids, oil
content and glucosinolates (rM = 0.90, R2 = 0.76); (2) α-linolenic
acid, oil and glucosinolates content (rM = 0.84, R2 = 0.56); and
(3) stearic, linoleic, arachidic, eicosadienoic, erucic fatty acids
and glucosinolates (rM = 0.84, R2 = 0.64). The best predictive
combinations for %NS 2014 were: (1) a combination of all fatty

acids and all compounds (rM = 0.97, R2 = 0.56); (2) oleic acid,
α-linolenic acid, arachidic acid, eicosenoic acid and glucosinolates
(rM = 0.95, R2 = 0.88); and (3) myristic acid, stearic acid, oleic
acid, α-linolenic acid, arachidic acid, eicosenoic acid, eicosadie-
noic acid, lignoceric acid and nervonic acid (rM = 0.96, R2 =
0.85) (Table 1). Also input matrix combinations including historic
viability data (namely %TG for 1983, 1990, 1993 and %NS for
2009) and/or TSW showed a better predictability of longevity
then only using the 2014 values (Fig. 4, Tables S2 and S3). By
including historic viability data and TSW the fitting R2 of the
model for lignoceric acid content increased from initially −0.03
to 0.91 (Fig. 4a,b,d). In general, an input vector using only two
values, e.g. TSW and myristic acid, showed high correlation values
together with high R2.

Discussion

The estimated average P50 of the current B. napus accessions was
27 years, which matches well with estimates obtained both from a
small sample of B. napus (25 years, 12 accessions) and a large one
of B. oleracea (23 years, 370 accessions) seed stored for about 40
years at −18°C (Walters et al., 2005). When seeds were stored

Figure 3. Significant correlations between seed viability and
linolenic acid, seed components and thousand seed weight
(TSW) among a set of oilseed rape accessions stored for 31
years. Seed viability is represented by normal seedlings,
total germination and the half-viability period (P50).
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under non-controlled ambient conditions (∼20°C and 50% rela-
tive humidity), P50 of B. napus was only 13.9 (Priestley et al.,
1985) and that of B. oleracea only 7.3 years (Nagel and Börner,
2010). Considering that seed maternal and storage environment
were comparable, a range in P50 values between 15.2 and 50.7
years suggests that genetic factors may contribute to variation in
seed longevity.

Lipid composition determines oil quality and membrane struc-
ture and has profound effects on seed viability in the dry state
(Hoekstra, 2005). Here, seed components varied between acces-
sions. Contents in α-linolenic fatty acid and total oil and glucosi-
nolates in particular were shown to correlate with seed viability
after 31 years of dry storage. However, as coefficients of correl-
ation of the linear regression were only between ±0.49 and ±

0.61, a multivariate regression using several input vectors was
applied to convey complex relations between seed composition
and viability. In doing so, saturated myristic, stearic, arachidic,
lignoceric and unsaturated eicosenoic, eicosadienoic, oleic,
α-linolenic and nervonic fatty acid were identified as predominant
fatty acids influencing seed viability. Until now, very long fatty
acids, e.g. lignoceric and nervonic acid, have never been discussed
in relation to seed viability except in the context of human dis-
eases and biomarkers (Lemaitre et al., 2015; Clark et al., 2016).
Hence, multivariate regression detects relationships in complex
molecular networks and enables the study of novel complex
pathways.

Lipids are heterogeneously distributed across oilseed rape seed,
which may facilitate different degradation processes during

Table 1. Multivariate regression reveals correlation coefficients for %NS 2014 and %TG 2014 for a combination of fatty acids and compounds

NS% 2014 %TG 2014

Method rM R2 rM R2

Fatty acids 0.71x 0.46 0.63* 0.37

Compounds 0.91x 0.40 0.77x 0.51

Fatty acids and compounds 0.97x 0.56 0.64+ −0.14

14:0 Myristic acid in % 0.57* 0.29 0.86+ 0.32

16:0 Palmitic acid in % 0.51+ 0.02 0.66+ −0.04

16:1 Palmitoleic acid in % 0.04* −0.01 0.63+ 0.34

18:0 Stearic acid in % 0.99+ 0.42 0.73+ 0.29

18:1 Oleic acid in % 0.88+ 0.25 0.60* 0.05

18:2 Linoleic acid in % 0.39+ 0.10 0.87+ 0.02

18:3 α-Linolenic acid in % 0.81* 0.32 0.76+ 0.16

20:0 Arachidic acid in % 0.61+ 0.31 0.23+ 0.05

20:1 Eicosenoic acid in % 0.99+ 0.62 0.75+ 0.53

20:2 Eicosadienoic acid in % 0.89+ 0.41 0.75+ 0.43

22:0 Behenic acid in % 0.22* −0.12 0.39+ 0.03

22:1 Erucic acid in % 0.59+ 0.28 0.80+ −0.02

24:0 Lignoceric acid in % 0.56+ 0.02 0.97* −0.03

24:1 Nervonic acid in % 0.60* 0.02 0.91* 0.33

Oil in % 0.99+ 0.90 0.87* 0.39

Glucosinolates in μmol g−1 DW 0.73* 0.31 0.96+ 0.58

Protein in % 0.84* 0.24 0.80* 0.42

H2O in % 0.63* 0.20 0.40+ 0.10

Stearic, linoleic, arachidic, eicosadienoic and erucic acid in %, glucosinolates in μmol 0.92x 0.52 0.84+ 0.64

Oleic, α-linolenic, arachidic, eicosenoic and eicosadienoic acid in %, glucosinolates in μmol 0.95+ 0.88 0.77+ 0.31

α-Linolenic acid in %, oil in % and glucosinolates in μmol 0.75x 0.49 0.84* 0.56

Myristic, stearic, oleic, α-linolenic, arachidic, eicosenoic, eicosadienoic, erucic, lignoceric and nervonic acid in % 0.96+ 0.85 0.67x 0.32

Myristic, stearic, oleic, α-linolenic, arachidic, eicosenoic, eicosadienoic, erucic, lignoceric and nervonic acid in %,
oil in %, glucosinolates in μmol

0.83x 0.67 0.90x 0.76

Myristic, stearic, oleic, α-linolenic, arachidic, eicosenoic, eicosadienoic, erucic, lignoceric and nervonic acid in %,
oil, proteins and H2O in %, glucosinolates in μmol

0.78+ 0.44 0.81* 0.64

Values for rM represent best fit for all networks at P < 0.01 using either +MLP with five neurons in a single layer, xRBF with five centres or *PLS with five components. Further input matrix
combinations, i.e. historic viability data and thousand seed weight (TSW), can be found in Tables S2 and S3. Compounds include oil, glucosinolates, protein and H2O content. Fatty acids
include all individual fatty acids, compare Table S1.
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storage. Highest levels of palmitic acid (16:0) were found in the
embryonic axis, while high levels of linoleic (18:2) and
α-linolenic (18:3) acid were shown (Woodfield et al., 2017) in
the seed coat/aleurone layer as well as at the outer cotyledon. It
may well be that the outer layers are first targets of non-enzymatic
oxidation for α-linolenic acid. Indeed, there is a correlation
between longevity and the average number of double bonds per
polar lipid molecule (Hoekstra, 2005) which is supported by
Ponquett et al. (1992). Although the conclusions are biased by
the number of non-oily seed species, Ponquett et al. (1992) indi-
cated that α-linolenic fatty acid per unit tocopherol determines
the rate of oxidation. Tocopherol is a lipophilic antioxidant that
is particularly abundant in oily seeds (Sattler et al., 2004).
Therefore, the localization as well as concentration of certain
fatty acids in conjunction with antioxidants may be important
in determining the rate of oxidative processes during storage.

In contrast, polyunsaturated fatty acids, such as linoleic and
α-linolenic acid, are found extensively in all membranes
(Harwood, 1997). Although observations were not possible here
over time, Riewe et al. (2017) and Oenel et al. (2017) demon-
strated in wheat and Arabidopsis that hydrolytic processes
occurred during long-term storage of dry seeds. In rice, the down-
regulation of different lipoxygenases reduced the production of
malondialdehyde and lipid peroxides and contributed to
increased tolerance against accelerated ageing (Ma et al., 2015).
In the present study, stearic, oleic, α-linolenic, eicosenoic, eicosa-
dienoic, lignoceric and nervonic fatty acids, of which most are
unsaturated, showed positive correlations with both %TG and
%NS. It is assumed that all seed compartments are affected by
oxidative processes and higher amounts of unsaturated fatty
acids in particular may contribute to higher viability.

The glucosinolates found in many Brassicaceae are thought to
function as a defence against herbivores. However, correlations
between glucosinolate content and seed survival in the soil have

never been reported (de Jong et al., 2013). Linear and multivariate
regressions showed that accessions accumulating a high level of
glucosinolate tended to perform less well with respect to %NS.
The speculation is that since glucosinolate hydrolysis products
compromise bacterial membrane integrity (Borges et al., 2015)
it may equally damage plant cell membranes. However, anti-
microbial activity facilitating glucosinolate hydrolysis is unlikely
at water activity below 0.75 (Bewley et al., 2013) and other
mechanisms might be responsible.

Using multivariate regressions with a single input vector
uncovered new significant correlations between seed composition
and storability. In contrast to single input vectors, a small number
of input vectors, e.g. combining one fatty acid with historic viabil-
ity data or TSW (compare Fig. 4) improved predictability enor-
mously. It seems logical to expect that historic viability data
would improve rM. However, linear regression between seed com-
ponents and P50, based on historic viability data, did not increase
correlation coefficients. In the seed industry, it is common to test
the initial seed germination. These data may be used to estimate
storability. In addition, whether TSW has an effect on seed vigour
is not clear (Nagel et al., 2013). In kale higher vigour was related
to either bigger or smaller seeds depending on the seed lot prop-
erties (Komba et al., 2007). However, oilseed rape seedlings from
large seeds tend to be more vigorous and tolerant to insect dam-
age due to a higher initial shoot biomass and higher growth rate
(Bettey et al., 2000; Elliott et al., 2008). Therefore, there tends to
be valuable information on historic viability and TSW results that
supports final predictability.

High correlations for %TG 2014 and %NS 2014 can be estab-
lished for quite a few network configurations. Parameters larger
than five or various layers of neurons resulted in overfitting and
forced the neural network to represent approximately three to
four data points per centre (Johnson and Wichern, 2007).
Therefore, a small network size seemed to be sufficient to convey

Figure 4. Prediction curve to estimate total germination (%TG) in
2014. Total germination and lignoceric acid were evaluated for
the best fitted model based on multivariate regression using a par-
tial least square (PLS) with five components. Non-linear regression
was applied to (a) lignoceric acid (LA) content (%); (b) to the input
matrix of lignoceric acid content (%) and historic viabilities (%TG);
(c) of lignoceric acid content (%) and thousand seed weight (TSW,
g); and (d) of lignoceric acid content (%), thousand seed weight (g)
and historic viabilities (%TG). The non-linear regression based on
artificial neural networks shows a high correlation between pre-
dicted total germination and measured total germination. Here,
the importance of not only a high r but also R2 can be seen. A
higher fitting parameter ensures a better correlation between target
values and actual total germination (compare improving correlation
from a to d).
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correlations between input values and viability. However, using all
available data did not always yield the best results (compare
Tables S2 and S3). This would only be the case if all compounds
and fatty acids were significant for the correlation. Thus, focus
should be laid on set-ups where, next to high correlation rM,
high fitting parameters R2 are also achieved. However, further
studies would be interesting to follow compositional changes dur-
ing storage and to apply multivariate regression for seed longevity
predictions by including a higher number of accessions, thus pro-
viding a larger dataset after splitting and for cross-validation.

In conclusion, the complexity of seed longevity was shown
with a unique viability dataset acquired during long-term storage
for 31 years. In addition to environmental factors, seed compos-
ition was assumed to affect seed viability after long-term storage.
Linear regression was shown to support this assumption but coef-
ficients were too low to make confident interpretations. In con-
trast, the multivariate approaches based on machine learning
were able to simultaneously analyse the impact of several para-
meters to reveal some important seed components, predomin-
antly myristic, stearic, oleic, α-linolenic, arachidic, eicosenoic,
eicosadienoic, lignoceric and nervonic fatty acids, oil content
and glucosinolates that influence seed viability. These may be con-
sidered good candidates for developing viability prediction tools.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0960258518000259
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