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Abstract. Stationary nonlinear one-dimensional electrostatic oscillations in a
plasma containing dust grains with variable charge are considered through a cold-
beam model. The new constraints brought by the presence of dusts on the BGK
modes are clarified and the appearance of a soliton mode that was not present in
the fixed-charge problem is investigated.

1. Introduction
Dusty-plasma phenomena have attracted a good deal of interest during the last
ten years or so because of their wide relevance in both laboratory and space con-
texts. The charge carried by the dust grains and its variation in space and time
can to some degree or another affect plasma waves (Ma and Yu 1994; Vladimirov
et al. 1998). Recently, the influence of dust on nonlinear plasma electrostatic oscil-
lations has been investigated (Tribèche et al. 2000) through a cold kinetic model,
but the dynamics of charging was not considered. We propose here to generalize
this analysis to the case of variable-charge grains.

2. Basic equations
Stationary nonlinear electrostatic waves in a collisionless plasma in one space di-
mension are governed by the Vlasov–Poisson equation (Bernstein et al. 1957)

v
∂fj(x, v)
∂x

+
qj
mj

∂φ(x)
∂x

∂fj(x, v)
∂v

= 0, (1)

∂2φ(x)
∂x2 = −4π

∑
j=e,i,d

qj

∫
fj(x, v) dv, (2)

where j = e, i and d for electrons, ions and dust grains respectively. The general
solution of (1) may be written as

fj = fj(Ej), (3)

where the energy Ej for electrons and ions is given by

Ee,i = 1
2me,iv

2 ∓ eφ, (4)
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whereas for grains of variable charge it becomes

Ed = 1
2mdv

2 +
∫ φ

0
qd dφ. (5)

Following Tribèche et al. (2000), we consider cold beams for electrons, ions and
dust grains:

fj(v) = nj0
vj0
ṽj
δ(v − ṽj), (6)

with

ṽe,j = ve,i0

√
1± 2e

me,iv2
e,i

φ, (7)

ṽd = vd0

√
1 +

2e
mdv2

d0

∫ φ

0
Z dφ. (8)

Here Z is the grain charge number and vj0 are arbitrary constants large enough
so that (7) and (8) yield real positive values for ṽj . We introduce the dimensionless
variables

ψ =
2e
Wj

φ, X =
ωj
vj0x

where Wj = mjv
2
j0 and ωj is the j-species plasma frequency. Thus the Poisson

equation (2) for untrapped particles is

d2ψ

dX2 =
2

f
√

1 + αψ
− 2√

1− ψ +
2εZ√

1 + χ/β
, (9)

with χ the grain’s normalized ‘potential energy’

χ =
∫ ψ

0
Z dψ, (10)

and

α =
Wi

We
, β =

Wd

Wi
, ε =

nd0

ni0
, f =

ni0
ne0

. (11)

The dust charge is determined by the charge-conservation equation

vd
dqd
dx

= Ie + Ii, (12)

where, for our cold model, the electron and ion currents are given by (Barnes et al.
1992):

Ie = −πr2ene0ve0

(
1 +

2eqd
rmev2

e

)
, (13)

Ii = πr2eni0vi0

(
1− 2eqd

rmiv2
i

)
, (14)

with r being the grain radius.
Thus, in addition to the Poisson equation (9), we obtain the following two equa-

tions for ‘potential energy’ and charge variation:

dχ

dX
= Z

dψ

dX
, (15)
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dZ

dX
=

1√
1 + χ/β

[
−A

(
1 +

BZ

1− ψ
)

+ C

(
1− DZ

1 + αψ

)]
, (16)

where

A = πr2ni0
v2
i0

vd0ωi
, B =

2e2

rWi
, (17)

C = πr2ne0
ve0vi0
vd0ωi

, D =
2e2

rWe
. (18)

Within the characteristic time of the charging process, the dust displacement is
negligible, so we set Ie + Ii = 0 and obtain

Z = Z0
(1− ψ)(1 + αψ)

1 + pψ
, (19)

where

Z0 =
rWi

2e2

ve0 − fvi0
αve0 + fvi0

, (20)

p = −α ve0 − fvi0
αve0 + fvi0

, (21)

and

χ =
Z0

p3 (p2 + p− αp− α) ln(1 + pψ)− Z0α

2p
ψ2 +

Z0

p2 (αp− p + α)ψ. (22)

The quasineutrality condition e(ni0−ne0) +nd0qd0 = 0 is realized at equilibrium,
i.e. for ψ = 0; so Z0 is the equilibrium charge number. Then, for given values of Z0,
α and f , we have the following relations:

ε =
f − 1
fZ0

, (23)

p =
−1 + f

√
αme/mi

1 + f
√
me/αmi

, (24)

and the consistency relation that determines the electron beam energy,

We = −2e2Z0

rp
. (25)

Z0 is generally positive, since the grains are charged preferentially by electrons so
that f > 1. Then, for typical values of f and α, the value of −1/p is greater than
1, ensuring for ψ < 1 that the charge relation (19) is well defined.

Stationary nonlinear electrostatic oscillations for untrapped particles are thus
described by (9), with the variable grain charge and potential energy being given
by (19) and (22). The trapping regime for electrons, ions and dust grains is reached
when ψ 6 −1/α, ψ > 1 and χ 6 −β respectively.

Equation (9) can be written as

d2ψ

dX2 = −dV (ψ)
dψ

, (26)

with the pseudopotential

V (ψ) = − 4
fα

√
1 + αψ − 4

√
1− ψ − 4β

f − 1
fZ0

√
1 + χ/β + C. (27)
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Figure 1. V versus ψ for Z0 = 10, β = 20, f = 1.2 and α = 0.1: ——, fixed charge;
– – –, with charge variation.

Choosing the condition V (ψ = 0) = 0, we obtain for the constant

C = 4
(

1
fα

+ 1 +
f − 1
fZ0

β

)
. (28)

One can have oscillations only if V is a potential well, or

a =
α

f
+ 1 +

f − 1
f

(
2 + 2p +

Z0

β
− 2α

)
> 0. (29)

This should be compared with the case of fixed grain charge, where the above
condition becomes

α

f
+ 1 +

Z0(f − 1)
βf

> 0, (30)

which always holds for positive Z0. Figure 1 compares for a > 0 the behaviour of
V (ψ) for the cases of fixed and dynamic grain charge. The solutions in the dynamic
case are oscillatory modes, and are almost the same as those encountered in the
fixed-charge problem.

3. Oscillatory solutions
For small amplitudes (linear theory), i.e. ψ � −1/α, ψ � 1 and χ � −β, the
solutions are harmonic modes with wavelength

√
k, where

k = 3− 2α +
3α− 2
f

+
f − 1
f

(
2p− 2 +

Z0

β

)
. (31)

The dust charge oscillates around the equilibrium value Z0.
Figures 2–5 present the results of the numerical integration of the nonlinear

problem. The steepening in the profiles of the electric field is the forerunner of
wavebreaking due to the approach of the trapping regime, for example trapping of
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Figure 2. ψ versus X for β = 20, Z0 = 10, f = 1.2, nd = 105 and E0 = −2:
——, α = 0.9; – – –, α = 0.1.
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Figure 3. −E (≡ dψ/dX) versus X for the same parameters as in Fig. 2.
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Figure 4. Z versus X for the same parameters as in Fig. 2.
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Figure 5. χ versus X for the same parameters as in Fig. 2.
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Figure 6. Emax versus Z0 for β = 20, Z0 = 10, f = 1.2 and nd = 105: �, α = 0.1; ◦, α = 0.9.

ions and electrons (for the case α = 0.9) or trapping of ions and dust grains (for
the case α = 0.1). Figure 4 shows the nontrivial spatial pattern of the dust charge:
as ions and electrons are nearly trapped, i.e. ve and vi tend to zero; the charge, as
seen from (19), vanishes.

We come now to the influence of the grain charge on the maximum amplitude
of the electric field of the modes. This is represented in Fig. 6: as the equilibrium
charge increases, the amplitude falls exponentially. This limitation of the amplitude
by wavebreaking is due to the trapping of the dust grains: as Z0 increases, the
potential energy χ tends rapidly to −β. When the trapping of electrons only is
the cause of the breaking, the maximum amplitude remains constant until the
increasing charge Z0 allows for the trapping of dust; then the maximum amplitude
falls off rapidly (circles in Fig. 6).

4. Soliton solutions
We consider now the case a < 0 (Fig. 7). The major result is that a soliton solution
for ψ is possible, since (i) V (0) = 0, (ii) V ′′(0) < 0, (iii) V (ψ0) = 0 and (vi) V ′(ψ0) > 0.
Figure 8 shows the pseudopotential for a fixed value of f and increasing values
of α (qualitatively the same behaviour is obtained for fixed α and increasing f ).
The amplitude of the soliton determined by V (ψ0) = 0 increases with increasing
f and α (for Z0 and β fixed). Although the analysis presented here concerns a
stationary solution, i.e. in a frame moving with the speed of the waves, we can
obtain some information about the speed of the soliton, which increases with f and
α because it is related to the depth of the pseudopotential. Figures 9–11 give the
simulation result for f = 3 and α = 6, with the initial conditions ψ(X = 0) = 0
and dψ/dX(X = 0) = 10−11. This was obtained by an explicit Runge–Kutta (4, 5)
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Figure 7. a versus α for Z0 = 10 and β = 20: ——, f = 3; – – –, f = 1.2.
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Figure 8. V versus ψ for Z0 = 10, β = 20 and f = 3: ——, α = 3; – – –, α = 6; · · · · · ·, α = 10.
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Figure 9. Soliton solution: ——, ψ versus X; – – –, −dψ/dX versus X. Here f = 3, α = 6,
β = 20 and Z0 = 10. The initial conditions used in this solution are ψ(0) = 0 and
dψ/dX(0) = 10−11.
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Figure 10. Soliton solution: ——, Z versus X; – – –, χ versus X. The parameters and initial
conditions are as in Fig. 9.
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Figure 11. ni/ni0 (– – –), ne/ne0 (——) and nd/nd0 (· · · · · ·) versus X for the case of Fig. 9.
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Figure 12. The soliton solution of Fig. 9 (——) and a fitting curve (– – –) based on a sech2

function (see text for details).
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Figure 13. Same as Fig. 12, but for a smaller-amplitude soliton: α = 2, f = 3, β = 20
and Z0 = 10.

solver with an absolute tolerance of 10−15. The soliton width at half-amplitude can
be calculated numerically by the following integral:

∆X = 2
∫ ψ0

ψ0/2

1√−V (ψ)
dψ. (32)

We fitted (Fig. 12) the solution of Fig. 9 by a sech2 profile:

ψ(X) = Ψ0 sech2[b(X −X0)] (33)

with ∆X = 2 ln(1+
√

2)/b, and found Ψ0 = 0.9236, b = 1.4630 and X0 = 12.9726, for
which ∆X = 0.5455. For smaller soliton amplitudes (Fig. 13), the solution is better
fitted by the sech2 function, as is well known from the Korteweg–de Vries equation.
The parameters for this latter case are Ψ0 = 0.3937, b = 0.3878, X0 = 37.3011 and
∆X = 1.2048. The width at half-amplitude found by the fit is the same as that
obtained from (32), and, as expected, increases with decreasing soliton amplitude.

We note the ‘pit’ in the dust-charge profile due to the decrease in ion speed when
near the maximum potential for untrapped ions (ψ = 1). However, the potential
energy of the grains forms a single hump. This solitary electrostatic pulse is formed
by a single-hump distribution of ions with a local decrease in the densities of elec-
trons and dust. This is unusual, because the soliton structures known so far are
induced by the electron thermal distribution (e.g. ion acoustic solitons: Mamun et
al. 1996) and trapped electrons (e.g. electron holes: Lynov et al. 1985). This posi-
tive potential soliton with cold untrapped particles is then supported by the space
charge of the grains. The fact that it only could be formed for f ' 2 shows that
the electrons are somewhat depleted.

The amplitude of the soliton has maximum value ψ = 1 due to the trapping of
ions. We note also that for an initial electric field amplitude of the order of 10−5 or
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Figure 14. ψ versus X (——) and −dψ/dX versus X (– – –) for the same parameters as in
Fig. 9, but with the initial conditions ψ(0) = 0 and dψ/dX(0) = 0.1.

more at ψ = 0, we retrieve an oscillatory behaviour (Fig. 14) – but one that is very
different from the cases discussed in the previous section. Other oscillatory modes
with positive or negative potential can also occur, as is evident from the profiles of
Fig. 8.

5. Conclusions
We have considered a cold kinetic model for stationary one-dimensional electro-
static oscillations in a collisionless dusty plasma with variable grain charge. The
Bernstein–Greene–Kruskal (BGK) modes for untrapped particles have been iden-
tified and their maximum amplitude shown to fall rapidly with increasing dust
equilibrium charge owing to the trapping of dust grains. The modes are practically
unaltered as compared with the fixed-charge problem. A more important result,
which was absent in the fixed-charge problem, is the existence of a soliton solution
even in this cold model with untrapped particles. This positive potential pulse is
formed by the space charge of dust grains, and depends strongly on the electron
density and energy.

A further investigation of these modes requires the introduction of thermal effects
and trapped particles. The latter effect can be accounted for through a BGK scheme
by first making assumptions on the free-particle part of the distribution function
and on φ(x). One can then calculate the trapped-particle part of the distribution
function f (E), which must be positive-definite. Here the variable dust-grain charge
may lead to an additional difficulty, because dust grains may interchange their
states from trapped to untrapped or vice versa. This will probably introduce more
constraints on the yet-unsolved problem of BGK-mode stability.
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