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Abstract. This paper addresses questions involving the sharpness of Vojta’s conjecture and Vojta’s
inequality for algebraic points on curves over number fields. It is shown that one may choose the
approximation termmS(D,−) in such a way that Vojta’s inequality is sharp in Theorem 2.3. Partial
results are obtained for the more difficult problem of showing that Vojta’s conjecture is sharp when
the approximation term is not included (that is, whenD = 0). In Theorem 3.7, it is demonstrated
that Vojta’s conjecture is the best possible withD = 0 for quadratic points on hyperelliptic curves.
It is also shown, in Theorem 4.8, that Vojta’s conjecture is sharp withD = 0 on a curveC over a
number field when an analogous statement holds for the curve obtained by extending the base field
of C to a certain function field.
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In 1955, Roth ([Ro]), building upon the work of Thue, Siegel, and Dyson, proved
that for any algebraic numberα and anyc > 0 andε > 0, there exist only finitely
many rational numbersx/y (x, y ∈ Z) with∣∣∣∣xy − α

∣∣∣∣ 6 c

|y|2+ε .

The theorem of Roth is sharp, in the sense that for any irrational algebraic number
α, there are infinitely many rational numbersx/y (x, y ∈ Z) such that∣∣∣∣xy − α

∣∣∣∣ 6 1

|y|2 .

This had been shown by Dirichlet much earlier in 1842 ([Dir]).
Recently, Vojta ([V 4]) combined the technique of Roth–Thue–Siegel–Dyson

with ideas from Arakelov theory to prove a vast generalization of Roth’s theorem,
one which encompasses Faltings’ theorem for curves. To state it, we will need a
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220 XIANGJUN SONG AND THOMAS J. TUCKER

bit more terminology. LetC be a curve defined over a number fieldk and letX
be a regular model forC over the ring of integers ofk. Let K be the canonical
divisor of C. Suppose thatS is a finite set of places ofk, D is a divisor without
multiple points onC, A is an ampleQ-divisor onC, ν is a positive integer, andε
a positive real number. Vojta ([V 4, Thm. 0.1]) shows that for allP ∈ C(k̄) with
[k(P ) : k] 6 ν the following inequality holds

mS(D,P )+ hK(P ) 6 da(P )+ εhA(P )+O(1). (0.0.1)

Here,da(P ) is the arithmetic discriminant ofP (see [V 4], p. 764]),hA andhK are
Weil heights forA andK, respectively, andmS(D,P ) is the sum

∑
v∈S

[k(P ):k]∑
α=1

λD,v(P
[α,v])

[k(P ) : k] , (0.0.2)

whereλD is a Weil function forD andP [α,v], α = 1, . . . , [k(P ) : k], are the
conjugates ofP in C(Cv). We will refer to (0.0.1) asVojta’s inequalitythroughout
this paper. TheA is frequently omitted; it is assumed then thatA isKC/(2g − 2)
(unlessg = 1 in which case it is just some fixedk-rationalQ -divisor of degree
1). Note that the choice of ampleA is inconsequential: since degrees determine
divisors on curves up to algebraic equivalence, changingA will only change the
ε in (0.0.1) by the addition of an arbitrarily small factor and by multiplication by
some fixed nonzero factor (see [V 4, p. 769]).

The arithmetic discriminantda(P ) is related to the normalized logarithmic field
discriminantd(P ), which is defined as

d(P ) := ‖Dk(P)/k‖
[k(P ) : k] . (0.0.3)

Now, da(P ) is always at least as large asd(P ); it can be calculated by adding to
d(P ) terms corresponding to arithmetic singularities on the arithmetic curve cor-
responding toP and additional data at infinite places ofk. Vojta ([V 1, Conjecture
5.2.6]) conjectures that inequality (0.0.1) remains true whenda(P ) is replaced by
d(P ), that is to say, that

mS(D,P )+ hK(P ) 6 d(P )+ εhA(P )+O(1) (0.0.4)

holds, where the notation is the same as in (0.0.1). We will refer to (0.0.4) as
Vojta’s conjecture. This conjecture is quite strong. In particular, theabc conjecture
of Masser and Oesterlé (see [V 1, 5.ABC] and [L 2, appendix]) is a corollary.

Lang conjectures that Vojta’s conjecture is best possible for any curve of nonzero
genus over a number field ([L 3, 2.4, p.63], see also [So]). There are a variety of
ways of interpreting what it means for Vojta’s conjecture to be best possible; for
example, one might ask if it is true for all choices ofD or only for certain choices
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ofD. One might also ask whether or not Vojta’s inequality is sharp. It is convenient
then to define the following ‘sharpness statements’.

In the following definitions,C is a curve defined over a number fieldk, D is
an effective divisor without multiple components onC, andν is an element of
Z+ ∪ {∞}. The heightshK , hA, proximity functionmS(D,−), field discriminant
d, and arithmetic discriminantda are defined as in (0.0.1) and (0.0.4).

DEFINITION 0.1. We will say that statementB(C, d, ν,D) holds if there exists
a finite extensionk′ of k and a finite setS of places ofk′ such that for anyε > 0,
there exists an infinite sequence ofP ∈ C(k̄)with [k′(P ) : k′] 6 ν andh(P )→∞
satisfying

mS(D,P )+ hK(P ) > d(P )− εhA(P )+O(1). (0.1.1)

Observe that statementB(C, d, ν,0) holds if there is somek′ for which there
are infinitely many pointsP with [k′(P ) : k′] satisfying.

hK(P ) > d(P )− εhA(P )+O(1). (0.1.2)

holds. Lang conjectures that for any curveC of nonzero genus, statementB
(C, d,∞,0) holds. Note also that the conditionh(P ) → ∞ is automatically met
whenν is finite by Northcott’s theorem, which asserts that there are only finitely
many points of bounded degree and bounded height with respect to some fixed
ample divisor.

DEFINITION 0.2. We will say that statementB(C, da, ν,D) holds if there exists
a finite extensionk′ of k and a finite setS of places ofk′ such that for anyε > 0,
there exists an infinite sequence ofP ∈ C(k̄)with [k′(P ) : k′] 6 ν andh(P )→∞
satisfying

mS(D,P )+ hK(P ) > da(P )− εhA(P )+O(1). (0.2.1)

In this note, we show that for any curveC of nonzero genus there exists some
choice ofD and ν for which B(C, da, ν,D) holds. The proof is a simple ap-
plication of Dirichlet’s theorem and the basic properties of Weil functions. We
also examine the problem of whether or notB(C, d,∞,0) holds for all curvesC
over number fields. We describe how a certain geometric construction produces
families of points with small discriminants. This construction is used to show that
B(C, d,2,0) holds for hyperelliptic curves and to relate the problem of points with
small discriminants over number fields to a similar problem over function fields.
The fact that Vojta has proved his conjecture, in a slightly weakened form, for
curves over function fields of characteristic 0 in [V 3] makes the connection with
the problem over function fields especially interesting.

Determining ifB(C, d, ν,0) holds whenever for any curveC of nonzero genus
possessing infinitely manyP ∈ C(k̄) with [k(P ) : k] 6 ν is beyond our grasp at
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this point. It is very hard to say much about which curves will contain infinitely
many points of degreeν or less, for a givenν. In the case of points of degree 2
and 3 Abramovich and Harris ([A-H]) have used Faltings’ theorem on subvarieties
of Abelian varieties ([Fa]) to obtain results that are sufficient for our purposes.
For points of higher degree, however, no such results hold: Debarre and Fahlaoui
([D-F]) have found counterexamples to the conjectures of Abramovich and Harris
concerning algebraic points of degree 4 and greater.

1. Preliminaries and Statements of Results

We need to introduce a bit of Arakelov theory in order to define the arithmetic
discriminant. LetC be a curve over a number fieldk. After taking a finite base
extension ofk, the curveC has a regular model over the ring of integersR of k
([Ar]). At the infinite placesσ of k (which correspond to embeddingsσ : k ↪→
C), we may endowC ×σC with an admissible Arakelov volume form (see [L 2,
4.3]). This allows us to find local and global arithmetic intersections of arithmetic
divisors onX as in [V4].

An algebraic pointP ∈ C(k̄) gives rise to a horizontal divisorHP onX (by
taking the closure of the support ofP in C). We define thecanonicalheighthK of
a pointP ∈ C(k̄) to be

hK(P ) := (HP .ωX/B)

[k(P ) : Q] ,

whereωX/B is the canonical sheaf forX over B = SpecR, metrized with the
canonical Arakelov metric (see [L 2, 4.3 and 4.5]). Note thathK is a Weil height
for the canonical sheafK of C. We define the arithmetic discriminant (in analogy
with the arithmetic genus of a curve on a geometric surface)da(P ) to be

da(P ) := (HP .ωX/B +HP)
[k(P ) : Q] .

Let us also fix a horizontalQ -divisor onF which has degree 1 onC, so that we
will have a fixed height function onC. Wheng 6= 1, let F := ωX/B/(2g − 2).
Wheng = 1, letF be the horizontal divisor coming from somek-rational divisor
of degree 1 onC. We define

h(P ) := hF (P ) := (HP .F )

[k(P ) : Q] .

Henceforth, we will always drop theA in the hA(P ) in (0.0.1) and (0.0.4) and
useh(P ). As noted earlier, this affects neither our sharpness statements nor the
statements of Vojta’s inequality and Vojta’s conjecture.

Let us now say a few words about local arithmetic intersections and Weil di-
visors. As with algebraic points, anyk-rational divisorD on C gives rise to a
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horizontal divisorHD onX, and the local intersections withHD, that is the func-
tions (−.HD)v, give rise to a Weil function forD. Remember that a Weil function
is actually a mapping

λD :
∐
v∈Mk

C(Cv) \ SuppD→ R. (1.0.1)

The intersections(HP .HD)v for pointsP in C(k̄) extend to functionsgv(Q,D)
for pointsQ ∈ C(Cv); these are given by base extension of intersections in the
case of finite places and are already given to us at infinity by the Green functions
corresponding to our Arakelov volume form (see [V 4, p. 767]). The functions
gv(−,D) form the desired Weil function forD. Vojta’s inequality is stated in [V 4]
using the Weil functions that arise in this way. That is to say, he definesmS(D,P )

as

mS(D,P ) :=
∑
v∈S

(HP .HD)v

[k(P ) : k] =
∑
v∈S

[k(P ):k]∑
α=1

gv(P
[α,v],D)

[k(P ) : k] , (1.0.2)

whereP [α,v], α = 1, . . . , [k(P ) : k], are the conjugates ofP in C(Cv). We use the
same definition. We note, however, that our choice of Weil functions inmS(D,−)
is of no consequence. Any two Weil functions for the same divisor will differ by
anMk-constant ([L 1, Chapter 10, p. 248]); this means that they will agree at all
but finitely many places and differ by O(1) at the remaining places. Thus, choice
of Weil function will not affect any of our results, since all of them include an O(1)
term.

We make one final note on Weil functions. For a pointP ∈ C(k̄), λE,v(P ) will
depend on which conjugate of P inC(Cv)we choose. Hence, we will only speak of
λE,v(P

[α,v]), 16 α 6 [k(P ) : k], whereP [α,v] is a fixed conjugate ofP in C(Cv).
We prove the following theorem in Section 2.

THEOREM 2.3. LetC be a curve defined over a number fieldk. Then there exist
choices ofD andν such that statementB(C, da, ν,D) holds.

This is actually stated somewhat more precisely, so that we can obtain some
results that apply to any curve with infinitely many points of degrees 3 or less.

We also have the following theorem, proved in Section 3.

THEOREM 3.7. Let C be a hyperelliptic curve defined over a number fieldk.
StatementB(C, d,2,0) holds.

When discussing Vojta’s conjecture withD = 0, we will work with curves over
function fields of transcendence degree 1 as well as curves over number fields. The
field discriminant is defined for function fields in the same way that it is defined
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for number fields. Moreover, we may define canonical heights and arithmetic dis-
criminants for points on curves over function fields of transcendence degree 1.
Recall that a function fieldk of transcendence degree 1 corresponds to a unique
nonsingular, projective curveB over the field of constants ofk ([Ha, 1.6]). A curve
C over k then corresponds to a surfaceS over the field of constants ofk with a
natural mapπ : S → B. A point in C(k̄) corresponds to a curve inS on which
π is nonconstant. We may use the relative canonical sheafωS/B for S overB and
the usual intersection pairing on surfaces ([Ha, 5.1]) to give ourselves canonical
heights and arithmetic discriminants of points. Given a pointP ∈ C(k̄) we take the
corresponding curveHP onS and define

hK(P ) := HP ..ωS/B

[k(P ) : k] .

We also define the arithmetic discriminant ofP as

da(P ) := HP .(ωS/B +HP)
[k(P ) : k] .

It is also possible to defineh(P ) as in the case of curves over number fields. We
takeF to beωS/B/(2g − 2) wheng 6= 1 and to be the divisor onS corresponding
to some fixedk-rationalQ -divisor onC wheng = 1. Then we define

h(P ) := HP .F

[k(P ) : k] .

With the definitions above, it is clear that it makes sense to define statements
B(C, d, ν,0) andB(C, da, ν,0) for curves over function fields of transcendence
degree 1 (actually, one can define Weil functions so thatB(C, d, ν,D) andB
(C, da, ν,D) make sense forD 6= 0 as well, but we will not consider these
statements in this paper).

Now, letC be a curve of nonzero genus defined over a number fieldk. LetE be
an elliptic curve defined overk. Let us denote aŝC the curveC ×k k(E) defined
over the function field ofE. In section 4, we obtain the result below.

THEOREM 4.8. If statementB(Ĉ, d, ν,0) holds, thenB(C, d, ν,0) holds as well.

2. The CaseD 6=0

Using the notation of our statement of Vojta’s inequality (0.0.1), we will show
that for suitableD, S, k′, andν we have for anyε > 0 infinitely manyP with
[k′(P ) : k′] 6 ν and

mS(D,P ) > (2ν − ε)h(P )+O(1). (2.0.1)
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There is an obvious upper bound onda coming from a decomposition ofHP in
PicX (see [L 2, Thm. 4.2.3] and [V 4, p. 791]). This decomposition gives us

νD2
P = da(P )− hK(P )− 2νh(P )+O(ν) (2.0.2)

forDP is an element of the Arakelov–Picard group ofX corresponding to a divisor
of degree 0 onC. Now, D2

P 6 0 because of the positivity of the Neron–Tate
height on the Jacobian ofC ([L 1, Chapter 5]) and the fact thatD2

P is negative
two times the Neron–Tate of the corresponding point in the Jacobian ofC ([Ch,
Thm. 5.1(ii)]). Thus, we have

da(P ) 6 hK(P )+ 2νh(P )+O(ν). (2.0.3)

Since Vojta’s inequality can be rewritten as

mS(D,P ) 6 da(P )− hK(P )+ εh(P )+O(1), (2.0.4)

theD andP satisfying (2.0.1) will satisfy statementB(C, da, ν,D).
We begin with a ‘geometric’ formulation of Dirichlet’s theorem forP1.

THEOREM 2.1. [Dirichlet]LetD be an effective divisor of degree at least two in
Div k̄(P1

k). Then there exists a finite extensionk′ of k such that for any Weil function
λD for D with respect toP1

k′ there exist infinitely manyP ∈ P1(k′) outside of
SuppD such that∑

v∈Sk′,∞
λD,v(P ) > 2h(P )+O(1). (2.1.1)

Proof. Case I. The divisorD has more than one point in its support. Extend
the basek to a fieldk′ so that all the points in SuppD are rationally defined and
so thatk′ contains a real quadratic field. This allows us to find anα ∈ k′ such that
[Q(α) : Q] = 2 and that for anyσ : k′ ↪→ C, σ (α) ∈ R. Letα′ denote the conjugate
of α overQ in k′. Now, writingD = Q1+Q2+D′ withD′ an effective divisor and
Q1 andQ2 distinct rational points, we have by basic properties of Weil functions
λD,v > λQ1,v + λQ2,v + O(1). It will suffice then to show that (2.1.1) holds for
some infinite sequence ofP ∈ P1(k′) whenD = Q1 +Q2. There exists a choice
of coordinates onP1

k′ so thatQ1 is written as(α : 1) andQ2 is written as(α′ : 1)
(since there exists an automorphism ofP1

k′ sending any two distinct points to any
other two distinct points). Hence, we obtain a Weil function forQ1 away from the
point at infinity by taking for pointsP written as(x : y) (y 6= 0) with respect to
our choice of coordinates

λQ1,v(P ) := − log min(1, ‖α − x/y‖v). (2.1.2)
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Similarly forQ2, we obtain a Weil function by setting

λQ2,v(P ) := − log min(1, ‖α′ − x/y‖v). (2.1.3)

Note thatλQ1,v andλQ2,v are always nonnegative.
Now, by the classical Dirichlet box principle ([Sch, Thm. 1A], [Dir]), it follows

that for anyσ :Q(α) ↪→ R there exist infinitely many pairs of relatively prime
integersa, b such that∣∣∣σ (α)− a

b

∣∣∣ 6 1

|b |2 , (2.1.4)

where the absolute value sign denotes the usual distance inR. Now, for any other
embeddingτ : Q(α) ↪→ R we have eitherτ(α) = σ (α) or τ(α′) = σα. It follows
then that at each Archimedean placev corresponding toτ : k′ ↪→ C and point
(a : b) as above

λ[Q1+Q2],v((a : b)) = λQ1,v((a : b))+ λQ1,v((a : b))

> [k
′
v : R]
[k′ : Q]2 logb. (2.1.5)

The fact that Weil functions are defined for points in extensions ofQ with respect
to normalized valuations (see [V 1, 1.1–1.3] and [L 1, 1.4 and 10.1–10.2]) accounts
for the normalization factor preceding 2 logb. Summing over allv ∈ Sk′,∞, then
gives for all(a : b) as above∑

v∈Sk′,∞
λ[Q1+Q2],v((a : b)) > 2 logb. (2.1.6)

Now since we have infinitely many(a : b) we may assume that| b |> 2 and
that |a/b| 6 max(|σα|, |σα′|) + 1, we see that for all the((a : b)), we have
h((a : b)) 6 logb +O(1). This then gives us the desired∑

v∈Sk′,∞
λ[Q1+Q2],v((a : b)) > 2h((a : b))+O(1).

Case II. The divisorD has only one point in its support. WriteD = nQ. Extend
the base to ak′ for whichQ is rationally defined. Choose our homogeneous co-
ordinates so thatQ is written as(0 : 1). Then,λQ,v(P ) = log+ ‖ y

x
‖v where(x : y)

are the homogeneous coordinates ofP ∈ P1
k′(k̄v) gives us a Weil function forQ.

Let P be the set of all points with coordinates(n : 1). Evidently,λQ,v(P ) = 0 for
any nonarchimedeanv ∈ Mk′ , so

∑
v∈Sk′,∞ λQ,v(P ) > h(P )+O(1). It follows that∑

v∈Sk′,∞
λnQ,v(P ) > nh(P )+O(1) > 2h(P )+O(1). 2
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PROPOSITION 2.2. Let D′ be a divisor on a curveC such that there exists
a nonconstant morphismφ:C → P1

k of degreeν for whichD′ = φ∗D for D
an effective divisor of degree at least two inDivk̄(P1

k). Then there exists a finite
extensionk′ of k such that for any Weil functionλD′ for D′ and anyε > 0, there
exist infinitely manyP ′ ∈ C(k̄′) with [k′(P ) : k′] 6 ν such that

∑
v∈Sk′,∞

[k(P ′):k]∑
α=1

λD′,v(P
′[α,v]) > [k′(P ′) : k′](2ν − ε)h(P ′)+O(1), (2.2.1)

whereP ′[α,v], α = 1, . . . , [k′(P ) : k′] are the conjugates ofP ′ in Cv.
Proof. By Theorem 2.1, it follows that after extension to a suitable base fieldk′

there exist infinitely manyP ∈ P1
k′(k
′) such that∑

v∈Sk′,∞
λD,v(P ) > 2h(P )+O(1). (2.2.2)

Now, λD pulls back to a Weil function onC. Specifically, by base extension, for
anyv ∈ Mk, φ gives us a mapφCv :C(Cv)→ P1(Cv) and this allows us to define a
function onC(Cv) by sendingQ ∈ (C(Cv) \ φ−1 (SuppD)) to (D, φCv (Q))v; the
resulting map on

∐
v∈Mk

(C(Cv) \ (φ−1(SuppD)) is a Weil function forφ∗D. We
will call this Weil functionλφ∗D. Let P ′ be a point inC(k̄) such thatφ(P ′) = P .
Note that in factλφ∗D,v(P ′[α,v]) doesn’t depend on the choice of conjugateP ′[α,v]

since in any case it is equal toλD,v(P ). It follows that

∑
v∈Sk′,∞

[k(P ′):k]∑
α=1

λφ∗D,v(P
′[α,v]) =

∑
v∈Sk′,∞

[k(P ′):k]∑
α=1

λD,v(P )

= [k(P ′) : k]
∑

v∈Sk′,∞
λD,v(P )

> [k(P ′) : k]2h(P )+O(1). (2.2.3)

Similarly, we converth(P ) to something depending onP ′ by functoriality of
height functions. Sinceφ is a map of degreeν we haveφ∗F = νA′ for A′ a divisor
of degree 1. Henceh(P ) = hφ∗F (P ′) = νhA′(P ′). SinceA′ andF (onC here) are
algebraically equivalent, (2.2.3) gives

∑
v∈Sk′,∞

[k(P ′):k]∑
α=1

λD′,v(P
′[α,v]) > [k′(P ′) : k′](2ν − ε)h(P ′)+O(1). (2.2.4)

2
THEOREM 2.3. LetC be a curve defined over a number fieldk and letφ:C → P1

be a nonconstant morphism of degreeν. Then there exists a choice ofD such that
B(C, da, ν,D) holds.
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Proof. We want to show that there is a finite extensionk′ of k for which there
exist ak′-rational divisorD without multiple components and a finite set of places
S of k′ such that for anyε > 0 there are infinitely manyP with [k′(P ) : k′] 6 ν

satisfying (2.0.1). ChooseE consisting of two or more distinct points inP1(k)

away from the ramification locus ofφ; of course, this can be done becauseP1(k)

is infinite and the ramification locus ofφ consists of finitely many points. Let
D = φ∗E. We see thatD is a k-rational divisor without multiple points. Now,
by Proposition 2, for anyε > 0 and any choice of Weil functionλD, there are
infinitely manyP with [k′(P ) : k′] 6 ν such that

∑
Sk′,∞

[k′(P ):k′]∑
α=1

λD,v(P
[α,v]) > [k′(P ) : k′](2ν − ε)h(P )+O(1). (2.3.1)

In particular, this holds when our choice of Weil functionλD is the one coming
from the local Arakelov intersections described in Section 1, so, lettingS = Sk′,∞
and recalling (1.0.2), we havemS(D,P ) > (2ν−ε)h(P )+O(1),which is precisely
(2.0.1), and our proof is done. 2
COROLLARY 2.4. Let ν be 2 or 3. LetC be a curve of nonzero genus defined
over a number field. IfC has infinitely many points of degreeν or less, then there
exists a choice ofD such thatB(C, da, ν,D) holds.

Proof. Abramovich and Harris ([A-H, Thm. 1]) show that whenν is 2 or 3 a
curve has infinitely many points of degree less than or equal toν if and only if it
admits a map of degreeν or less toP1 or an elliptic curve. Theorem 2.3 takes care of
a map toP1 of degreeν or less. WhenC admits nonconstant mapf of degreeν or
less to an elliptic curveE, the canonical divisorKC ofC is in the linear equivalence
class of the ramification divisorRf of f , by the Riemann–Hurwitz theorem. We
may extend the base field ofE to ak′ for whichE(k′) is infinite. Now,da(P ) 6
O(1) for P ∈ E(k′) (see [L 2, Cor. 4.5.6]), so by the Chevalley–Weil theorem for
arithmetic discriminants ([V 2, Prop. 3.6]), for anyQ with f (Q) = P ∈ E(k′), we
have

da(Q) 6 da(P )+ hRf (Q)+O(1) 6 hKC(Q)+O(1).

Since, we have infinitely many suchQ and[k′(Q) : k′] 6 ν, statementB(C, da,
ν,0) must hold in this case. 2
3. The CaseD=0

We now approach the problem of producing algebraic points on curvesC which
demonstrate thatB(C, d, ν,0) holds for certain values ofν. This follows [So] fairly
closely. The definitions we are about to make will apply to curves over function
fields of transcendence degree 1 as well as curves over number fields. Let us in-
troduce some definitions. In the definitions below, letC be a curve defined over a
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fieldK, which is either a number field or a function field of transcendence degree
1, letε > 0, and letν ∈ Z+ ∪ {∞}.

DEFINITION 3.1. We say thatV (C, ε, d, ν) holds if there exists a finite extension
k′ of k for which there are infinitely manyP ∈ C(k̄) with [k′(P ) : k′] 6 ν such
that

d(P ) 6 hKC(P )+ εh(P )+Oε(1). (3.1.1)

The stronger statementV ′(C, ε, d, ν) is said to hold if the heights of theP in
(3.1.1) go to infinity.

WhenC is a curve over a number field andν is finite, V (C, ε, d, ν) implies
V ′(C, ε, d, ν) by Northcott’s theorem. We see thatB(C, d,∞,0) holds if
V ′(C, ε, d, νε) holds for everyε > 0 for someνε and thatB(C, d, ν,0) holds
for some finiteν if, in addition,νε 6 ν for everyε.

Here are two lemmas concerning the extent to which the propertyV (C, ε, d, ν)

can be pushed forward and pulled back.

LEMMA 3.2. Letf :C ′ → C be a nonconstant morphism of curves defined over a
number fieldk. SupposeV (C, ε, d, ν) holds. Then, for anyε ′ > 0V (C ′, (degf )ε+
ε ′, d, (degf )ν) holds.

Proof. The Chevalley–Weil theorem for fields discriminants ([V 1, Thm. 5.1.6])
states that wheneverf (P ′) = P for P ′ ∈ C ′(k̄) andP ∈ C(k̄),

d(P ′) 6 d(P )+ hR(P ′)+O(1), (3.2.1)

whereRf is the ramification divisor off and the O(1) depends only onf . Let
KC andKC ′ denote the canonical divisors onC andC ′, respectively, and observe
thatf ∗KC + Rf = KC ′. Note also that for anyP ′ ∈ C(k̄), we haveh(f (P ′)) 6
(degf+ε ′′)h(P ′)+O(1), since a divisor of degree 1 onC pulls back to a divisor of
degree degf onC ′ and a divisor on a curve are defined up to algebraic equivalence
by its degree. Choosingε ′′ such that(degf )ε ′′ε < ε ′, applying Chevalley–Weil to
the infinitely manyP for which d(P ) 6 hKC(P ) + εh(P )+O(1), and lettingP ′
be points for whichf (P ′) = P , we obtain

d(P ′) 6 d(P )+ hRf (P ′)+O(1)

6 hKC(P )+ εh(P )+ hRf (P ′)+O(1)

6 hf ∗KC(P
′)+ hRf (P ′)+ ((degf )ε + (degf )ε ′′ε)h(P ′)+O(1)

6 hKC′ (P
′)+ ((degf )ε + ε ′)h(P ′)+O(1), (3.2.2)

usingf ∗KC + Rf = KC ′ andh(P ′) 6 (degf + ε ′)h(P ). Now, since for each
P ′, [k(P ′) : k] 6 (degf )[k(P ) : k] 6 (degf )ν, we see thatV (C ′, (degf )ε +
ε ′, d, (degf )ν) is satisfied by the pointsP ′ onC ′. 2
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DEFINITION 3.3. Letf :C ′ → C be a nonconstant morphism of curves, and let
Rf be the ramification divisor off . We define

δ0(f ) := degRf
degf

.

We also say thatf is δ-ramified, for δ > 0, if δ0(f ) 6 δ.

LEMMA 3.4. Letf :C ′ → C be a nonconstant morphism of curves defined over
a number fieldk and suppose thatV (C ′, ε, d, ν) holds. Then, for anyε ′ > 0,
statementV (C, (1/ degf )ε + δ0(f )+ ε ′, d, ν) holds as well.

Proof. We begin with an infinite sequence ofP ′ ∈ C ′(k̄) with [k(P ′) : k] 6 ν
andd(P ′) 6 hKC′ (P ′)+ εh(P ′)+O(1). Sincek(f (P )) ⊆ k(P ), we haved(P ) 6
d(P ′). Hence, we see that

d(P ) 6 hKC′ (P
′)+εh(P ′)+O(1) 6 hKC(P )+hRf (P ′)+εh(P ′), (3.4.1)

once again using the equalityf ∗KC + Rf = KC ′ . We may chooseε ′′ > 0
small enough thatε ′′(1 + ε) < ε ′, and by algebraic equivalence and the func-
torial property of heights, we havehRf (P

′) 6 δ0(f )h(P ) + ε ′′h(P ) + O(1) and
h(P ′) 6 1/(degf )h(P ) + ε ′′h(P ) + O(1). Substituting these inequalities into
(3.4.1) then gives

d(P ) 6 hKC(P )+ δ0(f )h(P )+ ε ′′h(P )+
+ε/(degf )h(P )+ εε ′′h(P )+O(1)

6 hKC(P )+ (ε/(degf )+ δ0(f )+ ε ′)h(P )+O(1). (3.4.2)

Naturally,[k(P ) : k] 6 [k(P ′) : k] 6 ν, and this completes the proof. 2
These two lemmas combine to give us the following proposition.

PROPOSITION 3.5. Let C be a curve with a coverf :C ′ → C, whereC ′ ad-
mits a nonconstant map to an elliptic curveg:C ′ → E. Then, for anyε > 0,
V (C, δ0(f )+ ε, d,degg) holds.

Proof. First, we show thatV (E,0, d,1) holds. This is easy since extendingk
to the field of definition of some nontorsion point ofE(k̄) gives us infinitely many
points inE(k). Evidently, for all of these pointsP , d(P ) = 0 6 hKE(P ) + O(1)
(recall thatKE is trivial). Applying Lemma 3.2 tells us then that for anyε ′′ > 0,
V (C ′, ε ′′, d,degg) holds. Choosingε ′, ε ′′ > 0 such thatε ′′/(degf )+ ε ′ < ε and
invoking Lemma 3.4 then yieldsV (C, δ0(f )+ ε, d,degg). 2
COROLLARY 3.6. Let C be a curve over a number field with an étale cover
f :C ′ → C which admits a nonconstant map to an elliptic curve,g:C ′ → E. Then
B(C, d,degg,0) holds.
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Proof. Sincef is étale,Rf = 0, soδ0(f ) = 0. Now apply Proposition 3.5 and
Lemma 3.4. 2
We can use this corollary to show thatB(C, d,2,0) holds for hyperelliptic
curvesC.

THEOREM 3.7. Let C be a hyperelliptic curve defined over a number fieldk.
StatementB(C, d,2,0) holds.

Proof. It will suffice to show that there existsC ′ which admits nonconstant
mapsf : C ′ → C andg: C ′ → E with E an elliptic curve andg a map of degree
2. We follow a construction of Mumford ([Mu]). Letπ be a double cover ofP1 by
C, that isπ :C 2:1- P1. By the Riemann–Hurwitz theorem,π ramifies over at least
four points inP1, all of which can be taken to be rational since we may extend the
base. Let us choose exactly four of these pointsQ1, . . . ,Q4. By basic properties of
the moduli of elliptic curves, there exists an elliptic curveE which admits a double
cover ofP1, φ:E 2:1- P1, that ramifies only atQ1, . . . ,Q4. Forming the fibre
product overP1 of C andE with respect toπ andφ and desingularizing yields a
curveC ′ which admits mapsf :C ′ 2:1- C andg:C ′ 2:1- E with f étale. That
the degrees off andg are two is obvious. To see thatf is étale is only slightly
more difficult. The mapsπ andφ give us embeddings of the function fieldsk(C)
andk(E) into the algebraic closure ofk(P1). Their compositum is unramified over
C since the only places at which it could possibly ramify are theQi in C sinceE
is smooth overP1 away from these points. Now,C ′ is unramified over the points
in the fibres ofC overQ1, . . . ,Q4 because, whenever there pointsPi ∈ C(k̄)

andSi ∈ E(k̄) such thatπ(Pi) = φ(Si) = Qi , thene(Pi/Qi) = e(Si/Qi) = 2
wheree(Pi/Qi) ande(Si/Qi) are the ramification indices ofPi andSi overQi .
Now, letting k(C)Pi andk(E)Si denote the completions ofk(C) andk(C ′) at Pi
andSi, respectively, we see that their compositum ink(P1)Qi is unramified over
k(C)Pi sincee(Si/Qi)|e(Pi/Qi) by a simple result from field theory sometimes
known as Abhyankar’s Lemma (see, for example, [Sti, Prop. III.8.9]). Since for
anyP ′i ∈ C ′(k̄), the local fieldk(C ′)P ′i is the compositum ofk(C)Pi andk(E)Si , it
follows thatP ′i is unramified overPi . 2

Remark3.8. The same construction can be used to show that statementB(C, d,

2,0) holds for any curveC which admits a mapf :C → P1 such that there exist
four pointsQ1, . . . ,Q4 such that for every pointP ∈ C(k̄) with f (P ) = Qi, we
have 2|e(P/Qi). A slight modification shows thatB(C, d,3,0) holds whenever
there existsf :C → P1 of degree 3 and threeQ1, . . . ,Q3 with 3|e(P/Qi) for
everyP such thatf (P ) = Qi .

COROLLARY 3.9. StatementB(C, d,2,0) holds on any curveC of nonzero genus
defined over a number field with infinitely many points of degree2 or less.
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Proof. The proof is similar to that of Corollary 2.4. A curve has infinitely many
points of degree 2 or less if and only if it admits a map of degree 2 or less toP1

or an elliptic curve. Theorem 3.7 and Proposition 3.5 assert that in either case,
B(C, d,2,0) holds. 2
It is possibe that every curveC has an étale coverC ′ which admits a nonconstant
map to an elliptic curve, but it appears difficult to prove this. A more approachable
problem is try to show that given a curveC, there exists, for anyδ > 0 a curveC ′
which admits a nonconstant map to an elliptic curve and aδ-ramified cover (recall
Definition 3.3)f :C ′ → C. The existence of such covers for a curveC implies that
statementB(C, d,∞,0) holds (although it doesn’t imply thatB(C, d, ν,0) holds
for any finiteν). Here is the precise statement.

CLAIM 3.10. LetC be a curve such that for everyδ > 0 there exists a curveC ′δ
which admits aδ-ramified coverfδ : C ′δ → C and a nonconstant map to an elliptic
curveC ′δ → Eδ . Then statementB(C, d,∞,0) holds.

Proof. Givenε, takeδ < ε, setνε := degfδ and apply Proposition 3.5. Since
eachνε is finite, Northcott’s theorem applies and the additional restriction of
V ′(C, ε, d, ν) is met. 2
One interesting feature ofδ-ramified covers is that they relate in a natural way to
the classical Severi problem on surfaces, specifically split elliptic surfaces.

4. δ-Ramified Covers

LetC be a curve of genus at least two defined over a number fieldk and letE be an
elliptic curve defined overk. All curves which dominate bothC andE will factor
through the product surfaceS := C ×k E. Let p1 andp2 be projections toC and
E respectively. We will assume in this section thatC itself admits no nonconstant
map toE so that the Neron–Severi group ofC ×k E has rank 2 by the following
proposition.

PROPOSITION 4.1. If C admits no nonconstant morphism toE, then

(i) Pic S = p∗1(PicC)⊕ p∗2(PicE);
(ii) rank(NS(S)) = rank(Num(S)) = 2.

Proof. Let (E,0E) (here 0E is the identity element in the group structure onE)
and(J (E),0) be pointedk-schemes and letM be the universal divisorial corres-
pondence between these two pointedk-schemes. It is easy to see thatp∗1(PicC)⊕
p∗2(PicE) ⊆ PicS. Let D0 be an invertible sheaf in PicS; we are going to show
thatD0 ∈ p∗1(PicC) ⊕ p∗2(PicE). Let P be a rational point onC. We have em-
beddingsi:C → S andj :E→ S by lettingi takeC top−1

2 (0E) and lettingj take
E to p−1

1 (P ). It is obvious thatD0− p∗1(D0|i(C))− p∗2(D0|j (E)) is a divisorial cor-
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respondence between(C, P ) and(E,0E). By the universal property of Jacobians,
we have a morphismφ0:C → J (E) such that

(1× φ0)
∗(M) = D0− p∗1(D0|i(C))− p∗2(D0|j (E)) and φ0(P ) = 0.

By assumptionφ0 = 0, and it follows thatD0 − p∗1(D0|i(C)) − p∗2(D0|j (E)) = OS

which impliesD0 = p∗1(D0|i(C))+p∗2(D0|j (E)). The statements about NS and Num
are now obvious since rank(Num(S)) > 2.

DEFINITION 4.2. LetD be a curve on an algebraic surfaceS. Then δ(D) =
2(pa(D)−g(D)).The quantityδ(D)measures the singularities ofD (see Hartshorne
[Ha, Chap. 4, Ex. 1.8]).

Let S, C, E, p1, andp2 be as defined at the beginning of this section and letD

be an irreducible divisor onS for whichp1|D is nonconstant. By Proposition 4.1,
D is numerically equivalent toa · C + b · E for some nonnegative integersa and
b. Using this notation we have the following Proposition.

PROPOSITION 4.3. Letq: D̃ → D be a desingularization ofD and letφ be the
compositionp1|D · q. Then

degRφ
degφ

= 2b − δ(D)
a

. (4.3.1)

Proof. We use intersection theory on elliptic surfaces. The canonical class (of
differentials overk) of S is K(S) = K(C) × E + C × K(E). By the adjunction
formula for algebraic surfaces ([Ha, Chap. 4, Ex. 1.3]), we have

2pa(D)− 2 = D2+D.K(S)
= D2+ 2a(g(C)− 1)+ 2b(g(E)− 1)

= 2ab + 2a(g(C)− 1)+ 2b(g(E)− 1)

= 2ab + 2a(g(C)− 1). (4.3.2)

Sinceq: D̃→ D is generically injective, degφ = degp1|D = a. Note thata is not
zero, becausep1|D is nonconstant. The Riemann–Hurwitz formula tells us that

2g(D̃)− 2= 2a(g(C)− 1)+ degRφ. (4.3.3)

Combining (4.3.2) and (4.3.3) then gives us

degRφ
degφ

= 2g(D̃)− 2− 2a(g(C)− 1)

a
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= 2ab − (2pa(D)− 2)+ 2g(D̃)

a
− 2

= 2b − δ(D)
a

. (4.3.4)

2
Suppose now that we have aδ-ramified mapf :C ′ → C whereC ′ admits a noncon-
stant mapg to an elliptic curveE. This gives us a mapψ :C ′ → C ×k E by taking
ψ = f × g. Let us call the image of this mapD. Naturally,D is irreducible and
projection to each factor ofC×k E is nonconstant (sincef andg are nonconstant).
The projectionp1|D gives a mapφ: D̃ → C, which is equal top1|D · q, where
q: D̃ → D is the desingularization ofD as in the proof of Proposition 4.3. Since
C ′ is nonsingular the property of the normalizationD̃ ensures the existence of a
mapπ :C ′ → D̃ such thatf = φ · π . This is summarized in the diagram below.

D̃

�
�
�

π
7

C ′ ψ- D
?
q

i- C ×k E
S
S
Sf w

C
?
p1|D

(4.3.9)

Note thati is a closed immersion andφ is the compositep1|D · q.

LEMMA 4.4. With the notation of(4), δ0(φ) 6 δ0(f ).
Proof. As in (4),f = φ · π . Now, letRφ, Rπ , andRf denote the ramification

divisors ofφ, π , andf , respectively. Applying Riemann–Hurwitz toφ, π , andf
and using the fact that degf = (degπ)(degφ) yields

degRf = 2g(C ′)− 2− degf (2g(C)− 2),

= degπ(2g(D̃)− 2)+ degRπ − degf (2g(D̃)− 2− degRφ)

degφ
,

= degπ(2g(D̃)− 2)+ degRπ − degφ(2g(D̃)− 2− degRφ),

= (degπ)(degRφ)+ degRπ. (4.4.1)

Therefore, we have

degRφ
degφ

6 1

degφ

degRf
degπ

= degRf
degf

. (4.4.2)

2
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Remark4.5. In light of Lemma 4.4 and 4.3, a coverf :C ′ → C can only have
smallδ0(f ) when its imageD in C ×k E is singular. Again, we use the notation of
(4). In general,δ(D) = 2ab − degRφ, and ifg(C) > 1,

degRφ
2g(D)− 2

6 degRφ
degφ

= 2b − δ(D)
a
.

So what we are looking for are curves onS with a lot of singularities. Further
computations suggest a close relationship between our question and the classical
Severi problem (see [Ha, Chap. 5, Rmk. 3.11.1] and [Sev]).

A before, letE be an elliptic curve over a number fieldk and letC be a curve
of genus at least 2 overk that does not admit a nonconstant map toE. Denote byĈ
the extension ofC from k to k(E) (the function field ofE), that isĈ := C×k k(E).
Of course, we may regard̂C as the generic fibre of the surfaceS = C ×k E (with
respect to the projectionp2 to E). Recall from Section 1 that we may define a
canonical height on̂C via ωS/E, the sheaf of relative differentials forS overE;
furthermoreωS/E = KS − p∗2(KE) = KS (sinceKE is trivial), so we have

hK
Ĉ
(P ) := HP .ωS/E

[k(P ) : k(E)] =
HP .KS

[k(P ) : k(E)] . (4.5.1)

We also recall the definition

h(P ) := 1

2g(C)− 2
hK

Ĉ
(P ) (4.5.2)

from Section 1. We see now that there is an interesting relationship betweenδ-
ramified coverings ofC which admit nonconstant maps toE and points with small
discriminant onĈ.

PROPOSITION 4.6.With notation as above, any coverf :C ′ → C which admits
a nonconstant map toE gives rise to a pointP ∈ Ĉ( ¯k(E)) with

d(P ) 6 hK
Ĉ
(P )+ δ0(f )h(P ). (4.6.1)

Conversely, any pointP satisfyingd(P ) 6 hK
Ĉ
(P )+ εh(P ) andh(P ) > 0 comes

from a coverf :C ′ → C with δ0(f ) 6 ε whereC ′ admits a nonconstant map toE.
Proof. We begin with a few generalities on pointsP in Ĉ( ¯k(E))with h(P ) > 0.

First of all, we note that have

d(P ) := 2g(H̃P )− 2

[k(P ) : k(E)] , (4.6.2)

whereH̃P is the desingularization of the curve corresponding toP . Let us denote
by φ the mapping fromH̃P induced by projection onto the first factor ofS. It
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is clear thatφ must be nonconstant, for ifφ were constant thanHP would be in a
fibre of the projection toC andHP .ωS/E would have to be zero, which would mean
thath(P ) was zero, contrary to our assumption. We observe that using intersection
theory as in Proposition 4.3 yields

[k(P ) : k(E)](d(P )− hK
Ĉ
(P )) = 2g(H̃P )− 2− (degφ)(2g(C)− 2)

= degRφ. (4.6.3)

Once again Num(S) is generated byC × pt andpt × E, which we refer to as
C andE, respectively. Thus,HP is numerically equivalent toa · C + b · E for
some nonnegative integersa andb. In fact, a must be positive since thep1|D is
nonconstant as we have already seen, andbmust be positive since the projection to
E is nonconstant onHP becauseHP is the closure of a point on the generic fibre
Ĉ. We see that the height ofP has a simple formulation in terms ofa andb

h(P ) = 1

(2g(C)− 2)
· KS.HP

[k(P ) : k(E)]

= 1

(2g(C)− 2)
· a(g(C)− 2)

b

= a

b
. (4.6.4)

Plugging (4.6.3) and (4.6.4) into the formula forδ0(φ), we obtain

δ0(φ)h(P ) = Rφ

degφ
h(P )

= 1

degφ
[k(P ) : k(E)](d(P )− hK

Ĉ
(P ))h(P )

= b

a
(d(P )− hK

Ĉ
(P ))

a

b

= d(P )− hKC′ (P ). (4.6.5)

Now, supposef :C ′ → C is a nonconstant map whereC ′ is a curve which admits a
nonconstant map toE. As we saw earlier, the map fromC ′ toE induces a pointP
on Ĉ and a mapπ :C ′ → H̃P such thatf = φ · π . By Lemma 4.4,δ0(f ) > δ0(φ).
Sinceh(P ) > 0, (4.6.5) then yieldsd(P ) 6 hK

Ĉ
(P )+ δ0(f )h(P ).

Conversely, given a pointP with d(P ) 6 hK
Ĉ
(P ) + εh(P ), for someε > 0,

takingC ′ = H̃P andf = φ yieldsf :C ′ → C with δ0(f ) 6 ε by (4.6.5). 2
COROLLARY 4.7. SupposeV (Ĉ, ε, d, ν) holds for someν. Suppose, further-
more, that the inequalityd(P ) 6 hK

Ĉ
(P ) + εh(P ) + O(1) is true for infinitely
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manyP either withO(1) 6 0 andh(P ) > 0 or with h(P ) → ∞. Then, for any
ε ′ > ε V (C, ε ′, d, ν), holds as well.

Proof. When O(1) 6 0 andh(P ) > 0, it follows immediately from Propos-
ition 4.6 that there exists a coverφ: C ′ → C of degree less than or equal to
ν with δ0(f ) 6 ε andC ′ admits a nonconstant map to an elliptic curve. When
h(P ) → ∞, it follows that for ε ′ > ε there are infinitely manyP such that
εh(P )+O(1) 6 ε ′h(P ), so again from Proposition 4.6 it follows that there exists
coverφ:C ′ → C of degree less than or equal toν with δ0(f ) 6 ε ′ andC ′ admits a
nonconstant map to an elliptic curve. Applying Proposition 3.5 finishes the proof.2
The main result of this section is now immediate.

THEOREM 4.8. If statementB(Ĉ, d, ν,0) holds, thenB(C, d, ν,0) holds as well.

Note that the points with small field discriminantsd(P ) constructed in Theo-
rem 4.8 do not necessarily have small arithmetic discriminantsda(P ). In fact, all
of theP may be linearly equivalent as divisors onC. When this is the case, all of
the correspondingDP in (2.0.2) are the same and it follows thatda(P ) = hk(P )+
2[k(P ) : k]h(P )+O(1). Thus, in many cases,d(P ) is small because the difference
d(P ) andda(P ) is large. This is the result of singularities on the arithmetic curve
HP corresponding toP on the arithmetic surfaceX corresponding toC (recall
the notation of Section 1). We hope to address questions involving highly singular
arithmetic curves and points with small arithmetic discriminants in future papers.
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