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Travelling waves for a nonlocal double-obstacle
problem

PAUL C. FIFE

Mathematics Department, University of Utah, Salt Lake City, Utah 84112, USA

(Received 7 May 1997; in revised form 9 July 1997)

Existence, uniqueness and regularity properties are established for monotone travelling waves

of a convolution double-obstacle problem

ut = J ∗ u− u− f(u),

the solution u(x, t) being restricted to taking values in the interval [−1, 1]. When u = ±1, the

equation becomes an inequality. Here the kernel J of the convolution is nonnegative with

unit integral and f satisfies f(−1) > 0 > f(1). This is an extension of the theory in Bates et

al. (1997), which deals with this same equation, without the constraint, when f is bistable.

Among many other things, it is found that the travelling wave profile u(x− ct) is always ±1

for sufficiently large positive or negative values of its argument, and a necessary and sufficient

condition is given for it to be piecewise constant, jumping from −1 to 1 at a single point.

1 Introduction

The bistable nonlinear diffusion equation

∂

∂t
u = ∆u− f(u) (1.1)

for a function u(x, t) has been the subject of an extensive literature. The normal assumption

is that f is smooth and there exist exactly two stable constant solutions, say at u = ±1.

In the special case that
∫ 1

−1 f(u)du = 0, it was studied in the context of phase-antiphase

material boundaries (Cahn & Allen, 1977; Allen & Cahn, 1979) and bears the name of

Allen and Cahn, a special case of the Ginzburg–Landau equation.

The generalization of (1.1) to a parabolic variational inequality of double-obstacle type

with f(u) = −γu for u ∈ (−1, 1) has also been studied (Chen & Elliott, 1994; Blowey

& Elliott, 1993). In this, the solution u is required to take values only in the interval

[−1, 1], and when u = ±1, the equation becomes an inequality so that effectively f(1) and

f(−1) are set valued. The sets are of the form [f1,∞) and (−∞, f−1] respectively, where

f1 < 0 < f−1 are the limits, as u↑1 and u↓− 1, respectively, of the function f(u). (We shall

formulate the problem slightly differently below, reserving the notation f for a function

which is smooth and single-valued on the closed interval [−1, 1].)

Such a generalization and its analogue for the Cahn–Hilliard equation (Blowey & Elliott,

1991, 1992) has been motivated by both computational and physical considerations.

In another direction, nonlocal versions of (1.1) have been studied as well, from several
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points of view. Let J(s) be a smooth even nonnegative function with
∫ ∞
−∞ J(s)ds = 1. We

also assume throughout that J ′ and sJ(s) are in L1(−∞,∞). Let J ∗ u denote the spatial

convolution of u with J . Then the equation

∂

∂t
u = J ∗ u− u− f(u) (1.2)

shares important properties with (1.1), including being the L2-gradient flow of a natural

free energy functional (Bates et al., 1997; Fife & Wang, in press; Orlandi & Triolo, 1997).

The equation

∂

∂t
u = tanh {βJ ∗ u− h} − u, (1.3)

for a similar kernel J (de Masi et al., 1993; Orlandi & Triolo, 1997) also has many of the

same properties; it arises as a continuum limit of Ising models.

Theories of travelling waves were given for (1.2) in the case of smooth bistable f in

Bates et al. (1997) and for (1.3) in de Masi et al. (1995) and Orlandi & Triolo (1997).

In Bates et al. (1997), smooth functions f were considered under the hypothesis that

f(u) = 0 only at u = ±1 and u = α, where −1 < α < 1, and that f′(±1) > 0. It was

shown that there exists a unique (up to shifts in the independent variable z) travelling

wave solution of equation (1.2) satisfying equation (1.8). Regularity and stability results

were also obtained. Comments on the existence and uniqueness proof in that paper will

be given at the beginning of §3.

The purpose of this paper is to extend the existence, uniqueness, and regularity parts of

the travelling wave theory in Bates et al. (1997) to the double-obstacle analog of equation

(1.2). We allow f to be a general function subject only to the restrictions given below.

The extension entails a number of nontrivial considerations.

Our interest will be in monotone travelling wave double-obstacle solutions connecting

the state −1 at −∞ to the state +1 at ∞, when f satisfies the following hypothesis.

Hypothesis on f: f ∈ C1[−1, 1],

f(1) < 0 < f(−1), (1.4)

f has only a single zero in (−1, 1), and the set of values u at which f′(u) 6 −1 is empty

or a single interval with positive length.

Setting z = x− ct, where c is an unknown velocity and abusing slightly the functional

notation, we see that the travelling waves we seek are monotone functions u(z) satisfying

cu′(z) + J ∗ u(z)− u(z)− f(u(z)) = 0 where u(z) ∈ (−1, 1), (1.5)

J ∗ u(z) + 1− f(−1) 6 0 where u(z) = −1, (1.6)

J ∗ u(z)− 1− f(1) > 0 where u(z) = 1, (1.7)

u(−∞) = −1, u(∞) = 1. (1.8)

In fact, the monotonicity implies that u = 1 (or u = −1) either never or on an infinite

interval, so that the derivative term is missing in (1.6) and (1.7).
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Definition 1 (u, c) is a double-obstacle travelling wave if (1.5)–(1.8) are satisfied for all but

a discrete set of values of z, and u(z) is continuous if c� 0.

The requirement that u be continuous when c� 0 is natural because of the first term

in (1.5). However, since that equation only holds if |u| < 1, the question arises about the

possibility of a solution which jumps from −1 to 1, say at z = 0. We are excluding that

possibility unless c = 0, suggesting that cu′(z) would have a delta function singularity.

It is known that the solution of the analogous problem in Bates et al. (1997) may be

discontinuous when c = 0, and that is true here as well.

We prove the existence, uniqueness, and various properties of monotone double obstacle

travelling waves under the above hypotheses. For example in all cases, we find that the

profile u is identically 1 for large enough z, and identically −1 for large negative z. The

solution assumes a particularly simple form, with u ≡ − 1 for z < z0, u ≡ 1 for z > z0, if

and only if f(−1) > 1 and f(1) 6 −1.

In the case f(u) = −γu, which corresponds to the nonlinearity considered in Blowey &

Elliott, 1991, 1992, 1993) and Chen & Elliott (1994), our results imply that necessarily

c = 0, and that there exists a unique profile for each choice of γ > 0. If 0 < γ < 1, the

profile is continuous, but if γ > 1, it is discontinuous and piecewise constant, as described

in the previous paragraph.

The regularity properties of the solutions are similar to their properties in the standard

case (when f is smooth), as discovered in Bates et al. (1997), with the exception that u′(z)

will generally be discontinuous at one or two points (where u = 1 or u = −1 is first

attained). If c� 0 this can happen at only a single point.

Certain a priori properties, such as regularity, can be deduced directly; they are given

in §2. Existence and uniqueness are then proved in the succeeding two sections.

2 General properties

Let

g(u) = u+ f(u). (2.1)

Lemma 1 If u(z) is a monotone double–obstacle travelling wave profile and u is discontin-

uous at a point z̄, then

g(u(z̄ − 0)) > g(u(z̄ + 0)), (2.2)

with equality holding if u(z̄ ± 0) both lie in (−1, 1).

Proof By Definition 1, c = 0. If u(z̄ ± 0) ∈ (−1, 1), (1.5) holds on both sides of z̄, and the

result holds by observing that the convolution term is continuous. The other cases are

handled in a similar way with the use of (1.5)–(1.7). q

Theorem 1 Let (u, c) be a monotone solution of (1.5)–(1.8). Then the following properties

hold:

(a) There are finite numbers z0 6 z1 such that u(z) ≡ 1 for z > z1 and u(z) ≡ − 1

for z < z0.

https://doi.org/10.1017/S0956792597003318 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792597003318


584 P. C. Fife

(b) If c > 0, then z0 < z1 and u is C1 on the interval [z0,∞).

(c) If c < 0, then z0 < z1 and u is C1 on the interval (−∞, z1].

(d) If c = 0 and g′(u) > 0, then z0 < z1, u ∈ C0(−∞,∞) and u is C1 on (z0, z1).

(e) If g′(u) > 0 and
∫ 1

−1 f(u)du = 0, then c = 0.

Proof of (a) Suppose the contrary, specifically that u(z) < 1 for all large positive z.

Equation (1.5) is satisfied for all large enough z. We may pass to the limit z→∞ in it,

using u′→0, J ∗ u(z)− u(z)→0, to obtain

f(1) = 0,

which contradicts (1.4). The same argument applies for large negative z.

Proof of (b) and (c) Let c > 0. By our requirement on the solution in Definition 1, u is

continuous, hence z0 < z1. When u ∈ (−1, 1), we have −cu′ = J ∗ u− g(u); hence u is C1

on the interval (z0, z1), and it is identically 1 on (z1,∞). It only remains to show that u′ is

continuous at z = z1, i.e. to show that

u′(z1 − 0) = 0. (2.3)

From (1.5), (1.7) and the continuity of J ∗ u, we have

− cu′(z1 − 0) = J ∗ u(z1)− g(1) > 0. (2.4)

Since u′ > 0 and c > 0, we have

0 6 −cu′(z1 − 0) 6 0,

hence (2.3). The proof of (c) is the same.

Proof of (d) Lemma 1 shows that u must be continuous; in particular, z0 < z1. Differentiate

(1.5) to obtain g′(u)u′ = J ′ ∗ u whenever −1 < u < 1, i.e. for z ∈ (z0, z1), and observe that

the convolution is continuous.

Proof of (e) By Lemma 1 again, we know that u is continuous. Multiply (1.5) by u′ and

integrate from z0 to z1. We have

c

∫ z1

z0

(u′)2dz +

∫ z1

z0

u′(z)(J ∗ u(z)− u(z))dz −
∫ 1

−1

f(u)du = 0.

The integration in the second term can be extended to the entire line (−∞,∞) since

u′(z) = 0 outside (z0, z1). Let I be that integral. Integrating by parts, using the L2 scalar

product, and noting that 〈u′, u〉 = 0, we may express it as

I = −〈u, (J ∗ u′ − u′)〉 = −〈u, J ∗ u′〉 = −〈u′, J ∗ u〉 = −I,

so that I = 0. Therefore c = 0.

To proceed further, we need the concept of a null truncation of g; the analogous

concept appears in Bates et al. (1997).

Definition 2 The function ĝ(u) is a null truncation of the function g if it is a continuous,

nondecreasing function on [−1, 1] satisfying ĝ(−1) 6 g(−1), ĝ(1) > g(1), ĝ(u) = g(u) for

all u such that ĝ′(u) > 0, and
∫ 1

−1
ĝ(u)du = 0.
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-1 1
0

U

Figure 1. Illustration of the null truncation ĝ of the function g. Two vertical segments have been
adjoined to the graph.

This construction is illustrated in Fig. 1. The graph of the truncation ĝ is the same as

that of g except for the horizontal line segment joining the two ascending branches of

g. In some cases, this segment may extend all the way to u = −1 and/or u = 1. In the

former case, for instance, it would be true that ĝ(−1) 6 g(−1). The level of the horizontal

segment is chosen so that the integral condition holds. Note that a null truncation, if it

exists, is unique, because changing the level of the horizonal segment will always cause

the integral condition to be violated. Also note that it may happen that g = ĝ; this occurs

when g is monotone and itself satisfies the integral condition.

Recall by the Hypothesis on f that either g′(u) > 0 for all u ∈ (−1, 1) or g′(u) 6 0 on a

single interval of positive length. Theorem 1(d) established regularity in the first case; we

now turn to the second one.

Theorem 2 Let u be a monotone solution of (1.5)–(1.8) with c = 0. Then g has a null

truncation ĝ. If ĝ′(u) = 0 on a maximal open interval (a∗, b∗) with b∗ > a∗, then u has a

single discontinuity. It is a jump discontinuity between the values a∗ and b∗. Except at that

discontinuity, u is continuously differentiable wherever |u| < 1. The jump is from −1 to 1 if

and only if

g(−1) > 0 > g(1). (2.5)

Conversely if equation (2.5) holds, then the piecewise constant function with jump from −1

to 1 is a solution with c = 0.

Remark Regarding the classical case treated in Bates et al. (1997), it was shown that the

solution profile is smooth when c� 0, and when c = 0 it may have a jump discontinuity

under conditions similar to those outlined in Theorem 2.

Proof of Theorem 2 Let us extend the graph of the function g(u) by adjoining to it

the semiinfinite vertical segment which has, as lower endpoint, (1, g(1)). Similarly adjoin
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the one which has upper endpoint (−1, g(−1)). We shall speak of these vertical segments

as being parts of the right and left ascending branches of the graph of g. These segments

are shown in Fig. 1.

First, we claim that when c = 0, u is discontinuous if and only if g′(u) < 0 on some

interval, that it can have no more than one discontinuity, and that any discontinuity is

a jump represented by a horizontal transition on the graph of the function g between

two ascending branches. In fact, suppose first that u is discontinuous at some point z∗,

and that its limits at that point from the left and right are both in (−1, 1). Since J ∗ u
is continuous and strictly increasing in z, it follows from (1.5) with c = 0 that g(u(z))

is also continuous at z∗. Therefore the curve (u(z), g(u(z)), as z crosses z0, undergoes a

horizontal jump from one ascending branch of the graph of g to the other (there are

only two, by the hypothesis on f). It follows from Lemma 1 that the same is true if

u jumps from −1 and/or to +1. For such a jump to be possible, g′(u) 6 0 on some

interval. Since there are at most two ascending branches, there can be at most one

discontinuity.

Next, suppose that g′(u) 6 0 on an interval of positive length. Then u must be

discontinuous; otherwise g(u(z)) would be nonincreasing somewhere. This proves the

claim.

We now connect the solution with a null truncation. If it has a discontinuity, let it

be at z = 0, and let the limiting values of u be denoted by u(0−) and u(0+). (If u is

continuous, these two values are the same.) Assume for the moment that −1 < u(0−),

u(0+) < 1. Then of course z0 < z1. For z ∈ (z0, z1), we have J ∗ u = g(u). Multiplying

by u′, we have that the resulting equation is valid for all z. Thus since
∫
u′(z)g(u(z))dz =∫ u(0−)

−1 g(u)du+
∫ 1

u(0+)
g(u)du, we have that

∫ 0

−∞
u′J ∗ udz +

∫ ∞
0

u′J ∗ udz =

∫ u(0−)

−1

g(u)du+

∫ 1

u(0+)

g(u)du.

We integrate by parts (as in Bates et al., 1997, Theorem 3.1)), and let ĝ be the truncation

defined as above relative to u(0−) and u(0+) (note that ĝ(u(0−)) = ĝ(u(0+))) to obtain∫ 1

−1

ĝ(u)du = 0.

Therefore ĝ is a null truncation. By uniqueness of the latter, we have u(0−) = a∗ and

u(0+) = b∗. This argument is also valid if u is continuous.

Examining this proof, we see now that in fact it is valid also if u(0−) = −1 or u(0+) = 1.

The remaining case to consider is when u(0−) = −1 and u(0+) = 1. By Lemma 1, equation

(2.5) holds, and therefore g has the following null truncation:

ĝ(u) ≡ 0.

Conversely, if equation (2.5) holds, the piecewise constant function is verified directly to

be a solution.
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3 Existence

The existence proof in the case of smooth f in Bates et al. (1997) was obtained by

embedding the travelling wave problem in a family of problems

−cu′ = θ(J ∗ u− u) + (1− θ)u′′ − f(u).

In the case θ = 0, existence is a classical result obtained by a phase plane argument.

A continuation argument was used to pass from θ = 0 to θ = θ0, for any θ0 < 1,

incrementally in small θ-steps. At each step, the existence of a solution (u(θ), c(θ)) satisfying

equation (1.8) for nearby values of θ was obtained by applying the implicit function

theorem. At the same time, various estimates were used to control the properties of the

solutions obtained. For example, it was shown that the velocities c(θ) obtained were

uniformly bounded.

Finally, a solution for θ = 1 was obtained as the weak limit of solutions for θ < 1. If

c� 0, the solution was shown to be smooth; otherwise it may have jump discontinuities,

which can be ascertained precisely. In the context of Bates et al. (1997), there is a definition

of null truncation which is analogous to our Definition 2. The solutions considered there

have c = 0 if and only if g has a null truncation. The proof is based largely on arguments

similar to those in the proof of Theorem 2 above.

The uniqueness was established by the rather involved construction of upper and lower

solutions.

We use the existence result in Bates et al. (1997) to establish the existence of a solution

of our double-obstacle problem (1.5)–(1.8).

Theorem 3 There exists a monotone solution (u, c) of (1.5)–(1.8).

Proof For each small enough ε > 0 let fε(u) be a smooth function of u defined for

u ∈ (−2, 2) with the properties that fε(−1 − ε) = fε(1 + ε) = 0, fε(u) is an increasing

function of u on (−1 − ε,−1) and on (1, 1 + ε), and is basically like f(u) for u ∈ [−1, 1].

Namely,

fε(u) continuous on [-1,1], uniformly in ε, (3.1)

lim
ε→0

fε(u) = f(u) (3.2)

uniformly for u ∈ [−1, 1], and (as in the Hyp. on f) the set of values of u at which

f′ε(u) 6 −1 is either empty or a single interval of positive length.

If f′(−1 + 0) > 0 and f′(1 − 0) > 0, for example, we may take fε(u) = f(u) for

u ∈ [−1, 1]; and in any case to differ from f only in a vanishingly small neighbourhood

of the endpoints. q

It follows from results in Bates et al. (1997) that for each function in this family, there

exists a unique (up to translation) monotone travelling wave pair (uε(z), cε). It satisfies

cεu
′
ε + J ∗ uε − uε − fε(uε) = 0, uε(±∞) = ±1± ε. (3.3)

We shall normalize these functions by translating them in a manner to be explained later.

We show that the velocities cε are bounded independently of ε. If they were not,
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there would exist a sequence εk→0 such that cεk→∞ or −∞. Suppose it is the latter; the

argument in the former case is the same. From equation (3.3) and the fact that the uε are

uniformly bounded, it follows that cεku
′
εk

are also; hence

‖u′εk‖∞→0 as k→∞.

One then sees, since
∫
J(y)|y|dy < ∞, that

J ∗ uεk − uεk→0

uniformly as k→∞. Let zk and δ > 0 be such that for all k,

fεk (uεk (zk)) > δ > 0;

such points exist by equations (1.4) and (3.2). We then obtain from equation (3.3) again

that cεku
′
εk
> δ/2 for large enough k, hence by the monotonicity of uε, cεk > 0, contradicting

its approach to −∞.

Since the uε are monotone and the cε bounded, there exists, by Helly’s theorem, a

subsequence {εk} such that the limits

u(z) = lim
k→∞

uεk (z), c = lim
k→∞

cεk (3.4)

exist at every value of z. The limit function u is also monotone, with range contained in

[−1, 1]. We shall show that (u, c) is our desired solution.

First, consider the case c� 0, so that for sufficiently small ε, all the cε are bounded

away from zero and (by Bates et al., 1997) the uε are smooth. Then (3.3) provides a

uniform bound on u′ε and in fact with (3.1) shows the u′ε(z) to be equicontinuous on each

closed interval of the z-axis on which u(z) ∈ (−1, 1). Therefore, on a further subsequence

of the original one, u′ε(z)→u′(z) uniformly on each such interval.

Let ẑ be a fixed number such that |u(ẑ)| < 1. For small enough ε, |uε(ẑ)| < 1 as well,

and therefore limk→∞ fεk (uεk (ẑ)) = f(u(ẑ)) by (3.2). We also have that J ∗ uεk (ẑ)→J ∗ u(ẑ)
by the dominated convergence theorem. We may therefore pass to the limit in equation

(3.3) to obtain that u satisfies equation (1.5).

The reason this argument does not work for u(ẑ) = ±1 is that we cannot guarantee

that |uε(ẑ)| 6 1, where the convergence of fε to f holds. A separate argument must be

given in that case, to show that equations (1.6) and (1.7) hold. Our argument will include

the case c = 0. Suppose for the moment that u(z) = 1 for all z in an open interval I

containing the point ẑ. Either (a) there exists a subsequence along which uε(ẑ) > 1 or (b)

there exists one such that uε(ẑ) 6 1.

Consider case (b) first. The argument used above in the case −1 < u(ẑ) < 1 may be

repeated here; we conclude that u′ε(ẑ)→0, so that equation (1.7) follows.

In case (a),

lim inf fε(uε(ẑ)) > f(1), (3.5)

by the fact that fε is increasing for u > 1. We shall show that along a subsequence

cεu
′
ε(ẑ)→0. (3.6)

We may assume either that all cε > 0 or all are 6 0. For definiteness, take the former

case. Recall that cεuε(z)→c = const. on I . Since cεuε(z) is a monotone function of z,
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the convergence is uniform on I . If it were not true that cεu
′
ε(ẑ)→0, then it may be

assumed that this sequence is positive and bounded away from 0. There would then be

another subsequence of the ε’s and a corresponding sequence of points {z1
ε > ẑ} such that

cεu
′′
ε (z

1
ε )→−∞. For suppose that cεu

′
ε > δ > 0, and also for some m > 0 that cεu

′′
ε (z) > −m

for all z ∈ I . Then

cεuε(ẑ + δ/m) > cεuε(ẑ) + δ2/2m,

contradicting the convergence of cεuε(z) to a constant. Similarly, there would be a second

sequence {z2
ε < ẑ} with (along the same ε-subsequence) cεu

′′
ε (z

2
ε )→ + ∞. However, by

differentiating equation (3.3) we know that

(cεuε)
′′ + J ′ ∗ uε = u′ε + f′ε(uε)u

′
ε > 0, (3.7)

by the monotonicity of uε and the construction of fε. Since the convolution term is

bounded, we see that the second derivative term could not approach +∞ along one

sequence of z’s and −∞ along another. Therefore, equation (3.6) holds. We may therefore

pass to the limit along a subsequence in equation (3.3), using equation (3.5) to obtain

equation (1.7).

We have assumed that ẑ is contained in an open interval where u = 1; but noting that

J ∗u is continuous, we may take a limit in equation (1.7) to show that equation (1.7) holds

for all z with u(z) = 1. Equation (1.6) is proved the same way. Note that this argument

also works in the case c = 0; we shall use that result below.

At this point, we have proved that equation (1.5) holds if c� 0, and equations (1.6)

and (1.7) hold in any case.

We now show that equation (1.5) holds in the case c = 0, so that cε→0. Either there

exists a further subsequence along which cε > 0, or there exists one along which cε 6 0.

We assume the former; the proof in the other case is similar.

When cε� 0, we know that pε = maxz u
′
ε(z) exists and is finite. There are three cases to

consider, namely that along some subsequence

(i) cε = 0,

(ii) cε > 0 and cεpε → 0, or

(iii) cε > 0 and cεpε are bounded away from zero.

In cases (i) and (ii), we may pass to the limit in equation (3.3) to obtain equation (1.5)

with c = 0 pointwise, as desired.

Consider now case (iii).

Lemma 2 Assume that c = 0 and case (iii) holds. Normalize the functions uε(z) by translat-

ing the independent variable so that u′ε(0) = pε. Then (after a possible redefinition at z = 0)

u satisfies equation (1.5), where |u(z)| < 1. If u is discontinuous, it is so only at z = 0.

Proof By assumption there is a number δ > 0 such that

pε > δ/cε. (3.8)

There exists a number m > 0, independent of ε, and points z∗± depending on ε, such
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that

u′ε(z
∗
±) < pε/2, −m/pε < z∗− < 0 < z∗+ < m/pε.

The reason is that otherwise the function uε(z) would attain values outside the interval

[−1, 1].

Since u′ε(0) = pε, it follows by the mean value theorem that by possibly increasing m,

we may guarantee that there exist numbers z± (depending on ε) with −m/pε < z− < 0 <

z+ < m/pε such that

u′′ε (z−) >
p2
ε

m
; u′′ε (z+) < −p

2
ε

m
. (3.9)

From equations (3.8) and (3.9), we have that at z = z+,

g′ε(uε(z+))u′ε(z+) = cεu
′′
ε (z+) + J ′ ∗ uε < −

cεp
2
ε

m
+ a < −δpε

m
+ a,

where a is an upper bound on |J ′ ∗ uε(z)| independent of ε and z. Since pε→∞, we have

g′ε(uε(z+)) < 0 (3.10)

for ε small enough. Similarly,

g′ε(uε(z−)) > 0. (3.11)

Thus uε(z−) is on an ascending branch of gε, and uε(z+) is on a descending one.

Let S be the set of points z (� 0) such that there exists a subsequence of the original

sequence εk on which u′ε(z) is bounded. Then S is dense; otherwise u′εk (z)→∞ for all z in

an interval of positive length. Let 0 < z1 < z2 be two elements in S , and I = [z1, z2].

Still remaining on a subsequence where u′ε(z1) and u′ε(z2) are both bounded, we show

that cεu
′
ε→0 uniformly on I . Suppose this is not the case; then p̄ε = maxz∈I u

′
ε(z)→∞.

Define zε ∈ I by p̄ε = u′ε(zε). Then by choice of z1, z2 we have that the zε lie in the interior

of I . We redefine the functions uε by translating the independent variable so that all the

zε coincide, say zε = z0 for some z0 > 0. The above argument can now be repeated to

show that there are points z′± approaching z0 as ε→0 (on our subsequence) such that the

values uε(z
′
−) and uε(z

′
+) lie on an ascending and a descending branch of gε, respectively.

This transition between branches would happen at larger values of u than the one found

before, since u is an increasing function. But such a pair of transitions cannot occur

because gε has at most one descending branch, by its construction.

This contradiction shows that cεu
′
ε(z)→0 for each z ∈ I , and in fact by easy extension,

for all z� 0. It follows that the limit ε→0 (along a subsequence) can be taken in equation

(3.3) to obtain equation (1.5) with c = 0 for every z� 0 with u(z) ∈ (−1, 1). (The continuity

of J ∗ u can be used to show that u(0) may be redefined so that equation (1.5) holds there

as well.)

Essentially the same argument also holds when u(0−) = −1 and/or u(0+) = 1; we shall

not supply the details. This completes the proof of the lemma. q

We have already shown above that equations (1.6) and (1.7) hold. This completes the

existence part of the proof of the theorem, except for equation (1.8), which we now

address. If u is piecewise constant, jumping from −1 to 1, then equation (1.8) is automatic,

so we shall assume that u is otherwise.
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We know that limz→±∞ u(z) must be ±1 or the zero of f, which is unique according to

the Hypothesis on f. Call it α ∈ (−1, 1).

Our claim now is that we may, possibly through proper normalization of the uε,

guarantee that u(z) assumes a value either in (−1, α) or in (α, 1). First, suppose that c = 0

and Case (iii) holds. Then cεu
′
ε(0) > δ > 0. If it were true that u(z) = const, then we could

repeat the argument following equation (3.7) to show that cεu
′′
ε would approach ∞ and

−∞ on two sequences of points near 0, and obtain a contradiction as before. Therefore

in this case, u assumes a value in one of the two intervals indicated.

In all other cases, we have not yet specified the normalization of the uε by translation,

but shall now. Suppose that c > 0. Take ᾱ ∈ (α, 1). We specify the normalization so that

either uε(0) = ᾱ or, if uε does not take on that value because of a discontinuity, then

the discontinuuity occurs at z = 0. This does not affect the cε. The limiting function u

therefore takes on the value ᾱ or has a discontinuity straddling ᾱ. In the latter case if the

limit from the left is < α, (1.8) must follow and we are through. It is shown below that

u cannot be identically α on an interval, so the only other case is that the limit from the

left surpasses α, so that again u takes on a value between α and 1. This proves the claim;

moreover if c > 0, we have arranged that u assumes a value between α and 1 (if c < 0, it

is between −1 and α).

If the value assumed is > α, we have that limz→∞ u(z) = 1, since the limit must be

greater than α. If we can show that limz→−∞ u(z)� α, that limit must be −1, and equation

(1.8) will follow. Our proof of this fact follows a similar argument as in Bates et al. (1997,

theorem 2.7).

Note that it cannot happen that u(z) ≡ α for large negative z, because J ∗ u − u > 0

there, and equation (1.5) would be violated. Therefore, if limz→−∞ u(z) = α, it must be true

that u(z) > α, so that f(u(z)) < 0 for all z. Therefore from (1.5),
∫ R
−R(J ∗u−u)dz < −k < 0

for all large enough R. We write that inequality as

−k >
∫ R

−R
(J ∗ u− u)dz =

∫ ∞
−∞

J(y)

∫ R

−R
(u(z + y)− u(z))dzdy.

Note the identity∫ B

A

(u(z + y)− u(z))dz = y

∫ 1

0

[u(B + ty)− u(A+ ty)]dt,

which holds for all piecewise continuous functions u. Therefore by the dominated conver-

gence theorem

−k >
∫ ∞
−∞

yJ(y)

∫ 1

0

[u(R + ty)− u(−R + ty)]dtdy

→(1− α)
∫ ∞
−∞

yJ(y)dy = 0

as R→∞, which is a contradiction.

The other cases are handled in the same way. This proves equation (1.8).

We may now complete the characterization of the case when c = 0.
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Theorem 4 Let (u, c) be a double-obstacle solution. Then c = 0 if and only if g has a null

truncation.

Proof If c = 0, we know from Theorem 2 that g has a null truncation. Now assume g

has a null truncation. The construction of the family fε may be arranged so that all the

gε(u) = fε(u) + u also have a null truncation. As shown in Bates et al. (1997), this implies

the corresponding velocities cε = 0 for all small ε. Therefore there exists a solution with

c = 0. q

The proof of Theorem 5 (uniqueness) in the next section does not rely on the present

theorem. It shows that this constructed solution is the same as that given in the theorem.

4 Uniqueness

Theorem 5 The travelling wave double-obstacle solution constructed in Thm. 3 is unique

among all such monotone solutions.

Proof Let (u1, c1) and (u2, c2) be two solutions, with c1 > c2.

For large enough α, we have u1(z) > u2(z − α) for all z, since they are both identically

±1 for large enough |z|. Let α∗ be the least value of α for which this is true. This means

that for all α < α∗, the function w(z; α) = u1(z) − u2(z − α) will have a negative value at

some number z(α) for which we have an a priori bound. There is a subsequence of the

α’s along which limα→α∗ z(α) = z∗ exists (z∗ might not be unique). Then w(z; α∗) > 0 for

all z and this is not true for any smaller value of α.

For now, assume u1 and u2 are both smooth when |u|� 1, and neither is the piecewise

constant solution. There are three cases to consider; they are not necessarily mutually

exclusive, since z∗ is not necessarily unique:

(i) u1(z∗) = 1,

(ii) u1(z∗) = −1, and

(iii) u1(z∗) ∈ (−1, 1).

In case (i), we claim that z∗ is the least value of z at which u1(z) = 1, and the same

for u2(z − α∗). For if it were the least for u1 but not for u2, it would not be true that

w(z; α∗) > 0 for all z, contrary to our construction. If it were the least for u2 but not for u1,

we could decrease α somewhat and still have w(z; α) > 0 for all z in some neighbourhood

of z∗, contrary to the definitions of α∗ and z∗. Finally, if it were the least for neither u1

nor u2, then it could not be the limit of z(α).

Therefore in case (i), when z < z∗ and z is close enough to z∗, we have u1(z) and

u2(z − α∗) ∈ (−1, 1), so that both functions satisfy (1.5). Moreover, we have that

w′(z∗ − 0, α∗) 6 0, (4.1)

for otherwise it would not be true that w(z, α∗) > 0 for nearby values of z.

Analogous results hold for case (ii) (replace z∗ − 0 by z∗ + 0; w′ > 0) and for case (iii)

(use z∗ itself; w′ = 0).
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Thus in all cases, equation (1.5) holds both for u = u1 and u(z) = u2(z−α∗) at z = z∗±0

or z∗, according to the case.

We subtract that equation for u = u2 from the equation for u = u1 to obtain

c2w
′ + J ∗ w + (c1 − c2)u′1 = 0 (4.2)

and

c1w
′ + J ∗ w + (c1 − c2)u′2 = 0, (4.3)

these equations holding at the value of z appropriate to the case, as indicated above.

In all cases, the last two terms of equations (4.2) and (4.3) are nonnegative, since w > 0

and u′i > 0. If we can show that the first term of one or the other of these two equations is

also nonnegative, it will follow that all are zero. In particular, it will follow that J ∗w = 0,

which since w > 0 is only possible if w ≡ 0. This means that u1(z) = u2(z−α∗) for all z, i.e.

the two functions are the same up to translation. Then of course c1 = c2, and uniqueness

will be established.

It therefore suffices to show that c2w
′ > 0 or c1w

′ > 0. We consider the three cases in

turn:

Case (i)

Since w′ 6 0 by equation (4.1), it suffices to show w′ = 0 or c2 6 0. But it was proved in

Theorem 1(b), equation (2.3), that u′1 = u′2 = w′ = 0 if c1 > c2 > 0.

Case (ii)

We need w′ = 0 or c1 > 0. But by Theorem 1(c), we know w′ = 0 if c1 < 0.

Case (iii)

w′ = 0.

This establishes uniqueness under the assumption that u1 and u2 are smooth when not

equal to ±1. We now assume the contrary, that one or both of the ui are discontinuous.

We outline the changes in the previous proof that are needed. First, a slight change in the

definitions of cases (i) and (ii) is needed. If u1 is discontinuous at z∗, case (i) is defined to

be when u1(z∗ + 0) = 1. Similarly, the limit from the left is taken in case (ii).

Case (i): the previous proof rested on the fact that equation (1.5) holds for both functions

u1(z) and u2(z − α∗) at z = z∗ − 0, and that g(u(z)) is continuous at z = z∗. This is still

true if these functions are continuous at z = z∗. More generally, it remains true under the

weaker assumption that each function assumes values in (−1, 1) for z ∈ (z∗ − δ, z∗) for

some δ > 0. To see this, recall that each function is either continuous or has zero velocity

with g(u(z)) continuous.

Still assuming case (i), we see that the only other subcase to check is that when one or

both of the functions jump between −1 and +1. If they both do, then clearly they are the

same functions. If only one does, it has to be the lesser one, namely u2(z − α∗). In that

case, g(−1) > 0 > g(1) from equation (2.5). From equation (1.5), we have

c1u
′
1(z∗ − 0) = g(1)− J ∗ u1(z∗),

which is strictly negative since J ∗ u1(z∗) > 0. This implies that c1 < 0, which contradicts

the fact that c1 > c2 = 0. This completes the revision of the proof in Case (i).
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Similar comments hold in Case (ii).

Suppose, finally, that Case (iii) holds, and that Cases (i) and (ii) do not. Then each of

the functions u1(z) and u2(z − α∗) takes on values in (−1, 1) either for z ∈ (z∗ − δ, z∗) or

for z ∈ (z∗, z∗ + δ), for δ > 0 small enough. Therefore equations (4.2) and (4.3) still hold

if we interpret w = u1(z∗ ± 0)− u2(z∗ − α∗ ± 0) and w′ = u′1(z∗ ± 0)− u′2(z∗ − α∗ ± 0) with

the proper combination of signs (not necessarily both the same). Since either c1 = 0 or

c2 = 0, we may choose one of these equations to yield J ∗ w = 0, hence uniqueness. q

5 Conclusion

The problem considered in this paper is a generalization, both to nonlocal behaviour and

to a variational inequality, of the classical bistable nonlinear diffusion equation, which

occurs, among other places, in modelling state transitions in a solid material. There exists

a complete theory of travelling waves in the classical case, and we here provide one for the

existence, uniqueness and regularity of such waves for the generalization. An investigation

of stability is left for future work.
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