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Abstract. This paper addresses questions involving the sharpness of \Vojta’s conjecture and Vojta’s
inequality for algebraic points on curves over number fields. It is shown that one may choose the
approximation ternm (D, —) in such a way that Vojta’s inequality is sharp in Theorem 2.3. Partial
results are obtained for the more difficult problem of showing that Vojta’s conjecture is sharp when
the approximation term is not included (that is, when= 0). In Theorem 3.7, it is demonstrated

that Vojta’s conjecture is the best possible with= 0 for quadratic points on hyperelliptic curves.

Itis also shown, in Theorem 4.8, that Vojta’s conjecture is sharp Witk 0 on a curveC over a
number field when an analogous statement holds for the curve obtained by extending the base field
of C to a certain function field.

Mathematics Subject Classifications1991):11G30, 11J68.

Key words: algebraic points, Vojta’s conjecture, Dirichlet's theorem, curves over number fields.

In 1955, Roth ([Ro]), building upon the work of Thue, Siegel, and Dyson, proved
that for any algebraic numberand anyc > 0 ande > 0, there exist only finitely
many rational numbers/y (x, y € Z) with
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The theorem of Roth is sharp, in the sense that for any irrational algebraic number
«, there are infinitely many rational numbergy (x, y € Z) such that

X ‘ < 1
- —o| < —.
IyI?
This had been shown by Dirichlet much earlier in 1842 ([Dir]).
Recently, Vojta ([V 4]) combined the technique of Roth-Thue-Siegel-Dyson

with ideas from Arakelov theory to prove a vast generalization of Roth’s theorem,
one which encompasses Faltings’ theorem for curves. To state it, we will need a
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bit more terminology. LeC be a curve defined over a number figldind letX
be a regular model fo€ over the ring of integers of. Let K be the canonical
divisor of C. Suppose thaf is a finite set of places df, D is a divisor without
multiple points onC, A is an ampleQ-divisor onC, v is a positive integer, anel
a positive real number. Vojta ([V 4, Thm. 0.1]) shows that forRle C (k) with
[k(P) : k] < v the following inequality holds

ms(D, P) + hg(P) < da(P) + €ho(P) + O(1). (0.0.1)

Here,d, (P) is the arithmetic discriminant a? (see [V 4], p. 764])h 4, andh are
Weil heights forA and K, respectively, andis(D, P) is the sum

[k(P):k] [or.v]

>N A[’])C (”: 0 (0.0.2)

veS a=1
whereip is a Weil function forD and P1*?!, o = 1,...,[k(P) : k], are the
conjugates of? in C(C,). We will refer to (0.0.1) a¥ojta’s inequalitythroughout
this paper. Thed is frequently omitted; it is assumed then thais K-/ (2¢ — 2)
(unlessg = 1 in which case it is just some fixddrational Q -divisor of degree
1). Note that the choice of ampl¢ is inconsequential: since degrees determine
divisors on curves up to algebraic equivalence, chandingill only change the
€ in (0.0.1) by the addition of an arbitrarily small factor and by multiplication by
some fixed nonzero factor (see [V 4, p. 769)).

The arithmetic discriminani, (P) is related to the normalized logarithmic field

discriminantd (P), which is defined as

| Dicpyicll
d(P) i = ————. 0.0.3
(P) K(P) : k] ( )

Now, d, (P) is always at least as large déP); it can be calculated by adding to
d(P) terms corresponding to arithmetic singularities on the arithmetic curve cor-
responding taP and additional data at infinite placesiofVojta ([V 1, Conjecture
5.2.6]) conjectures that inequality (0.0.1) remains true whgw) is replaced by
d(P), that is to say, that

mgs(D, P)+hg(P) <d(P)+e€hs(P)+ 01 (0.0.4)

holds, where the notation is the same as in (0.0.1). We will refer to (0.0.4) as
Vojta’s conjecture This conjecture is quite strong. In particular, tiie: conjecture
of Masser and Oesterlé (see [V 1, 5.ABC] and [L 2, appendix]) is a corollary.

Lang conjectures that Vojta’s conjecture is best possible for any curve of nonzero
genus over a number field ([L 3, 2.4, p.63], see also [S0]). There are a variety of
ways of interpreting what it means for Vojta’s conjecture to be best possible; for
example, one might ask if it is true for all choicesfor only for certain choices
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of D. One might also ask whether or not Vojta’'s inequality is sharp. It is convenient
then to define the following ‘sharpness statements’.
In the following definitions,C is a curve defined over a number fidldD is
an effective divisor without multiple components @h andv is an element of
7 U {00}. The heightSig, h 4, proximity functionmg(D, —), field discriminant
d, and arithmetic discriminarnt, are defined as in (0.0.1) and (0.0.4).

DEFINITION 0.1. We will say that stateme®(C, d, v, D) holds if there exists
a finite extensiork’ of k and a finite sef of places ofk’ such that for ang > 0,
there exists an infinite sequencek C (k) with [k'(P) : k'] < v andh(P) — oo
satisfying

ms(D, P) + hg(P) > d(P) — eh(P) + O(L). (0.1.1)

Observe that statemedt(C, d, v, 0) holds if there is somé’ for which there
are infinitely many points with [k'(P) : k'] satisfying.

hi(P) > d(P) — eha(P) + O(1). (0.1.2)

holds. Lang conjectures that for any curge of nonzero genus, statemest

(C,d, o0, 0) holds. Note also that the conditidr{P) — oo is automatically met
whenv is finite by Northcott's theorem, which asserts that there are only finitely
many points of bounded degree and bounded height with respect to some fixed
ample divisor.

DEFINITION 0.2. We will say that stateme®(C, d,, v, D) holds if there exists
a finite extensiork’ of k and a finite sef of places ofk’ such that for ang > 0,
there exists an infinite sequencek C (k) with [k'(P) : k'] < v andh(P) — oo
satisfying

ms(D, P) + hg(P) > da(P) — ehn(P) + O(1). (0.2.1)

In this note, we show that for any cur¢gof nonzero genus there exists some
choice of D and v for which B(C, d,, v, D) holds. The proof is a simple ap-
plication of Dirichlet's theorem and the basic properties of Weil functions. We
also examine the problem of whether or B, d, co, 0) holds for all curvesC
over number fields. We describe how a certain geometric construction produces
families of points with small discriminants. This construction is used to show that
B(C, d, 2, 0) holds for hyperelliptic curves and to relate the problem of points with
small discriminants over number fields to a similar problem over function fields.
The fact that Vojta has proved his conjecture, in a slightly weakened form, for
curves over function fields of characteristic 0 in [V 3] makes the connection with
the problem over function fields especially interesting.

Determining if B(C, d, v, 0) holds whenever for any curv@ of nonzero genus
possessing infinitely many e C (k) with [k(P) : k] < v is beyond our grasp at
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this point. It is very hard to say much about which curves will contain infinitely
many points of degree or less, for a giverv. In the case of points of degree 2
and 3 Abramovich and Harris ([A-H]) have used Faltings’ theorem on subvarieties
of Abelian varieties ([Fa]) to obtain results that are sufficient for our purposes.
For points of higher degree, however, no such results hold: Debarre and Fahlaoui
([D-F]) have found counterexamples to the conjectures of Abramovich and Harris
concerning algebraic points of degree 4 and greater.

1. Preliminaries and Statements of Results

We need to introduce a bit of Arakelov theory in order to define the arithmetic
discriminant. LetC be a curve over a number field After taking a finite base
extension ofk, the curveC has a regular model over the ring of integ&f k
([Ar]). At the infinite placeso of k£ (which correspond to embeddings & —
C), we may endowC x,C with an admissible Arakelov volume form (see [L 2,
4.3]). This allows us to find local and global arithmetic intersections of arithmetic
divisors onX as in [V4].

An algebraic pointP € C(k) gives rise to a horizontal divisaff» on X (by
taking the closure of the support 8fin C). We define theeanonicalheight/ i of
apointP e C(k) to be

(Hp.wx/B)
[k(P):Q]’

wherewy, s is the canonical sheaf fak over B = SpecR, metrized with the
canonical Arakelov metric (see [L 2, 4.3 and 4.5]). Note thatis a Weil height
for the canonical shea of C. We define the arithmetic discriminant (in analogy
with the arithmetic genus of a curve on a geometric surfdgeh) to be

]’lK(P) =

(Hp.wx/p + Hp)
[k(P) : Q]

Let us also fix a horizonta -divisor on F which has degree 1 ofi, so that we
will have a fixed height function o’. Wheng # 1, let F := wy/3/(2g — 2).
Wheng = 1, let F be the horizontal divisor coming from sorkeational divisor
of degree 1 orC. We define

d,(P) :=

h(P) := hp(P) := L'F).
[k(P): Q]
Henceforth, we will always drop thd in the 44(P) in (0.0.1) and (0.0.4) and
useh(P). As noted earlier, this affects neither our sharpness statements nor the
statements of Vojta’s inequality and Vojta’s conjecture.
Let us now say a few words about local arithmetic intersections and Weil di-
visors. As with algebraic points, arrational divisor D on C gives rise to a
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horizontal divisorHp, on X, and the local intersections witHp, that is the func-
tions (—.Hp),, give rise to a Weil function foD. Remember that a Weil function
is actually a mapping

p: | ] C(C.)\SuppD — R. (1.0.1)

veMy

The intersectiongHp.Hp), for points P in C(k) extend to functiong,(Q, D)

for points 9 € C(C,); these are given by base extension of intersections in the
case of finite places and are already given to us at infinity by the Green functions
corresponding to our Arakelov volume form (see [V 4, p. 767]). The functions
g.(—, D) form the desired Weil function fab. Vojta’s inequality is stated in [V 4]
using the Weil functions that arise in this way. That is to say, he definé®, P)

as

[k(P):k]

< (Hp.Hp), (P, D)
ms(D, P) ._Z[k(P) k Z QXZ: AR (1.0.2)

whereP*Vl o =1, ..., [k(P) : k], are the conjugates df in C(C,). We use the
same definition. We note, however, that our choice of Weil functionssitD, —)

is of no consequence. Any two Weil functions for the same divisor will differ by
an M;-constant ([L 1, Chapter 10, p. 248]); this means that they will agree at all
but finitely many places and differ by (@) at the remaining places. Thus, choice
of Weil function will not affect any of our results, since all of them include gid)O
term.

We make one final note on Weil functions. For a pathe C(k), Ag_,(P) will
depend on which conjugate of PGHC,) we choose. Hence, we will only speak of
e (Pl 1 <o < [k(P) : k], whereP!* V] is a fixed conjugate oP in C(C,).

We prove the following theorem in Section 2.

THEOREM 2.3. Let C be a curve defined over a number fiéldThen there exist
choices ofD andv such that stateme®®(C, d,, v, D) holds.

This is actually stated somewhat more precisely, so that we can obtain some
results that apply to any curve with infinitely many points of degrees 3 or less.
We also have the following theorem, proved in Section 3.

THEOREM 3.7. Let C be a hyperelliptic curve defined over a number figld
StatemenB(C, d, 2, 0) holds.

When discussing Vojta’s conjecture with = 0, we will work with curves over
function fields of transcendence degree 1 as well as curves over number fields. The
field discriminant is defined for function fields in the same way that it is defined
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for number fields. Moreover, we may define canonical heights and arithmetic dis-
criminants for points on curves over function fields of transcendence degree 1.
Recall that a function field of transcendence degree 1 corresponds to a unique
nonsingular, projective curv@ over the field of constants &f([Ha, 1.6]). A curve

C overk then corresponds to a surfaSeover the field of constants a@f with a
natural mapz: S — B. A point in C (k) corresponds to a curve il on which

m is nonconstant. We may use the relative canonical shegf for S over B and

the usual intersection pairing on surfaces ([Ha, 5.1]) to give ourselves canonical
heights and arithmetic discriminants of points. Given a p#irt C (k) we take the
corresponding curvélp on S and define

Hp..a)g/g

hg(P) := .
B = 5@ A
We also define the arithmetic discriminant®fas

Hp.(ws/p + Hp)
[k(P) : k]

d,(P) :=

It is also possible to define(P) as in the case of curves over number fields. We
take F to bewg,z/(2¢ — 2) wheng # 1 and to be the divisor ofi corresponding
to some fixed-rational Q -divisor onC wheng = 1. Then we define

Hp.F
h(P) = ———.
[k(P) : k]

With the definitions above, it is clear that it makes sense to define statements
B(C,d,v,0) and B(C, d,, v, 0) for curves over function fields of transcendence
degree 1 (actually, one can define Weil functions so Bé@t, d, v, D) and B
(C,d,, v, D) make sense folD # 0 as well, but we will not consider these
statements in this paper).

Now, letC be a curve of nonzero genus defined over a numberfidldt E be
an elliptic curve defined ovdr. Let us denote a€ the curveC x; k(E) defined
over the function field of. In section 4, we obtain the result below.

THEOREMA4.8. If statemenB(C‘, d, v, 0) holds, thenB(C, d, v, 0) holds as well.

2. The CaseD #£0

Using the notation of our statement of Vojta’s inequality (0.0.1), we will show
that for suitableD, S, k', andv we have for any > 0 infinitely many P with
[K'(P): k'] <vand

ms(D, P) > (2v — €)h(P) + O(1). (2.0.1)
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There is an obvious upper bound @ncoming from a decomposition dp in
Pic X (see [L 2, Thm. 4.2.3] and [V 4, p. 791]). This decomposition gives us

vD?% =d,(P) — hg(P) — 2vh(P) + O(v) (2.0.2)

for Dp is an element of the Arakelov—Picard groupd®torresponding to a divisor
of degree 0 onC. Now, D2 < O because of the positivity of the Neron—Tate
height on the Jacobian af ([L 1, Chapter 5]) and the fact thd®?2 is negative
two times the Neron—Tate of the corresponding point in the Jacobigh (§Ch,
Thm. 5.1(ii)]). Thus, we have

d,(P) < hg(P) + 2vh(P) + O(v). (2.0.3)
Since Vojta’s inequality can be rewritten as
ms(D, P) < d,(P) — hg(P) + eh(P) + O(1), (2.0.4)

the D and P satisfying (2.0.1) will satisfy stateme#t(C, d,,, v, D).
We begin with a ‘geometric’ formulation of Dirichlet’s theorem fBt.

THEOREM 2.1. [Dirichlet]Let D be an effective divisor of degree at least two in
Div;(P}). Then there exists a finite extensigrof k such that for any Weil function
Ap for D with respect toIP’,}, there exist infinitely many’ e P (k') outside of
SuppD such that

Z Ap.o(P) = 2h(P) + O(1). (2.1.1)

UESk/ 0

Proof. Case | The divisor D has more than one point in its support. Extend
the basek to a fieldk’ so that all the points in Supp are rationally defined and
so thatk’ contains a real quadratic field. This allows us to findvasa k' such that
[Q(x) : Q] = 2andthat forany: k' — C, o (x) € R. Leta’ denote the conjugate
of @ overQ in k’. Now, writing D = Q1+ Q,+ D’ with D’ an effective divisor and
Q1 and Q- distinct rational points, we have by basic properties of Weil functions
Apy = Aopw + ro,v + O(D). It will suffice then to show that (2.1.1) holds for
some infinite sequence & < P'(k') whenD = Q1 + Q,. There exists a choice
of coordinates oﬂ?’,}/ so thatQ; is written as(« : 1) and Q5 is written as(a’ : 1)
(since there exists an automorphismPgf sending any two distinct points to any
other two distinct points). Hence, we obtain a Weil function faraway from the
point at infinity by taking for points? written as(x : y) (v # 0) with respect to
our choice of coordinates

Loy (P) = —logmin(l, [l — x/yll). (2.1.2)
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Similarly for Q,, we obtain a Weil function by setting
Aro,(P) :==—logmin(d, &’ — x/yll,). (2.1.3)

Note thatry, , andi, , are always nonnegative.

Now, by the classical Dirichlet box principle ([Sch, Thm. 1A], [Dir]), it follows
that for anyo: Q(e) — R there exist infinitely many pairs of relatively prime
integersa, b such that

‘a(a) — %‘ < #, (2.1.4)

where the absolute value sign denotes the usual distariReNiow, for any other
embeddingr: Q(«x) — R we have eithet (o) = o () or t(a’) = o«. It follows
then that at each Archimedean placeorresponding ta : k¥’ — C and point
(a : b) as above

Aos+0a10((@ 2 b)) = royv((a b)) + Aoy v((a: b))

> [k, : R]
[k : Q]

The fact that Weil functions are defined for points in extension® @fith respect

to normalized valuations (see [V 1, 1.1-1.3]and [L 1, 1.4 and 10.1-10.2]) accounts

for the normalization factor preceding 2 lbgSumming over alb € Sy ., then
gives for all(a : b) as above

2logb. (2.1.5)

> hosroa((a: b)) > 2logh. (2.1.6)

veSk/'oo

Now since we have infinitely mang : b) we may assume thatb |[> 2 and
that |a/b] < max(|oal, |oa']) + 1, we see that for all thé(ea : b)), we have
h((a : b)) <logb + O(1). This then gives us the desired

3" Moo b)) > 2h((a : b)) + O(D).

UESk/ 0

Case Il The divisorD has only one point in its support. Wrile2 = n Q. Extend
the base to &' for which Q is rationally defined. Choose our homogeneous co-
ordinates so thap is written as(0 : 1). Then,%o ,(P) = log* 121, where(x : y)
are the homogeneous coordinatesPok ]P’,},(IEU) gives us a Weil function foQ.
Let P be the set of all points with coordinatés : 1). Evidently,A, ,(P) = O for
any nonarchimedeane M/, so)_ Ao.w(P) = h(P)+ O(1). It follows that

UESA,/ 00

D" hagw(P) = nh(P) 4+ O(1) > 2h(P) + O(D). O

veSk/'oo
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PROPOSITION 2.2. Let D’ be a divisor on a curveC such that there exists
a nonconstant morphism: C — Pi of degreev for which D’ = ¢*D for D
an effective divisor of degree at least twoliri v,;(IP’,}). Then there exists a finite
extensiont’ of k such that for any Weil functiohp: for D’ and anye > 0, there
exist infinitely many?’ € C (k) with [k'(P) : k'] < v such that

[k(P"):k]
DD AP S K (P) 1K@ — Oh(P) +0(),  (221)

VES o a=1

whereP'™¥ o =1, ..., [K'(P) : k'] are the conjugates af’ in C,.
Proof. By Theorem 2.1, it follows that after extension to a suitable baseffield
there exist infinitely many? e P}, (k') such that

Z Ap.o(P) = 2h(P) + O(1). (2.2.2)

veSk/'oo

Now, Ap pulls back to a Weil function o'. Specifically, by base extension, for
anyv € My, ¢ gives us amapc,: C(C,) — P(C,) and this allows us to define a
function onC(C,) by sendingQ € (C(C,) \ ¢~ (SuppD)) to (D, ¢c,(Q)).; the
resulting map or [, ., (C(Cy) \ (¢~1(SuppD)) is a Weil function forg¢*D. We
will call this Weil function A4« Let P’ be a point inC (k) such thai(P’) = P.
Note that in factp,(P"*"") doesn't depend on the choice of conjug&&"’!
since in any case it is equal 1, ,(P). It follows that

[k(P"):k] [k(P"):k]
[a,v]
E E Agrpo (P = E E Ap(P)
VESy oo =1 VESy oo =1

= [k(P): k] Y Apu(P)
veSk/yoc
> [k(P') : k]12h(P) + O(D). (2.2.3)

Similarly, we converth(P) to something depending oR’ by functoriality of
height functions. Since is a map of degree we havep*F = vA’ for A’ a divisor
of degree 1. Henck(P) = hy-p(P') = vha (P’). SinceA’ andF (on C here) are
algebraically equivalent, (2.2.3) gives

[k(P"):k]
DT apW P S K (P) K120 — h(P)+ 0. (22.4)

”ESk’,oo a=1 0

THEOREM 2.3. LetC be a curve defined over a number figldnd letp: C — P*
be a nonconstant morphism of degre€lhen there exists a choice bfsuch that
B(C,d,, v, D) holds.
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Proof. We want to show that there is a finite extensidrof k£ for which there
exist ak’-rational divisorD without multiple components and a finite set of places
S of k¥’ such that for any > 0O there are infinitely many with [k’ (P) : k'] < v
satisfying (2.0.1). Choos& consisting of two or more distinct points (k)
away from the ramification locus @f; of course, this can be done becalf3¢k)
is infinite and the ramification locus @f consists of finitely many points. Let
D = ¢*E. We see thatD is ak-rational divisor without multiple points. Now,
by Proposition 2, for ang > 0 and any choice of Weil functionp, there are
infinitely many P with [k'(P) : k'] < v such that

[k’ (P):k']
D7D apu(PEY = (K (P) : K120 — €)h(P) + O(D). (2.3.1)

Sk’,oc a=1

In particular, this holds when our choice of Weil functiap is the one coming
from the local Arakelov intersections described in Section 1, so, leftiegS;’ «
and recalling (1.0.2), we haves (D, P) > (2v—e)h(P)+0(1), which is precisely
(2.0.1), and our proof is done. O

COROLLARY 2.4. Letv be2or 3. LetC be a curve of nonzero genus defined
over a number field. I€ has infinitely many points of degreeor less, then there
exists a choice ob such thatB(C, d,, v, D) holds.

Proof. Abramovich and Harris ([A-H, Thm. 1]) show that wheris 2 or 3 a
curve has infinitely many points of degree less than or equalit@and only if it
admits a map of degreeor less tdP? or an elliptic curve. Theorem 2.3 takes care of
a map taP! of degreev or less. WherC admits nonconstant mag of degreev or
less to an elliptic curvé, the canonical divisoK ¢ of C is in the linear equivalence
class of the ramification divisoR ; of f, by the Riemann—Hurwitz theorem. We
may extend the base field &f to ak’ for which E (k') is infinite. Now,d,(P) <
O@) for P € E(k') (see [L 2, Cor. 4.5.6]), so by the Chevalley—Weil theorem for
arithmetic discriminants ([V 2, Prop. 3.6]), for agywith f(Q) = P € E(k'), we
have

d.(Q) < dy(P) + hg, (Q) + O(1) < hg(Q) + O(D).

Since, we have infinitely many suab and[k'(Q) : k'] < v, statementB(C, d,,
v, 0) must hold in this case. O

3. The CaseD =0

We now approach the problem of producing algebraic points on curvehich
demonstrate tha(C, d, v, 0) holds for certain values of. This follows [So] fairly
closely. The definitions we are about to make will apply to curves over function
fields of transcendence degree 1 as well as curves over number fields. Let us in-
troduce some definitions. In the definitions below,debe a curve defined over a
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field K, which is either a number field or a function field of transcendence degree
1,lete > 0,and letv € Z™ U {o0).

DEFINITION 3.1. We say thaV (C, ¢, d, v) holds if there exists a finite extension
k' of k for which there are infinitely many e C(k) with [k'(P) : k'] < v such
that

d(P) < hxo(P) + €h(P) + O.(1). (3.1.1)

The stronger statement’(C, ¢, d, v) is said to hold if the heights of th@ in
(3.1.1) go to infinity.

When C is a curve over a number field andis finite, V(C, ¢, d, v) implies
V'(C,e€,d,v) by Northcott's theorem. We see tha&(C,d, co,0) holds if
V'(C,e€,d, v.) holds for everye > 0 for somev, and thatB(C, d, v, 0) holds
for some finitev if, in addition, v, < v for everye.

Here are two lemmas concerning the extent to which the prop&iy €, d, v)
can be pushed forward and pulled back.

LEMMA3.2. Letf:C’ — C be anonconstant morphism of curves defined over a
number field. Supposé’/ (C, ¢, d, v) holds. Then, forany’ > 0V (C’, (degf)e+
€', d, (degf)v) holds.

Proof. The Chevalley—Weil theorem for fields discriminants ([V 1, Thm. 5.1.6])
states that whenevet(P’) = P for P’ € C'(k) andP e C(k),

d(P) < d(P) + hg(P") + O(1), (3.2.1)

where R is the ramification divisor off and the Q1) depends only ory. Let

K¢ and K¢ denote the canonical divisors @handC’, respectively, and observe
that f*Kc + Ry = K¢. Note also that for any’ ¢ C(k), we haveh(f(P')) <
(degf +€"h(P)+0O(1), since a divisor of degree 1 @npulls back to a divisor of
degree deg onC’ and a divisor on a curve are defined up to algebraic equivalence
by its degree. Choosing’ such thatdegf)e”e < ¢, applying Chevalley—Weil to

the infinitely manyP for whichd(P) < hk.(P) + €h(P) + O(1), and lettingP’

be points for whichf (P’) = P, we obtain

d(P') < d(P)+ hg,(P)+O(D)

N

hie(P) + €h(P) + hg,(P') + O(1)
hpeke(P') + hg,(P") + ((degf)e + (degf)e”e)h(P’) + O(1)
< hg, (P) + ((degf)e + €)h(P') + O(1), (3.2.2)

using f*Kc + Ry = K¢ andh(P’) < (degf + €)h(P). Now, since for each
P, [k(P) : k] < (degf)[k(P) : k] < (degf)v, we see thaV (C’, (degf)e +
€', d, (degf)v) is satisfied by the point®’ onC’. O

N
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DEFINITION 3.3. Letf:C’ — C be a nonconstant morphism of curves, and let
R be the ramification divisor of . We define

deng
degf
We also say thaf is §-ramified for § > 0, if §o(f) < 3.

So(f) =

LEMMA 3.4. Let f:C’" — C be a nonconstant morphism of curves defined over
a number fieldk and suppose thaV (C’, ¢, d, v) holds. Then, for ang’ > 0,
statemen¥ (C, (1/degf)e + 8o(f) + €', d, v) holds as well.

Proof. We begin with an infinite sequence Bf € C'(k) with [k(P’) : k] < v
andd(P’) < hg, (P') +e€h(P") +0O(1). Sincek(f (P)) € k(P), we haved(P) <
d(P’). Hence, we see that

d(P) < hg. (P)+€h(P)+0(1) < hg (P)+hg,(P)+eh(P),  (34.1)

once again using the equalityj*K¢c + Ry = K¢. We may choose” > 0
small enough that”(1 + ¢) < ¢/, and by algebraic equivalence and the func-
torial property of heights, we haveg, (P’) < do(f)h(P) + €"h(P) + O(1) and
h(P") < 1/(degf)h(P) + €"h(P) + O(1). Substituting these inequalities into
(3.4.1) then gives

d(P) < hgo(P)+8o(f)h(P)+ €"h(P) +
+e/(degf)h(P) + e€"h(P) + O(1)

< hgo(P) + (e/(degf) + 8o(f) + €)Hh(P) 4+ O(D). (3.4.2)
Naturally,[k(P) : k] < [k(P’) : k] < v, and this completes the proof. O

These two lemmas combine to give us the following proposition.

PROPOSITION 3.5. Let C be a curve with a cover:C’ — C, whereC’ ad-
mits a nonconstant map to an elliptic curgeC’ — E. Then, for anye > 0,
V(C, 8 (f) + ¢€,d, degg) holds.

Proof. First, we show thaV (E, 0, d, 1) holds. This is easy since extendikg
to the field of definition of some nontorsion point Bfk) gives us infinitely many
points in E (k). Evidently, for all of these point®, d(P) = 0 < hg,(P) + O(1)
(recall thatK g is trivial). Applying Lemma 3.2 tells us then that for aay > 0,
V(C',€",d,degg) holds. Choosing’, ¢’ > 0 such that”/(degf) + ¢ < € and
invoking Lemma 3.4 then yieldg (C, 8o(f) + €, d, degg). O

COROLLARY 3.6. Let C be a curve over a number field with an étale cover
f:C’ — C which admits a nonconstant map to an elliptic curgye¢’ — E. Then
B(C, d, degg, 0) holds.
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Proof. Sincef is étale,R; = 0, sody(f) = 0. Now apply Proposition 3.5 and
Lemma 3.4. a

We can use this corollary to show th#&(C, d, 2,0) holds for hyperelliptic
curvesC.

THEOREM 3.7. Let C be a hyperelliptic curve defined over a number field
StatemenB(C, d, 2, 0) holds.

Proof. It will suffice to show that there exist§’ which admits nonconstant
mapsf: C' — C andg: C' — E with E an elliptic curve ang a map of degree
2. We follow a construction of Mumford ([Mu]). Let be a double cover df* by
C,thatisz:C 21, PL. By the Riemann—Hurwitz theorem,ramifies over at least
four points inP?!, all of which can be taken to be rational since we may extend the
base. Let us choose exactly four of these poiiis. . ., Q4. By basic properties of
the moduli of elliptic curves, there exists an elliptic cu#wavhich admits a double
cover of P!, ¢: E 21, Pl that ramifies only aQ4, ..., Q4. Forming the fibre
product oveiP! of C and E with respect tar and¢ and desingularizing yields a
curve C’ which admits mapg': C’ . andg: C’ 2, E with f étale. That
the degrees of andg are two is obvious. To see thdtis étale is only slightly
more difficult. The maps and¢ give us embeddings of the function field&’)
andk(E) into the algebraic closure @{(P). Their compositum is unramified over
C since the only places at which it could possibly ramify are@hen C sinceE
is smooth ovei?! away from these points. Nowg’ is unramified over the points
in the fibres ofC over Q4, ..., Q4 because, whenever there poimts € C (k)
andS; € E(k) such thatt(P) = ¢(S;) = Q;, thene(P;/Q;) = e(S;/Q;) = 2
wheree(P;/Q;) ande(S;/Q;) are the ramification indices a?; and S; over Q;.
Now, letting k(C)p, andk(E)s, denote the completions &f(C) andk(C’) at P;
and S;, respectively, we see that their compositunk{i*),, is unramified over
k(C)p, sincee(S;/Q;)|le(P;/Q;) by a simple result from field theory sometimes
known as Abhyankar's Lemma (see, for example, [Sti, Prop. 111.8.9]). Since for
any P/ e C'(k), the local fieIdk(C/)Pl_/ is the compositum ok (C) p, andk(E)s,, it
follows that P/ is unramified over;. O

Remarlk3.8. The same construction can be used to show that staté&hténd,
2, 0) holds for any curveC which admits a magf: C — P* such that there exist
four pointsQ4, ..., Q4 such that for every poinP € C(k) with f(P) = Q;, we
have 2¢(P/Q;). A slight modification shows thaB(C, d, 3, 0) holds whenever
there existsf: C — P! of degree 3 and thre@,, ..., Q3 with 3le(P/Q;) for
every P such thatf (P) = Q;.

COROLLARY 3.9. StatemenB(C, d, 2, 0) holds on any curv€ of nonzero genus
defined over a number field with infinitely many points of degreeless.
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Proof. The proof is similar to that of Corollary 2.4. A curve has infinitely many
points of degree 2 or less if and only if it admits a map of degree 2 or leBS to
or an elliptic curve. Theorem 3.7 and Proposition 3.5 assert that in either case,
B(C,d, 2, 0) holds. O

It is possibe that every cur«€ has an étale covet’ which admits a nonconstant
map to an elliptic curve, but it appears difficult to prove this. A more approachable
problem is try to show that given a cur¢g there exists, for any > 0 a curveC’
which admits a nonconstant map to an elliptic curve adgamified cover (recall
Definition 3.3) f: C" — C. The existence of such covers for a cuévémplies that
statementB(C, d, oo, 0) holds (although it doesn't imply tha&(C, d, v, 0) holds

for any finitev). Here is the precise statement.

CLAIM 3.10. LetC be a curve such that for evefy> 0 there exists a curve’;
which admits &-ramified coverf;: C; — C and a nonconstant map to an elliptic
curveC; — Ej. Then statemer®(C, d, oo, 0) holds.

Proof. Givene, takes < ¢, setv, := degfs and apply Proposition 3.5. Since
eachv, is finite, Northcott's theorem applies and the additional restriction of
V/(C,e,d,v) is met. O

One interesting feature éframified covers is that they relate in a natural way to
the classical Severi problem on surfaces, specifically split elliptic surfaces.

4. §-Ramified Covers

Let C be a curve of genus at least two defined over a numberifiaidl letE be an
elliptic curve defined ovek. All curves which dominate botfi and E will factor
through the product surface:= C x; E. Let p; and p, be projections ta” and
E respectively. We will assume in this section tidaitself admits no nonconstant
map toE so that the Neron—Severi group 6fx, E has rank 2 by the following
proposition.

PROPOSITION 4.1.If C admits no nonconstant morphismAg then

() Pic S = pj(PicC) & p3(PIiCE);
(i) rank(NS(S)) = rank(Num(S)) = 2.

Proof. Let (E, Og) (here @ is the identity element in the group structure Bn
and (J(E), 0) be pointedk-schemes and le# be the universal divisorial corres-
pondence between these two poinkteschemes. It is easy to see thgi(Pic C) @
p5(PicE) C PicS. Let Dy be an invertible sheaf in Pi§;, we are going to show
that Dy € p;j(PicC) @ p3(PIicE). Let P be a rational point or€. We have em-
beddings: C — Sandj: E — S by lettingi takeC to pz_l(OE) and letting; take
Eto pl_l(P). Itis obvious thatDg — p;(Doli«cy) — p3(Dol (k) is a divisorial cor-
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respondence betweén’, P) and(E, Og). By the universal property of Jacobians,
we have a morphismy: C — J(E) such that

(1% ¢0)"(M) = Do — p1(Dolicc)) — p3(Dolje)) and go(P) = 0.

By assumptionpy = 0, and it follows thatDg — pi(Doli(c)) — p3(Dol k) = Os
which impliesDg = p3(Dolic)) + p3(Dol (k). The statements about NS and Num
are now obvious since radkum(s)) > 2.

DEFINITION 4.2. LetD be a curve on an algebraic surfaSe Then§(D) =
2(p.(D)—g(D)). The quantitys (D) measures the singularities bf(see Hartshorne
[Ha, Chap. 4, Ex. 1.8)).

LetS, C, E, p1, andp, be as defined at the beginning of this section andlet
be an irreducible divisor o for which p,|p is nonconstant. By Proposition 4.1,
D is numerically equivalent ta - C + b - E for some nonnegative integetsand
b. Using this notation we have the following Proposition.

PROPOSITION 4.3. Letg: D — D be a desingularization ab and let¢ be the
compositionp1|p - g. Then

R D
deORy _ 5, _3(D) (4.3.1)
deg¢ a

Proof. We use intersection theory on elliptic surfaces. The canonical class (of
differentials overk) of Sis K(S) = K(C) x E + C x K(E). By the adjunction
formula for algebraic surfaces ([Ha, Chap. 4, Ex. 1.3]), we have

2p.(D) —2 = D?>+ D.K(S)
= D?+2a(g(C) — 1) 4 2b(g(E) — 1)
= 2ab + 2a(g(C) — 1) + 2b(g(E) — 1)
= 2ab + 2a(g(C) — 1). (4.3.2)

Sinceq: D — D is generically injective, deg) = degp:|, = a. Note that is not
zero, because, | p is nonconstant. The Riemann—Hurwitz formula tells us that

2¢(D) — 2 =2a(g(C) — 1) + degRy. (4.3.3)
Combining (4.3.2) and (4.3.3) then gives us

degRy  2g(D) —2—2a(g(C) — 1)

deg¢ a
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2ab — (2p(D) —2) +2g(D) _,
a

_ g 2D (4.3.4)

a
a

Suppose now that we havé-aamified mapf: C’ — C whereC’ admits a noncon-
stant mapg to an elliptic curveE. This gives us a mag: C' — C x; E by taking

¥ = f x g. Let us call the image of this map. Naturally, D is irreducible and
projection to each factor af x, E is nonconstant (sincg andg are nonconstant).
The projectionp:|, gives a mapp: D — C, which is equal tops|p - ¢, where
g: D — D is the desingularization ab as in the proof of Proposition 4.3. Since
C’ is nonsingular the property of the normalizatibnensures the existence of a
mapr:C' — D such thatf = ¢ - . This is summarized in the diagram below.

i

C—Y+D—+CxE (4.3.9)

Note thati is a closed immersion anglis the composites|p - g.

LEMMA 4.4. With the notation of4), 50(¢) < So(f).

Proof. Asin (4), f = ¢ - =. Now, letRy4, R,, andR s denote the ramification
divisors of¢, r, and f, respectively. Applying Riemann—Hurwitz # 7, and f
and using the fact that defy= (degr)(dege) yields

degR; = 2g(C’) —2—degf(2g(C) — 2),

degf(2g(D) — 2 — degRy)
dege

degr (2¢(D) — 2) + degR, — deg¢ (2g(D) — 2 — degR,),

degr (2g(D) — 2) + degR, —

’

= (degr)(degR,) + degR;. (4.4.2)
Therefore, we have

degR, . 1 degR; _ degR;
degp  degp degr degf

(4.4.2)
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Remark4.5. Inlight of Lemma 4.4 and 4.3, a covérC’ — C can only have
smalléo(f) when its imageD in C x, E is singular. Again, we use the notation of
(4). In generalg (D) = 2ab — degRy, and ifg(C) > 1,

degR, o degRry op — 3(D)
2¢(D) —2  degp a

So what we are looking for are curves Snwith a lot of singularities. Further
computations suggest a close relationship between our question and the classical
Severi problem (see [Ha, Chap. 5, Rmk. 3.11.1] and [SeV]).

A before, letE be an elliptic curve over a number fietdand letC be a curve
of genus at least 2 ovérthat does not admit a nonconstant magtdenote byC
the extension of” from k to k(E) (the function field ofE), that isC :=C X k(E).
Of course, we may regaid as the generic fibre of the surfase= C x E (with
respect to the projectiop, to E). Recall from Section 1 that we may define a
canonical height ot via ws,/k, the sheaf of relative differentials fdr over E;
furthermorews,r = K5 — p5(Kg) = Ks (sinceKg is trivial), so we have

hy (P) = —p@sie __ HpKs (4.5.1)
¢ [k(P) : k(E)]  [k(P) : k(E)]

We also recall the definition

h(P):

from Section 1. We see now that there is an interesting relationship between
ramified coverings of® which admit nonconstant maps gand points with small
discriminant onC.

PROPOSITION 4.6. With notation as above, any covgt C’ — C which admits
a nonconstant map t@ gives rise to a poinP € C(k(E)) with

d(P) < hg,(P)+ So(f)h(P). (46.1)

Conversely, any poink satisfyingd (P) < hk.(P)+€h(P) andi(P) > 0comes
from a coverf: C’ — C with §p( f) < € whereC’ admits a nonconstant map fo.

Proof. We begin with a few generalities on poirsn C(k(E)) with h(P) > 0.
First of all, we note that have

d(py - 28R =2

- e (4.6.2)
[k(P) : k(E)]

whereH, is the desingularization of the curve corresponding’td et us denote
by ¢ the mapping fromH, induced by projection onto the first factor 6f It
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is clear thatp must be nonconstant, for ¢f were constant thaff, would be in a

fibre of the projection t@ andHp.ws,r would have to be zero, which would mean
thath(P) was zero, contrary to our assumption. We observe that using intersection
theory as in Proposition 4.3 yields

[k(P) : k(E)I(d(P) — hg,(P)) = 2g(Hp) — 2 — (degg)(2¢(C) — 2)

Once again Nurgs) is generated by” x pt and pr x E, which we refer to as
C and E, respectively. ThusHy is numerically equivalentta - C + b - E for
some nhonnegative integessandb. In fact,a must be positive since they|p is
nonconstant as we have already seen jamtist be positive since the projection to
E is nonconstant ol becauseH is the closure of a point on the generic fibre
C. We see that the height &f has a simple formulation in terms afandb

1 Ks.Hp
h(P) = .
(28(C) =2) [k(P) : k(E)]
_ 1 as©-?
(28(C) =2 b
a
=3 (4.6.4)
Plugging (4.6.3) and (4.6.4) into the formula B3K¢), we obtain
So(P)h(P) = ih P
o@h(P) = degs (P)
1
= @[k(P) tk(E)I(d(P) — hk,.(P))h(P)
b a
= —(d(P) — hg (P))-
a b
= d(P) — hg.(P). (4.6.5)

Now, suppose’: C’ — C is a nhonconstant map whetg is a curve which admits a
nonconstant map tf. As we saw earlier, the map froaY to E induces a poinf
onC and a mapr: C' — Hp such thatf = ¢ - 7. By Lemma 4.480(f) = 8o(¢).
Since/(P) > 0, (4.6.5) then yieldd (P) < hx, (P) + So(f)h(P).

Conversely, given a poinP with d(P) < hi.(P) + €h(P), for somee > 0,

takingC’ = Hp and f = ¢ yields f: C’ — C with 8y(f) < € by (4.6.5). O

COROLLARY 4.7. SupposeV(C‘,e,d, v) holds for somev. Suppose, further-
more, that the inequalityd (P) < hg,(P) + €h(P) + O(1) is true for infinitely
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many P either withO(1) < 0 andh(P) > 0 or with 2(P) — oo. Then, for any
€ >eV(C,¢€,d,v), holds as well.

Proof. When Q1) < 0 andi(P) > 0, it follows immediately from Propos-
ition 4.6 that there exists a cover C' — C of degree less than or equal to
v with 8o(f) < € and C’ admits a nonconstant map to an elliptic curve. When
h(P) — oo, it follows that fore’ > ¢ there are infinitely manyP such that
eh(P) + O(1) < €’h(P), so again from Proposition 4.6 it follows that there exists
coverg: C' — C of degree less than or equalitavith §o( ) < ¢’ andC’ admits a
nonconstant map to an elliptic curve. Applying Proposition 3.5 finishes the fnoof.

The main result of this section is now immediate.
THEOREMA4.8. If statemenlB(@, d, v, 0) holds, thenB(C, d, v, 0) holds as well.

Note that the points with small field discriminant$P) constructed in Theo-
rem 4.8 do not necessarily have small arithmetic discrimindpt®). In fact, all
of the P may be linearly equivalent as divisors 6nh When this is the case, all of
the correspondin@p in (2.0.2) are the same and it follows thB{(P) = hy(P) +
2[k(P) : k]Jh(P)+0O(1). Thus, in many casesg( P) is small because the difference
d(P) andd,(P) is large. This is the result of singularities on the arithmetic curve
Hp corresponding taP on the arithmetic surfac& corresponding taC (recall
the notation of Section 1). We hope to address questions involving highly singular
arithmetic curves and points with small arithmetic discriminants in future papers.
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