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Abstract

In the last several decades, avian influenza virus has caused numerous outbreaks around the
world. These outbreaks pose a significant threat to the poultry industry and also to public
health. When an avian influenza (AI) outbreak occurs, it is critical to make informed deci-
sions about the potential risks, impact, and control measures. To this end, many modeling
approaches have been proposed to acquire knowledge from different sources of data and per-
spectives to enhance decision making. Although some of these approaches have shown to be
effective, they do not follow the process of knowledge discovery in databases (KDD). KDD is
an iterative process, consisting of five steps, that aims at extracting unknown and useful infor-
mation from the data. The present review attempts to survey AI modeling methods in the con-
text of KDD process. We first divide the modeling techniques used in AI into two main
categories: data-intensive modeling and small-data modeling. We then investigate the existing
gaps in the literature and suggest several potential directions and techniques for future studies.
Overall, this review provides insights into the control of AI in terms of the risk of introduction
and spread of the virus.

Introduction

Avian influenza (AI) is a disease caused by influenza type A viruses. The natural reservoir for
avian influenza virus (AIV) is aquatic wild birds (Poetri, 2014); however, AIV can also infect
domestic poultry in addition to other avian and mammalian species. AIV also sporadically
infects human beings and is, therefore, regarded as a zoonotic virus (CDC, 2010).

AIV outbreaks in the commercial poultry industry pose a continuing threat. To contain
outbreaks of AIV, various control measures such as culling of the birds, quarantine, isolation,
and vaccination, have been applied. Such policies, however, may lead to substantial financial
losses, regardless of their effectiveness. A large number of studies have employed mathematical
models to gain a better understanding of how AIV outbreaks occur, and also to facilitate deter-
mining which factors contribute to AI progression. Modeling methods are used to select cost-
effective strategies for control of AIV outbreaks.

A mathematical model is a simple and quantitative representation of a real-world function.
Mathematical models can provide a theoretical framework to test real-world scenarios (Siettos
and Russo, 2013) or predict the output of complex systems, in which performing a real experi-
ment is costly or impossible. Furthermore, computer simulations in conjunction with math-
ematical models can bring realism to the models and approximate the behavior of real
systems. Mathematical models have been used in AI research (Wiratsudakul, 2014;
Maseleno et al., 2015) to explore patterns and dynamics of disease spread, to assess the effect-
iveness of interventions, and to manage containment plans during outbreaks (Dorjee et al.,
2013). Mathematical modeling constitutes a step in the process of knowledge discovery in
databases (KDD). In general, KDD refers to a broader process of finding knowledge in data
sources. Therefore, this review focuses not only on mathematical models, but also on the entire
process of KDD. The present report provides a review of AI modeling methods and explains
the advantages of novel methods that can be used in KDD processes in this field. In general,
the existing modeling methods can be divided into two groups based on the amount of data
that are required to construct them. For each group, the goal of this review is to summarize
previous work, and to identify the existing gaps concerning the knowledge discovery process
in addition to describing ways to address these gaps.

Knowledge discovery in databases (KDD)

KDD refers to the overall process of extracting novel and useful patterns from data sources
(Fayyad et al., 1996; Williams and Huang, 1996). The primary goal of KDD is to transform
data from large databases into new knowledge (Qi, 2008). Currently, several data sources
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relevant to AI outbreak detection and containment, such as sen-
sor networks, social media, and satellite technology, are being col-
lected and accumulated at a dramatic pace. For example, sensor
networks can be used to monitor AI in poultry farms and satellite
images can be used to monitor environmental changes. Such data
sources can provide an opportunity to gain precise and timely
knowledge required for AI containment planning. Data, however,
are usually streaming, large, and in varying formats. These types
of data require continuous and automatic storage, pre-processing,
analysis, interpretation, and evaluation. Therefore, not only data
collection and analysis, but the whole chain of KDD is required
to guarantee high quality knowledge discovery for AI-related
decision-making.

A general overview of the KDD process is presented in Fig. 1.
According to Nakamori (2011), KDD is comprised of five phases:

(1) Problem definition: Understanding the problem domain is a
necessary prerequisite for a relevant knowledge extraction
task. In the case of AI, experts from different disciplines,
such as epidemiology, environmental science, statistics, and
computer science should collaborate on the underlying prob-
lem that is being addressed in a data analysis task. They
should also determine prior knowledge, potential data
sources, requirements, and project objectives. In general,
without problem definition, even the most advanced techni-
ques will be incapable of providing the desired results.

(2) Data collection and pre-processing: After obtaining a clear
understanding of the problem, domain experts explore the
data, create a target dataset from the available data sources,
and prepare data for deriving knowledge. Traditionally, the
process of data collection was paper-based (Blumenberg
and Barros, 2016), which is indeed time-consuming.
Recently, due to the high volume of data generated by the
internet, digital devices, and computational simulations, epi-
demiological studies have been turning into a data-intensive
discipline. To this end, recently, concepts such as ontology
(Pesquita et al., 2014) have been introduced to facilitate the
integration, validation, searching, and sharing of epidemio-
logical resources. Ontology is a standard description of
domain concepts and their relationships (Noy and
McGuinness, 2001). A potential application of ontology in
the field of AI can be to define the relationship between con-
ceptual entities, such as highly pathogenic AI (HPAI), low
pathogenic AI (LPAI), AIV subtypes, and outbreak locations.
Such an ontology can be used to search AI databases or aggre-
gate data sources.

Data pre-processing is a labor-intensive step in the KDD pro-
cess. This step serves several purposes including cleaning, quality
improvement, and dimensionality reduction of data, in addition
to managing large volumes of data that are not capable of being
processed in the computer memory. Data cleaning involves sev-
eral tasks, such as the removal of noise and inconsistent data,
managing missing data fields, and discretization of data
(RamrezGallego et al., 2016), which are necessary to correct
inaccurate data. Record linkage (Dusetzina et al., 2014) is another
pre-processing task to improve data quality and integrity.
Furthermore, data transformation can be implemented by redu-
cing the number of data elements without destroying the validity
of data. During the cleaning stage, depending upon the goal of
data mining, representations of data such as normalization, type
converting, aggregation, or smoothing may be required.

The term ‘data instance’ or ‘data example’ describes a single
object of a dataset. Instances are described by ‘feature’ vectors.
A feature is a specification that defines a property of a data entity.
The term feature is sometimes used synonymously with ‘attribute’
or ‘dimension’. Recent trends in data collection have resulted in
datasets with enormous dimensions. This problem is called
‘curse of dimensionality’ (Bellman, 2013), and appears in datasets
with hundreds or thousands of features. Curse of dimensionality
increases computation cost, storage requirements, and time
required for analyses.

As a solution, several feature selection (FS) methods have been
proposed with the objective of finding a subset of features that are
most representative, and then discarding the rest (Alpaydin, 2014;
Chi, 2009). Therefore, the selected subset is a reduced representa-
tion of the initial data, meaning that it is much smaller than the
initial dataset in size, but produces the same results. FS methods
can be divided into three categories: filter, wrapper, and embed-
ded (Neumann et al., 2016). In filter methods, the FS step is a sep-
arate pre-processing step from the machine learning (ML) model.
This group of methods assesses the properties of data using scor-
ing metrics such as the chi-square test, mutual information, cor-
relation coefficients, Fisher’s discriminant scores, and variance
threshold. Filter methods have been used in AI studies to find
the most critical features and investigate which ones are statistic-
ally significant (Herrick, 2013; Si et al., 2013; Gilbert et al., 2014;
Wang et al., 2017). Although filter methods are computationally
efficient and fast, they do not involve any learning, which may
affect the classification accuracy (Hira and Gillies, 2015).

Wrapper methods, however, use ML models to measure the
quality of candidate subsets of features by searching in the feature
space. Genetic algorithm (GA) is an example of wrapper FS meth-
ods. GAs are search techniques used for the selection of popula-
tions of solutions to a problem. GAs are inspired from the natural
evolution and genetic mechanisms of living things. Although
wrapper methods outperform filter methods in terms of accuracy
(Neumann et al., 2016), they are computationally expensive and
can suffer from over-fitting. Random forest (RF), an ensemble
of decision trees that has been used to identify the most signifi-
cant risk factors for the prediction of AI, is an example of wrapper
FS (Herrick et al., 2013). Finally, embedded methods combine fil-
ter and wrapper FS methods and offer low-cost and high accuracy.
Recursive feature elimination is an embedded FS method. Despite
the benefits that this method offers, embedded FS methods have
not been popular in AI literature.

Feature extraction is another approach to create a lower
dimension of data. Feature extraction constructs a new set of fea-
tures by combining original features (Alpaydin, 2014). For
example, principal component analysis is a well-known feature
extraction method. To the best of our knowledge, feature extrac-
tion methods have not been used in AI modeling. In studies
aimed at risk factor analysis (Nishiguchi et al., 2007; Busani
et al., 2009; Gonzales, 2012; Nguyen, 2013), feature extraction
can be used as an approach for creating new covariates.

(3) Data mining (DM): This stage requires selecting a dataset and
the appropriate DM algorithms for a specific mining object-
ive. The DM algorithms then discover patterns that exist in
data. ML and statistical methods are examples of many differ-
ent approaches used in DM. ML approaches can be grouped
into supervised learning, unsupervised learning, and semi-
supervised learning methods. Unsupervised methods find
useful patterns from unlabeled data. Clustering is an example
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of unsupervised ML algorithms that map data into clusters
based on similarity metrics or probability density models.
By contrast, supervised methods learn to map labeled data.
Classification is a supervised ML task that learns from labeled
data (i.e. training data) and categorizes data into one of sev-
eral predefined classes. Regression falls into the supervised
learning group and is a measure to determine the strength
of the relationship between covariates and an independent
variable. Since in many real-world applications, labeled data
may be expensive and unavailable, a third group of ML has
been introduced (Chapelle et al., 2009). This group, known
as semi-supervised learning, is trained on a combination of
labeled and unlabeled data.

There have been recent attempts in epidemiological research to
use semi-supervised (Zhao et al., 2015), supervised (Erraguntla
et al., 2010; Santillana et al., 2015; Valdes-Donoso et al., 2017),
and unsupervised (Chen et al., 2016; Ghosh et al., 2017; Lim
et al., 2017) learning approaches. In AI research, unsupervised
ML algorithms such as K-mean are recommended for spatio-
temporal profiling, outbreak detection, and surveillance studies.

(4) Post processing: After building one or more models, the next
step is to interpret the obtained knowledge from the DM
algorithms. The aim is to see whether suitable patterns have
been discovered with respect to the goals defined in the
first step. In this phase, various visualizations such as box-
plots, histograms, time series plots, or two-dimensional scat-
ter plots are used as a part of the evaluation stage.

(5) Practical use: The final goal of KDD is to use the newly
obtained knowledge in real-world applications. In other
words, the knowledge captured in the process needs to be
organized and depicted in a way that a user or a machine
can use it. Depending on the goal of a knowledge discovery
process, a variety of applications may be built and provided
to the user. In a potential AI decision support system, the

goal of the KDD process could be: presenting reports, out-
break warnings, outbreak spread monitoring, outbreak pre-
diction, and assessing intervention policies.

Among the five steps of KDD, the DM step is highlighted in
epidemiological research. However, other steps of KDD are also
essential and disregarding them may lead to inappropriate out-
comes. Furthermore, if unsatisfactory results occur in any phase
of the KDD process, it is possible to return to earlier stages and
repeat them (Zhang et al., 2010). Therefore, applying a compre-
hensive and iterative KDD is a factor in the success of epidemio-
logical research as it assists in making sound decisions and
finding the best possible outcome in a situation.

Data-intensive modeling

AI modeling methods may be classified into two categories: data-
intensive modeling and small-data modeling. The central goal of
data-intensive modeling is mining new insights from vast and
diverse datasets such as click-stream, geo-location data, sensor
network data, and digital health records (Marathe and
Ramakrishnan, 2013).

Time-series analysis

Time-series data are a sequence of numerical data points in suc-
cessive order showing how a given variable changes over time.
The associated patterns obtained from time-series models are
beneficial to predict future events. A commonly used time-
series model in multiple previous studies (Soebiyanto et al.,
2010; Kane et al., 2014; Permanasari et al., 2015; Chadsuthi
et al., 2015; Ngattia et al., 2016) is auto-regressive integrated mov-
ing average (ARIMA) or Box–Jenkins model (Box et al., 2015).
ARIMA is the combination of the auto-regressive model, the
moving average model, and the auto-regressive moving average
model.

Fig. 1. KDD process.
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The time-series analyses in AI research have been applied to
model the temporal changes of AI incidence and to forecast pos-
sible outbreaks. For example, a non-seasonal ARIMA model was
built in a study by Permanasari et al. (2015) to forecast future
occurrences of AI. The prediction was made based on a 10-year
monthly time-series of AI incidence in two regions of
Indonesia. The required parameters of the ARIMA model were
selected using three tests, including parameter significance,
white noise, and residual normality. Similarly, ARIMA and RF
time-series models have been used by Kane et al. (2014) to predict
the future occurrence of AIV outbreaks.

In terms of data sources used in time-series analysis of AI,
studies are usually limited to the temporal changes of AI inci-
dence. While the history of disease incidence is an important fac-
tor to consider in the prediction of future outbreaks, the role of
other risk factors cannot be ignored. Accordingly, in other infec-
tious disease studies, the association between time-series of dis-
ease incidence and climate factors has been examined
(Chadsuthi et al., 2015; Ngattia et al., 2016). Influenza outbreaks
have been predicted by incorporating climate factors such as rain-
fall and temperature as inputs for the ARIMAX model, which is
an ARIMA with additional explanatory variables. For example,
Soebiyanto et al. (2010) showed that including climatic variables
in ARIMA models leads to better performance compared to
including only past case values. Additionally, Chadsuthi et al.
(2015) showed the best performance for central regions of
Thailand was obtained using the ARIMAX model that included
the average temperature and the minimum relative humidity,
whereas, for southern regions, minimum relative humidity as
input series resulted in the best model. Similarly, Ngattia et al.
(2016) concluded that adding rainfall factor increases the per-
formance of the ARIMAX model.

Classical statistical models, such as ARIMA and support vector
machine, are present in the literature concerning infectious dis-
ease (Zhang et al., 2014; Chadsuthi et al., 2015; Imai et al.,
2015; Song et al., 2016) and AI (Kane et al., 2014; Permanasari
et al., 2015). However, computational intelligence models such
as those introduced by Ma et al. (2015) are not widely used, des-
pite the fact that they have the potential to outperform classical
techniques. Classical models usually require pre-defined assump-
tions, such as normally distributed residuals. Also, the perform-
ance of classical models may potentially be jeopardized by noisy
or missing data. Models such as long short-term memory and
recurrent neural network can discover non-linear and high-
dimensional relationships in data (Ma et al., 2015).
Furthermore, the application of ensemble methods such as RF
could be considered in AI time-series analysis. Ensemble methods
combine multiple models to obtain a single output in order to
achieve a better performance than any individual model.
Recently, the potential of ensemble methods has been investigated
for decision-making in infectious disease surveillance (Ray and
Reich, 2018). Also, some studies related to infectious disease
have discovered that most often RF results in a better prediction
performance than ARIMA (Kane et al., 2014; Wu et al., 2017).
These methods can be used in future AI research to improve
the accuracy and reliability of predictions in comparison with a
single model (Araque et al., 2017).

Social media surveillance

Traditionally, reports from hospitals or public health centers have
been used for disease surveillance (Robertson and Yee, 2016).

However, these passive case reports are usually manually created,
and are reported 1–2 weeks after the cases are diagnosed. This can
delay subsequent actions in the case of disease outbreaks. After
the invention of social media, blogging websites, and web
searches, online media have been employed as surrogate data
sources. To obtain data from online media, crawlers and applica-
tion programing interfaces (APIs) have been utilized. Many websites
offer APIs for their services, which allow third parties to query and
fetch data in a convenient format. A crawler is an Internet bot used
for browsing websites and social media automatically and regularly.
Disease trends in social media have been employed for epidemio-
logical purposes, as they enable authorities to track, predict, and
be informed of disease emergencies.

Several studies have been carried out to examine the value of
social media for human disease surveillance and to ensure its
potential for being a surrogate source for the common reports of
disease. For instance, the strength of relationships between
disease-related posts and reports from health institutions (e.g. the
Center for Disease Control and Prevention (CDC), the World
Health Organization (WHO), and the World Organization for
Animal Health (OIE)) have been measured using correlation.

To study social media for animal disease surveillance, there are
several barriers and challenges to overcome. For instance, when
analyzing social media posts regarding influenza, it is critical to
differentiate between human and animal influenza. This is
because users of social media are people who usually use it to
communicate their daily events. Therefore, it is more likely that
social media posts represent cases of human influenza.
Consequently, several studies that exploit social media for the pur-
pose of surveillance have focused on disease among human popu-
lations (Achrekar et al., 2011; Szomszor et al., 2011; Chen et al.,
2016; Sharpe et al., 2017). Nevertheless, findings by Szomszor
et al. (2011) indicate that social media users share articles from
official resources. Therefore, articles regarding animal disease
can be shared on social media. This provides researchers with
an opportunity to employ social media for monitoring animal dis-
ease, such as AI. AI surveillance using social media has been pre-
viously attempted. Robertson and Yee (2016) introduced an
online AI surveillance system to detect the AIV outbreaks. First,
AI-related Twitter posts were collected, and outbreaks were iden-
tified based on anomalies in the time-series data. After comparing
the detected outbreaks in Twitter with AIV outbreak reports from
the OIE in the same period, a strong correlation was discovered.
Also, anomalies were detected using a general linear time-series
algorithm based on static and dynamic thresholds. Moreover, a
latent Dirichlet allocation model was applied to the outbreak data
to extract topics, concluding that the dynamic threshold leads to
more meaningful topics. Further research in social media mining
is required to determine whether social media can be employed as
a reliable online surveillance mechanism for AI.

Another challenge in social media analysis is the volume of
data. The growth of data has led to the development of new data-
base technologies. Large amounts of data extracted from social
media make analysis and daily maintenance of data difficult.
Both relational (Byrd et al., 2016; Jayawardhana, 2016) and
NoSQL (Padmanabhan et al., 2013; Wang F et al., 2016) databases
have been used in infectious disease surveillance using social
media data. Traditional relational databases are designed to
store small amounts of relevant data, while NoSQL (not only
structured query language) databases are suitable for non-
structured data (e.g. articles, photos, social media data, or videos).
In comparison with relational databases, NoSQL databases
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provide a number of advantages. NoSQL databases offer lower
cost, easier scalability, and open source features, which make
them a candidate option for AI surveillance applications that
employ large social media data.

Social media data preprocessing can be challenging and time
consuming. Social media contains spam messages that need to
be discarded and unstructured text that needs to be transformed
to an interpretable form for DM algorithms. In general, spam
removal has been performed in a limited number of studies that
developed surveillance systems to monitor disease from social
media (Szomszor et al., 2011; Kostkova et al., 2014; Signorini,
2014). In the AI surveillance study (Robertson and Yee, 2016)
that employed Twitter, several data cleaning operations such as
stop word removal were performed, but spam removal was
skipped. Removing spam, however, can enhance the accuracy of
disease surveillance systems.

Furthermore, there are several gaps in the currently used meth-
ods for pre-processing of social media data for disease surveil-
lance. For instance, manual spam removal methods, such as the
link ratio calculation method used by Szomszor et al. (2011),
are only applicable to a specific group of tweets (i.e. with a
link). In addition, hand-crafted features (e.g. bag of words
method) have usually been employed as the input of the spam
detection classification algorithms. The manual process of feature
extraction, however, involves human labor and relies on expert
knowledge. Therefore, state-of-the-art methods, such as deep
learning algorithms, have potential to be used for spam detection
from texts. Deep learning algorithms are capable of generating
word or sentence representation automatically as part of their
learning process.

In general, among KDD steps related to social media surveil-
lance research, the preprocessing step has received much atten-
tion. This is because social media text is unstructured, requiring
its transformation to an interpretable form for DM algorithms.
Moreover, among DM methods, correlation and classification
are widely used in social media analyses.

Spatiotemporal risk prediction models

Spatiotemporal variabilities are key to reliable predictions of infec-
tious disease (Arab, 2015). However, spatiotemporal predictions
depend on the availability of relevant time- and space-related
health data. Recent computational advances combined with acces-
sibility to data containing time and space dimensions have made
spatiotemporal models more popular methods (Arab, 2015).
These models are used to analyze the spatiotemporal evolution
of infectious diseases and assess the effect of control policies. In
spatiotemporal models, clusters of disease are usually depicted
on geographical maps to show the risk of disease occurrence
(Gilbert and Pfeiffer, 2012).

In the AI modeling literature, considerable efforts have been
put forth to find a connection between AI and environmental fac-
tors (Erraguntla et al., 2010; Herrick et al., 2013; Mu et al., 2014).
Furthermore, some studies have connected AIV transmission with
migratory birds and poultry trade. For instance, Kilpatrick et al.
(2006) determined H5N1 HPAI pathways that led to introduction
of the virus into 52 countries and predicted the most likely
mechanisms, including migratory bird movements and poultry
trade, that facilitated the spread of AIV. In addition, the impact
of agriculture and ecology, such as the presence of ducks and
rice harvests, on the risk of HPAI has been explored (Gilbert
et al., 2007; Martin et al., 2011b).

In addition to the risk prediction studies, attempts have been
made to simulate the spread of AIV by considering a more com-
prehensive list of risk factors. To this end, Patyk et al. (2013) con-
ducted a transmission simulation of HPAI H5N1 infection in
commercial and backyard domestic poultry in South Carolina.
They divided risk factor parameters into direct, indirect, and air-
borne. Subsequently, the North American Animal Disease Spread
Model (NAADSM) was used to simulate H5N1 transmission.
NAADSM is a well-established stochastic spread simulation
framework designed for populations of livestock herds.
Ultimately, Patyk et al. (2013) concluded that parameters related
to indirect contact, such as people movement, vehicles, and fomi-
tes, had the highest impact on the number of infected flocks, and
the duration of outbreaks.

Risk-based studies usually generate hypotheses using previous
observations or from examples in the literature. Hypotheses are
then defined and tested to investigate the impact of risk factors
on AI outbreaks (Belkhiria et al., 2018). This method may fail
to identify several hypotheses. As a solution, ML methods can
be employed to extract rules from observational data. The process
of extracting rules can be less time-consuming than generating
and testing hypotheses. Approaches such as online analytical pro-
cessing, association rule mining, and sequential pattern mining
have been used to find hidden rules and assess the temporal
and spatial transmission of HPAI (Xu et al., 2017). The outcome
information from these analyses assists decision makers in under-
standing the spatial and temporal routes that AI will likely follow
in the future.

Small-data modeling

The following section reviews research on statistical and mathem-
atical modeling methods that rely on approaches such as ques-
tionnaire, interview, sampling, contact tracing, and direct
observations. These studies can advance the understanding of
AIV behaviors and dynamics.

Empirical studies

Empirical studies may be divided into two main groups: (1) stud-
ies that estimate AI transmission parameters from experimental
and observational data; and (2) studies that exploit observed con-
tact networks to make network models of AI transmission.
Mathematical transmission models act as a framework to facilitate
the understanding of the complex processes of disease contagion
(Wiratsudakul, 2014). Once epidemiological, traffic, and bio-
logical data are imported into mathematical models, transmission
patterns and parameters can be quantified (Wilasang et al., 2016).
In AI literature, transmission models are made based upon a ser-
ies of assumptions, including equal infection susceptibility of
birds, lack of pre-existing immunity in a flock, and that infected
birds demonstrate similar levels of infection.

Estimation of transmission dynamics
A great number of within-flock studies have attempted to estimate
the transmission parameters on a flock level (Van der Goot et al.,
2003; Tiensin et al., 2007; Bos et al., 2009; Rohani et al., 2009; Bos
et al., 2010; Comin et al., 2011; Gonzales et al., 2011; Saenz et al.,
2012; Wang et al., 2012; Nickbakhsh et al., 2016). The main goal
of these studies has been to extract parameter values for future
containment programs of control and surveillance (Stegeman
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et al., 2004; Savill et al., 2006; Tiensin et al., 2007; Bouma et al.,
2009).

Some of the above studies estimated AIV transmission dynam-
ics by using generalized linear model (GLM) and ‘Final Size’ stat-
istical methods (Van der Goot et al., 2003; Comin et al., 2011). It
is thought that GLM estimation is more precise and more widely
used than ‘Final Size’ method (Gonzales et al., 2011). In a study
by Gonzales et al. (2011), the transmission parameters of five
chickens infected with a low pathogenic H7N1 virus was explored
using five contact chickens. By assuming the latent period of
infected birds to be a maximum of 1 day, the mean infectious per-
iod, the transmission rate (β), and the basic reproduction ratio
(R0) were estimated. Estimates like these are beneficial for build-
ing surveillance and control programs in poultry.

Small empirical studies usually work with a small number of
birds (Van der Goot et al., 2003; Gonzales et al., 2011). The
results, therefore, cannot be directly extrapolated to real-world
situations. In other words, the estimated variables in empirical
studies have low resolution and may not be precise enough to
construct models (Pepin et al., 2014). To address this issue,
Saenz et al. (2012) estimated the dynamics of LPAI and HPAI
spread using a greater number of contact turkeys compared to
studies conducted by Gonzales et al. (2011) and Van der Goot
et al. (2003). In the aforementioned studies, the daily number
of dead birds was fitted to a stochastic Susceptible-Infectious-
Recovered (SIR) model.

Back-calculation has been used by Tiensin et al. (2007) and
Bos et al. (2010) to estimate required AIV transmission para-
meters. In the back-calculation method, mortality is measured
regularly, then, the previous time-series of other classes in the
SIR model are calculated according to mortality time-series.
These calculations are based on several assumptions, such as a
predetermined infectious period and days-to-die after infection.
This method is not applicable for LPAI, as the rate of mortality
for LPAI is very low. However, in order to measure HPAI
H5N1 transmission dynamics within a flock, Tiensin et al.
(2007) applied the statistical back-calculation method on 139
flocks of poultry in Thailand. Having access to time-series of
recovered (R) (i.e. mortality) and infectious period in a SIR
model, the time-series of susceptible (S) and infectious (I) were
calculated. The obtained infection time-series was then fitted
with GLM using negative binomial likelihood distribution to
find the transmission parameters. Depending on the length of
infectious period, R0 was estimated between 2.26 and 2.64.
These results can help to evaluate policies with simulation studies.

There are significant differences in the estimated values found
between studies performed by Gonzales et al. (2011) and other
similar studies (Van der Goot et al., 2003). This difference can
be attributed to the origin of the isolated viruses used in these
experiments. For instance, the virus used in the study by
Gonzales et al. (2011) originated in turkeys, which are more sus-
ceptible to LPAI. Additionally, the inconsistency of output values
might have been due to the use of different AIV strains that have
various transmission characteristics.

It is worth mentioning that variety of AIV strains, farm char-
acteristics, and birds’ age can lead to inconsistencies in estimated
transmission parameters. In order to assess the result of variance
in outcome parameters, Comin et al. (2011) took into account a
range of values for transmission dynamics. It was concluded
that the variation of R0 plays an essential role in the outputs of
an epidemic. Furthermore, the inconsistency of dynamics found
in past experiments has been considered in simulation studies

of LPAI in chickens (Gonzales et al., 2014). In the latter study,
a categorization of LPAI dynamics into low and high characteris-
tics was introduced based on the variability in R0.

Network models
The contact patterns among farms form a social network. Social
network analysis (SNA) has been studied using both animal
movement or trade networks of poultry (Van et al., 2009;
Martin et al., 2011a; Hosseini et al., 2013; Lee et al., 2014;
Moyen et al., 2018) and other animals (Nöremark et al., 2011;
Lebl et al., 2016). Networks can be presented by graphs, adjacency
matrices, or a set of pairs. SNA utilizes the concepts of graph the-
ory, which allows users to identify the essential components of a
graph and find its key patterns. In fact, searching for dominant
spreaders in networks is crucial in controlling epidemics. In
other words, once the movement or spatial structure in an area
is explained, it may disclose the implications of an infection
spread throughout that area. Such insights can then assist in plan-
ning the containment policies.

Several metrics, such as centrality measures (Lee et al., 2014;
Moyen et al., 2018) are calculated to highlight AI introduction
or spread risks in a defined network among chickens or flocks.
In SNA model used in AI, a node usually represents a flock, mar-
ket, or trader while an edge demonstrates a connection, usually
movement, between those nodes. Furthermore, when all the
nodes in a graph are directly or indirectly accessible from each
node in that graph, the graph is called a strong component. If a
node that is a part of a strong component becomes infected,
that node is likely to infect all other nodes. Furthermore, if remov-
ing an edge or node in a graph divides the graph into two sepa-
rated part, the spread of disease can be curtailed. Such nodes are
known as a bridge or cut-point (Martínez-López et al., 2009).

The effect of network properties on the persistence of H5N1
virus has been evaluated within a poultry population (Hosseini
et al., 2013). A stochastic simulation was constructed using the
Gillespie algorithm considering a network of flocks, traders, and
markets. The findings showed that the size of flocks and fre-
quency of interactions among flocks play a role in the persistence
of H5N1 infection and the pace at which an epidemic occurs.

There are several gaps in current network models of poultry
movements. Although the effect of network measures, flock
size, and movement frequency has been assessed in poultry, top-
ologies of contact networks formed by the movement of traders
have been overlooked. There are four known types of theoretical
contact network: random, small-world, lattice, and scale-free net-
works. Moreover, social network analyses that have been per-
formed in the literature of AI have not taken into account the
temporal ordering of trade links. Recently, temporal network ana-
lysis has been used in pig trade networks (Lebl et al., 2016), where
each connection has a time stamp denoting its occurrence time.
Therefore, temporal network analysis can be used to better assess-
ment of the impact of control measures in poultry.

Simulation studies

Under experimental conditions, an exploration of variability in
transmission processes that takes place in real situations is impos-
sible. Therefore, simulation models help to extrapolate results to
field situations. For example, Reeves (2012) developed a stochastic
simulation model to incorporate within-flock transmission
dynamics by estimating latent, subclinical infectious, and clinical
infectious stages. In this study, a within-flock simulation of HPAI
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was performed for broiler chickens in three scenarios considering
hourly timestamps, where the presence of the virus was detected
based on a rise in bird mortality. It was concluded that not only
could HPAI virus still spread in vaccinated flocks, but its detec-
tion time could also be delayed (silent spread). Finally, it was sug-
gested that vaccination could be useful to reduce the degree of
spread of HPAI between flocks.

Simulation studies have been performed where bird vaccin-
ation has also been included. Simulation is sometimes used to
evaluate several vaccination strategies based on the obtained para-
meters from previous studies. For instance, Galvin et al. (2014)
performed a simulation study of vaccination strategies and com-
pared it with non-vaccination practices, with the main objective
of finding a cost-effective strategy. In order to simulate the impact
of vaccination, a Susceptible-Exposed-Infectious-Recovered-Dead
(SEIRD) compartmental model, in which ‘D’ represented an extra
health state representing ‘dead’, was applied. In this model, chick-
ens vaccinated with an inactivated virus vaccine transitioned dir-
ectly from ‘S’ to the ‘R’ state. By taking into the costs associated
with vaccination and losses due to mortality, it was concluded
that immunization of 50% of the birds within a flock with the
inactivated virus vaccine is the most cost-effective strategy. In
another study, a simulation was conducted to estimate the trans-
mission parameters of AIV in an unvaccinated group, a vacci-
nated group, and from an unvaccinated group to a vaccinated
group (Poetri et al., 2009). Birds were regularly observed after
vaccination before the observed data were fitted to Susceptible-
Exposed-Infectious-Recovered (SEIR) simulation data by maxi-
mizing the likelihood of parameters. Finally, it was concluded
that an H5N2 inactivated virus vaccine could reduce the suscep-
tibility of chickens to HPAI H5N1 by 88%.

Behavioral-based models
This section explores compartmental and agent-based models
(ABM). Compartmental models usually focus on the average
behavior of a group while ABMs build detailed individual beha-
viors. In addition, compartmental models follow a top-down
approach whereas ABMs follow a bottom-up approach.
Top-down models utilize estimated parameters to simulate a pro-
cess. Conversely, bottom-up models use simulated data to esti-
mate parameters. Behavioral models can be deterministic or
stochastic. Stochastic models consider random elements and
run thousands of scenarios using simulation algorithms such as
Gillespie. While the output of deterministic models is the same
each time (Maidstone, 2012), the output from different runs of
a stochastic model varies and can be summarized in various ways.

Compartmental models: Compartmental models are simple
population-based models, which are extensively used in AI research.
These models are known as SIR or system dynamics (Thakur
et al., 2015). Several SIR extensions such as Susceptible-Exposed-
Infectious-Recovered, Susceptible-Infectious, Susceptible-Infectious-
Susceptible, and Susceptible-Exposed-Infectious-Susceptible have
also been introduced. In compartmental models, at each discrete
time unit, a group of individualsmay belong to one of the defined dis-
crete classes based on the average health status of the group (Höhle
and Jørgensen, 2002; Dorjee et al., 2013). Simulation of disease spread
using compartmental models is typically performed by differential
equations. In a compartmental model, the risk of spread of an infec-
tion can be described by its basic reproduction ratio (R0). R0 denotes
the number of cases that an infectious case can generate during its
infection. For R0 values greater or equal to one, an outbreak can

take place and reach a peak while for R0 values of less than one,
there is no chance of major outbreak (Coburn et al., 2009).

Agent-based models: A more recent and sophisticated group of
models are known as stochastic individual-based, individual-
centric, or ABMs. In these models, the behavior, histories, and
properties (e.g. mobility) of every individual is taken into account.
In addition, the population is heterogeneous, and the spatial
structure of the population could be incorporated into the
model. In stochastic models, the uncertainty and randomness of
the real-world are denoted with probabilities. Therefore, stochas-
tic ABM simulations produce a range of possible outcomes and
contribute to the development of decision support tools (Taylor,
2003). ABMs have the potential to generate large amounts of
data and the processing of such data may be challenging.
Therefore, ABMs are expected to run slower (e.g. weeks) than
compartmental models on a computer (Maidstone, 2012).
Similar to agent-based modeling studies of infectious disease in
pigs, ABMs in the spread of AI (Patyk et al., 2013; Lewis et al.,
2017) have been performed using the NAADSM conceptual
framework.

Component-based simulation
This section divides the simulation models into within-flock and
between-flock models based on the resolution that can be
accounted in the models. Between-flock transmission models,
which consider a flock as the unit of interest have a lower reso-
lution than within-flock transmission models.

Within-flock transmission models: Within-flock transmission
of AIV refers to transmission of the virus among birds within a
single flock. Within-flock transmission simulations have been
performed in poultry flocks (Reeves, 2012; Weaver et al., 2012)
using stochastic state transition conceptual models. In fact, the
transmission equation calculates the number of birds transition-
ing between states of disease in a time period. The transmission
model is then used in conjunction with a simulation model to
allow for a scenario-based understanding of disease spread in a
flock. For example, within-flock simulation models are used to
assess the impact of vaccination or virus strain on transmission.

There are several gaps that can be addressed in within-flock
transmission simulation studies. The output of simulation models
may not be representative of real-field data because the experi-
mental settings might be different from one flock to another
due to differences in flock characteristics such as housing systems
and flock management, in addition to differences in virus strains.
To address this, field data can be collected by building wireless
sensor networks to track virus transmission behaviors for each
flock. Furthermore, a number of transmission dynamics such as
temperature, wind direction, ventilation system, and humidity
have been overlooked in within-flock transmission studies.
Sound results generated by within-flock transmission models
can then be utilized in the development of parameters of
between-flock transmission models.

Between-flock transmission models: Between-flock transmis-
sion of AIV refers to a direct (e.g. bird movement and bird
trade) or an indirect transmission (e.g. human contact, shared
trucks, and dust) of AIV among poultry flocks. According to
Pepin et al. (2014), performing between-flock experimental stud-
ies is impossible, as it is expensive and life-threatening.

Therefore, transmission models have been used in AI model-
ing to generate hypotheses on the impact of control measures
and find optimal prevention solutions (Mannelli et al., 2007;
Mulatti et al., 2010; Lee et al., 2014; Backer et al., 2015).
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Between-flock transmission models in AI have used probability-
based (Dorigatti et al., 2010; Ssematimba et al., 2012; Backer
et al., 2015), agent-based (Patyk et al., 2013; Lewis et al., 2017),
and network-based (Van et al., 2009; Lee et al., 2014) approaches.
Probability-based methods follow a top-down approach to esti-
mate a kernel function that usually combines disease dynamics
and distance between farms. This is due to the lack of detailed
information on the level of contribution of each factor to an out-
break. On the other hand, agent-based and network-based
approaches usually follow a bottom-up procedure to assess the
effectiveness of control strategies. Network-based model are suit-
able when network characteristics of a set of flocks and their bio-
security indicators need to be considered as risk factors for AI
outbreak prediction (Martin et al., 2011b). Notably, the above
approaches are not necessarily mutually exclusive, meaning a
model can be built based on more than one approach.

In a study by Mulatti et al. (2010), a top-down approach was
followed to find the best intervention policies for reduction of
virus transmission between flocks. In the study conducted by
Mulatti et al. (2010), data from four previous LPAI epidemics
with different interventions were fitted to a Susceptible-
Infectious-Depopulated model. Subsequently, using univariate
and multivariate analysis, the risk ratio and risk reproduction
number (R0) were estimated to identify the most effective policies.

In the Netherlands, Ssematimba et al. (2012) studied the role
of downwind dust in the spread of HPAI H7N7 between poultry
flocks. Particle deposition and virus decay were included when
assembling the dispersion model. It was concluded that wind-
borne pathogen transmission alone is not enough to explain the
incidence of AI. However, for nearby surroundings, the wind-
borne route plays a substantial role.

In this review, simulation studies are placed in the category of
small-data modeling. However, it is worth noting that these stud-
ies could be considered as data-intensive modeling methods when
the parameter space is large. In this case, as a wide range of values
is assigned to parameters, the timeliness of processes needs to be
taken into account as well. Optimization algorithms, such as GA,
can provide an effective search in the parameters space. In add-
ition to a large parameter space, simulation approaches generally
result in a large volume of output data. Extracting meaningful pat-
terns from such data can be a computationally expensive task.
Therefore, ML algorithms and big data stream processing techni-
ques need to be considered in future transmission simulation
models pertaining to AI.

Additional recommendations

There are several limitations regarding data sources that have been
exploited in recent studies focused on AI modeling. To begin,
there are specific locations that have received more attention
than others due to the availability of data, or a high number of
confirmed cases in a specific area. For instance, a field survey in
Phitsanulok province in Thailand has been used by several
authors for AI modeling (Wiratsudakul et al., 2014; Wilasang
et al., 2016). Another example is a dataset from an outbreak of
H7N7 in the Netherlands in 2003, which has been used several
times in the literature (Stegeman et al., 2004; Boender et al.,
2007; Bavinck et al., 2009; Bos et al., 2009). Such data lead to find-
ings that may not be generalizable to other locations and different
virus strains. The above-mentioned retrospective studies infer
insights about previous outbreaks in specific regions. However,
poultry health authorities need to gain global knowledge about

the underlying mechanisms of AI outbreaks. As a result, general-
izing the insights gained from studies that focus on one specific
time and region to other times and regions is still challenging.
In addition, it is of interest to know that Twitter has been the cen-
ter of interest in digital surveillance studies. However, to the best
of our knowledge, the potential of blogs, search engines, and news
feeds have been overlooked in AI surveillance studies.
Furthermore, AI risk-based studies define and test hypotheses
to investigate the impact of risk factors on AI outbreaks. The
hypotheses are usually generated based on past observations or
the literature. FS, a pre-processing technique in KDD, can gener-
ate other hypotheses that may represent a more precise behavior
of AI.

The data cleaning step of KDD seems to be more commonly
practiced in AI modeling studies compared to other pre-
processing techniques including data integration, data transform-
ation, and data reduction. Syndromic surveillance studies in social
media, for instance, use natural language processing methods
such as tokenization, stemming, lemmatization, and stop word
removal to clean text data (Lee et al., 2013; Chen et al., 2016;
Ghosh et al., 2017).

Pre-processing of data is considered a more time-consuming
phase of KDD compared to other phases (Tsumoto, 2000;
García et al., 2016). It is estimated that pre-processing takes
about 80% of the entire time allocated to a project (Duhamel
et al., 2003; Pérez et al., 2015). As a result, to save time, perform-
ing this step simultaneously with data collection is recommended.

An important consideration is that decisions during AI emer-
gencies need to be timely and rapid. Simultaneously, there is a rise
in new and large digital data sources in epidemiology (Salathe
et al., 2012). Therefore, parallel and distributed KDD methods
may be used to enhance the performance of knowledge extraction
from large datasets. In the current era, with advancements in
computing power, traditional algorithms of DM need to be
adjusted in order to fit cutting-edge computing approaches,
such as those being used in Hadoop (White, 2012).

Conclusions

The work presented here provides an overview of the modeling
methods that have been proposed for control of AI.
Furthermore, the present survey has highlighted AI research lim-
itations with regard to the KDD process. As new technologies
improve, AI modeling is turning into a data-intensive and multi-
disciplinary field, with high volume, variety, and velocity of data.
Therefore, small data methods introduced here, in particular,
need to be adapted to state-of-the-art analytical approaches to
reveal new patterns that have previously been overlooked. This
might consequently minimize the financial, animal health, and
public health impacts of AI.
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