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We study the expected value of the length Ln of the minimum spanning tree of the complete

graph Kn when each edge e is given an independent uniform [0, 1] edge weight. We sharpen

the result of Frieze [6] that limn→∞ E(Ln) = ζ(3) and show that

E(Ln) = ζ(3) +
c1

n
+
c2 + o(1)

n4/3
,

where c1, c2 are explicitly defined constants.

2010 Mathematics subject classification: Primary 05C80

Secondary 05C85

1. Introduction

We study the expected value of the length Ln of the minimum spanning tree of the

complete graph Kn when each edge e is given an independent uniform [0, 1] edge weight

Xe. Frieze [6] showed that

lim
n→∞

E(Ln) = ζ(3) =

∞∑
k=1

1

k3
= 1.202 . . . . (1.1)
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Since then there have been several generalizations and improvements. Steele [27] extended

the applicability of (1.1) distribution-wise. Janson [11] proved a central limit theorem

for Ln. Penrose [23], Frieze and McDiarmid [7], Beveridge, Frieze and McDiarmid [2]

and Frieze, Ruszinkó and Thoma [8] analysed Ln for graphs other than the complete

graph. Steele [28] and Fill and Steele [4] used the Tutte polynomial to compute E(Ln)

exactly for small values. Nishikawa, Otto and Starr [21] studied the coefficients of a

polynomial derived from the formula in [28]. Gamarnik [9] computed Eexp(Ln) exactly

up to n � 45 using a more efficient algorithm, where Eexp(Ln) is the expectation when the

distribution of the Xe is exponential with mean one. Li and Zhang [18] consider more

general distributions and prove in particular that

Eexp(Ln) − E(Ln) =
ζ(3)

n
+ O

(
log2 n

n2

)
. (1.2)

Flaxman [5] gives an upper bound on the lower tail of Ln.

Equation (1.1) says that E(Ln) = ζ(3) + o(1) as n → ∞. Ideally, one would like to have

an exact expansion for E(Ln) as there is for the assignment problem; see Wästlund [29]

and the references therein. Such an expansion has proved elusive. In this work we improve

the asymptotics of E[Ln] by giving the secondary and tertiary terms.

Theorem 1.1.

E(Ln) = ζ(3) +
c1

n
+
c2 + o(1)

n4/3
,

where

c1 = −1 − ζ(3) − 1

2

∫ ∞

x=0

log
(
1 − (1 + x)e−x) dx

and

c2 =

∫ ∞

x=0

(
x−3ψ(x3/2)e−x3/24 − x−3 −

√
π

8
x−3/2 − 1

2

)
dx

=
2

3

∫ ∞

y=0

(
y−2ψ(y)e−y2/24 − y−2 −

√
π

8
y−1 − 1

2

)
y−1/3 dy,

with ψ defined in (1.3) below.

The two integral expressions defining c2 are equal by the change of variable x = y2/3.

A numerical integration (with Maple) yields c1 = 0.0384956 . . . . This shows that the rate

of convergence to ζ(3) is order 1/n and is from above. Further numerical computations

show that c2 ≈ −1.7295, and these are explained in the Appendix.

To define ψ, we let the random variable Bex =
∫ 1

s=0 Bex(s) ds be the area under a

normalized Brownian excursion; we then let

ψ(t) = E etBex , (1.3)

the moment generating function ψ of Bex. The Brownian excursion area Bex and its

moments EB�ex and moment generating function ψ have been studied by several authors;
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see Louchard [19, 20], for example, and the survey by Janson [12], where further references

are given. From these results, we derive an expression (see (1.7)) that will show that c2 is

well-defined. Note that ψ(t) is finite for all t > 0 (and thus (1.3) holds for all complex t).

Indeed, it is well known that

EB�ex ∼
√

18 � (12e)−�/2��/2 as � → ∞ (1.4)

(see [12, (53)] and the references there), and thus [13, Lemma 4.1(ii)] implies that

ψ(t) ∼ 1
2
t2et

2/24 as t → +∞ (1.5)

(cf. [13, Remarks 3.1 and 4.9], where ξ = 2Bex). More precisely, Janson and Louchard

[15] show that the density fex of Bex satisfies

fex(x) =
72

√
6√
π
x2e−6x2(

1 + O(x−2)
)
, x > 0, (1.6)

from which routine calculations show that

ψ(t) =

∫ ∞

x=0

etxfex(x) dx =
t2

2
et

2/24
(
1 + O(t−2)

)
, t > 0. (1.7)

Hence the integrand in the second integral defining c2 in Theorem 1.1 is O(y−4/3) as

y → ∞. Moreover, ψ(0) = 1 and ψ′(0) = EBex =
√
π/8, and thus a Taylor expansion

shows that the integrand is O(y−1/3) as y → 0. (Similarly, the integrand in the first integral

is O(x−3/2) and O(1).) Consequently, the integrals defining c2 converge absolutely.

2. Proof of Theorem 1.1

We prove the theorem by using the expression

E(Ln) =

∫ 1

p=0

E(κ(Gn,p)) dp− 1 (2.1)

(see Janson [11] and a related expression in Frieze and McDiarmid [7, equation (7)]).

Here κ(Gn,p) is the (random) number of components in the random graph Gn,p.

To evaluate (2.1), we let κ(k, j, p) = κn(k, j, p) denote the number of components of Gn,p
with k vertices and k + j edges in Gn,p. The components split neatly into three categories:

trees (j = −1), unicyclic (j = 0), and complex (j � 1) components. These are evaluated

separately.

Lemma 2.1.

(a) ∫ 1

p=0

∑
k�1

E(κ(k,−1, p))dp = ζ(3) +
3(ζ(2) − ζ(3))

2n

− 1

n4/3

∫ ∞

x=0

x−3(1 − e−x3/24) dx+ o(n−4/3).
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(b) ∫ 1

p=0

∑
k�3

E(κ(k, 0, p))dp =
1

2n

(
ζ(3) − 3ζ(2) −

∫ ∞

x=0

log
(
1 − (1 + x)e−x) dx)

−
√
π/8

n4/3

∫ ∞

x=0

x−3/2(1 − e−x3/24) dx+ o(n−4/3).

(c) With ψ2(x) = ψ(x) − 1 −
√
π/2 x,∫ 1

p=0

∑
k�1

∑
j�1

E(κ(k, j, p))dp = 1 − 1

n
+

1

n4/3

∫ ∞

x=0

(
x−3ψ2(x3/2)e−x3/24 − 1

2

)
dx

+ o(n−4/3).

Remark 1. Tree components contribute the main ζ(3) term. Unicyclic components con-

tribute a secondary O(1/n) addend. Roughly speaking there are no complex components

for p � 1/n and precisely one complex component (the famous ‘giant component’) for

p � 1/n. Were this to be precisely the case, the contribution of complex components would

be 1 − 1/n. The additional Θ(n−4/3) term in Lemma 2.1(c) comes from the behaviour of

complex components in the critical window p = 1/n+ λn−4/3.

Remark 2. The coefficients of n−4/3 in Lemma 2.1(a,b) are easily evaluated as − 1
8
3−2/3

Γ(1/3) and − 1
2
3−1/6

√
π Γ(5/6), respectively; see the Appendix. The coefficient in

Lemma 2.1(c) is expressed as an infinite sum and evaluated numerically in the Appendix.

Proof. In the proof we assume tacitly that n is large enough when necessary. We let

C1, . . . denote some unimportant universal constants.

Let C(k, �) be the number of connected graphs on a vertex set [k] with � edges. We

begin by noting the standard formula

E κ(k, j, p) =

(
n

k

)
C(k, k + j)pk+j(1 − p)k(n−k)+(k2)−k−j . (2.2)

By Cayley’s formula, C(k, k − 1) = kk−2. Moreover, Wright [30] proved that, for every

fixed j � −1,

C(k, k + j) ∼ wj+1k
k+3j/2−1/2, as k → ∞, (2.3)

for some constants w� > 0. (See also [14, §8] and the references there. In the notation of

[30], wj+1 = ρj .) We have w0 = 1 and w1 =
√
π/8. Spencer [26] showed that

w� =
EB�ex

�!
, � � 0, (2.4)

where Bex is the Brownian excursion area defined above. See further Janson [12]. Hence,

ψ(t) = E etBex =

∞∑
�=0

w�t
�. (2.5)
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Let

A(k, k + j) =

∫ 1

p=0

E(κ(k, j, p)) dp

=

(
n

k

)
C(k, k + j)

∫ 1

p=0

pk+j(1 − p)k(n−k)+(k2)−k−j dp

=

(
n

k

)
C(k, k + j)

(k + j)! (k(n− k) +
(
k
2

)
− k − j)!

(k(n− k) +
(
k
2

)
+ 1)!

=
C(k, k + j) (k + j)!

k!
× B(k, k + j) (2.6)

where, provided k � n and k + j �
(
k
2

)
(as in our case),

B(k, k + j) =
n!

(n− k)!
·

(k(n− k) +
(
k
2

)
− k − j)!

(k(n− k) +
(
k
2

)
+ 1)!

=
1

nj+1kk+j+1

∏k−1
i=0

(
1 − i

n

)
∏k+j

i=0

(
1 − k+1

2n
− i−1

kn

)
=

1

nj+1kk+j+1
exp

{ ∞∑
m=1

1

mnm

( k+j∑
i=0

(
k + 1

2
+
i− 1

k

)m

−
k−1∑
i=0

im
)}

=
1

nj+1kk+j+1
exp

{ ∞∑
m=1

tm(k, j)

mnm

}
. (2.7)

Observe that as

a∑
i=1

im �
∫ a

0

xm dx,

for � = k + j we have

tm(k, j) =

�∑
i=0

(
k + 1

2
+
i− 1

k

)m

−
k−1∑
i=0

im � (�+ 1)

(
k + 1

2
+
�− 1

k

)m

− (k − 1)m+1

m+ 1
.

(2.8)

This implies that, as is easily verified,

tm(k, j) � 0 if m � 2 and j ∈ {0,−1} and k � 100. (2.9)

Case (a): 1 � k � n, j = −1 (tree components). Now we have by (2.7)

B(k, k − 1) =
1

kk
exp

{
1

n

k−1∑
i=0

(
k + 1

2
+
i− 1

k

)
− 1

n

k−1∑
i=0

i

+
1

2n2

k−1∑
i=0

(
k + 1

2
+
i− 1

k

)2

− 1

2n2

k−1∑
i=0

i2 + ξ

}
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where, using (2.9),

|ξ| �
∞∑
m=3

102m+1

mnm
= O(n−3), 1 � k � 100, (2.10)

0 � ξ � −
∞∑
m=3

km+1

m(m+ 1)nm
� −k4

n3
, k > 100, (2.11)

and hence, for all k � n,

ξ = O(k4/n3). (2.12)

This implies, after some calculation, that for 1 � k � n,

B(k, k − 1) =
1

kk
exp

{
3(k − 1)

2n
− k3

24n2
+ O

(
k2

n2
+
k4

n3

)}

and then, by (2.6),

n0.7∑
k=1

A(k, k − 1) =

n0.7∑
k=1

kk−2

k
· B(k, k − 1)

=

n0.7∑
k=1

1

k3
exp

{
3(k − 1)

2n
− k3

24n2
+ O

(
k2

n2
+
k4

n3

)}

=

n0.7∑
k=1

e−k3/24n2

k3

(
1 +

3(k − 1)

2n
+ O

(
k2

n2
+
k4

n3

))
.

Now, by simple estimates,

n0.7∑
k=1

e−k3/24n2

k3
× O

(
k2

n2
+
k4

n3

)
= O(n−5/3) (2.13)

and

n0.7∑
k=1

(1 − e−k3/24n2
)

k3

(
1 +

3(k − 1)

2n

)
= o(n−4/3) +

n2/3 ln n∑
k=n2/3/ ln n

(1 − e−k3/24n2
)

k3
(2.14)

= o(n−4/3) +
1

n4/3

∫ ∞

x=0

x−3(1 − e−x3/24) dx.

Thus

n0.7∑
k=1

A(k, k − 1)

=

n0.7∑
k=1

1

k3
+

1

n

n0.7∑
k=1

3(k − 1)

2k3
− 1

n4/3

∫ ∞

x=0

x−3(1 − e−x3/24) dx+ o(n−4/3)
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= ζ(3) + O(n−1.4) +
3(ζ(2) − ζ(3))

2n
+ O(n−1.7)

− 1

n4/3

∫ ∞

x=0

x−3(1 − e−x3/24) dx+ o(n−4/3)

= ζ(3) +
3(ζ(2) − ζ(3))

2n
− 1

n4/3

∫ ∞

x=0

x−3(1 − e−x3/24) dx+ o(n−4/3). (2.15)

When k � n0.7, we have from (2.7) and (2.9) that

B(k, k − 1) � 1

kk
exp

(
1

n

k−1∑
i=0

(
k + 1

2
+
i− 1

k

)
− 1

n

k−1∑
i=0

i

)
=

1

kk
exp

{
3(k − 1)

2n

}
� e3/2

kk
.

This implies that A(k, k − 1) � k−3e3/2. This gives

∑
k>n0.7

A(k, k − 1) �
∑
k>n0.7

e3/2

k3
= O(n−1.4) = o(n−4/3).

Together with (2.15), this verifies (a).

Case (b): 1 � k � n, j = 0 (unicyclic components). Rényi [25] proved (see, e.g., Bollobás

[3, Theorem 5.18]) that

C(k, k) =
(k − 1)!

2

k−3∑
l=0

kl

l!
∼

√
π

8
kk−1/2 (2.16)

(cf. the more general (2.3) above). Now, for 1 � k � n we have by (2.7)

B(k, k) =
1

nkk+1
exp

{
1

n

k∑
i=0

(
k + 1

2
+
i− 1

k

)
− 1

n

k−1∑
i=0

i

+
1

2n2

k∑
i=0

(
k + 1

2
+
i− 1

k

)2

− 1

2n2

k−1∑
i=0

i2 + ξ

}
,

where ξ satisfies (2.10)–(2.12). Thus, after some calculation,

B(k, k) =
1

kk+1n
exp

{
2k

n
− 1

kn
− k3

24n2
+ O

(
k2

n2
+
k4

n3

)}

and then

n0.7∑
k=3

A(k, k) =
1

n

n0.7∑
k=3

C(k, k)

kk+1
exp

{
− k3

24n2
+ O

(
k

n
+
k4

n3

)}

=
1

n

n0.7∑
k=3

C(k, k)e−k3/24n2

kk+1

{
1 + O

(
k

n
+
k4

n3

)}
. (2.17)

Now (2.16) implies

1

n

n0.7∑
k=3

C(k, k)e−k3/24n2

kk+1
× O

(
k

n
+
k4

n3

)
= O(n−5/3) (2.18)
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and

1

n

n0.7∑
k=3

C(k, k)(1 − e−k3/24n2
)

kk+1
= o(n−4/3) +

1

n

n2/3 ln n∑
k=n2/3/ ln n

C(k, k)(1 − e−k3/24n2
)

kk+1

= o(n−4/3) +

√
π/8

n4/3

∫ ∞

x=0

x−3/2(1 − e−x3/24) dx. (2.19)

It follows from (2.17), (2.18) and (2.19) that

n0.7∑
k=3

A(k, k) =
1

n

∞∑
k=3

C(k, k)

kk+1
−

√
π/8

n4/3

∫ ∞

x=0

x−3/2(1 − e−x3/24) dx+ o(n−4/3). (2.20)

For k > n0.7 we observe that t1(k, 0) � 2k in (2.8) and tm(k, 0) � 0 for m � 2, so

B(k, k) � e2

kk+1n

and thus

A(k, k) � e2C(k, k)

kk+1n
= O

(
1

k3/2n

)
.

It follows from this that
n∑

k=n0.7

A(k, k) = O(n−1.35) = o(n−4/3). (2.21)

We are almost done: we need to simplify the sum

∞∑
k=3

C(k, k)

kk+1
.

Now, by (2.16),

∞∑
k=3

2C(k, k)

kk+1
=

∞∑
k=3

(k − 1)!

kk+1

k−3∑
i=0

ki

i!
=

∞∑
i=0

∞∑
k=i+3

ki

kk+1

(k − 1)!

i!
. (2.22)

In the last double sum, let us also add the terms with k = i+ 2, k = i+ 1 and k = i � 1.

The terms with k = i+ 2 add up to

∞∑
k=2

kk−2

kk+1

(k − 1)!

(k − 2)!
=

∞∑
k=2

k − 1

k3
=

∞∑
k=1

k − 1

k3
= ζ(2) − ζ(3).

The terms with k = i+ 1 add up to

∞∑
k=1

kk−1

kk+1

(k − 1)!

(k − 1)!
=

∞∑
k=1

1

k2
= ζ(2).

The terms with k = i � 1 add up to

∞∑
k=1

kk

kk+1

(k − 1)!

k!
=

∞∑
k=1

1

k2
= ζ(2).
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Consequently, (2.22) yields

∞∑
k=3

2C(k, k)

kk+1
= ζ(3) − 3ζ(2) +

∞∑
k=1

k∑
i=0

ki

kk+1

(k − 1)!

i!
= ζ(3) − 3ζ(2) +

∞∑
k=1

k∑
i=0

k!

i!
ki−k−2.

(2.23)

We transform the sum further:

∞∑
k=1

k∑
i=0

k!

i!
ki−k−2 =

∞∑
k=1

k∑
i=0

(
k

i

)
(k − i)! ki−k−2

=

∞∑
k=1

k∑
i=0

(
k

i

)
k−1

∫ ∞

x=0

xk−ie−kx dx

=

∫ ∞

x=0

∞∑
k=1

k∑
i=0

k−1

(
k

i

)
xk−ie−kx dx

=

∫ ∞

x=0

∞∑
k=1

k−1(1 + x)ke−kx dx

=

∫ ∞

x=0

− log
(
1 − (1 + x)e−x) dx.

Consequently, (2.23) yields

2

∞∑
k=3

C(k, k)

kk+1
= ζ(3) − 3ζ(2) −

∫ ∞

x=0

log
(
1 − (1 + x)e−x) dx. (2.24)

Together with (2.20) and (2.21), this verifies (b).

Case (c): 1 � k � n, j � 1 (complex components). Let

κc(p) = κc,n(p) :=

∞∑
k=1

∞∑
j=1

κ(k, j, p), (2.25)

that is, the number of complex components in Gn,p, and

fn(p) = E κc(p) =
∑
k�1

∑
j�1

E κ(k, j, p), (2.26)

the expected number of complex components in Gn,p. The contribution to (2.1) from the

complex components is thus
∫ 1

p=0
fn(p) dp. We make a change of variables and let

p = n−1 + λn−4/3, (2.27)

which means that we focus on the critical window. We will assume this relation between p

and λ in the rest of the proof. We thus define f̄n(λ) = fn(p) = fn(n
−1 + λn−4/3), and obtain

the contribution, letting 1{. . . } denote the indicator of an event,∫ 1

p=0

fn(p) dp = 1 − 1

n
+

∫ 1

p=0

(
fn(p) − 1{p > 1/n}

)
dp

= 1 − 1

n
+ n−4/3

∫ n4/3−n1/3

λ=−n1/3

(
f̄n(λ) − 1{λ > 0}

)
dλ. (2.28)
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We begin by showing that the integrand in the final integral converges pointwise. We

define

ψ2(t) =

∞∑
�=2

w�t
l = ψ(t) − 1 −

√
π/8 t (2.29)

(cf. (2.5)), and

F(x, λ) =
1

6
x3 − 1

2
x2λ+

1

2
xλ2 =

x

2

(
λ− x

2

)2

+
1

24
x3. (2.30)

Lemma 3.1 below proves that for any fixed λ ∈ (−∞,∞), as n → ∞,

f̄n(λ) → f(λ) =
1√
2π

∫ ∞

x=0

ψ2(x3/2)e−F(x,λ)x−5/2 dx. (2.31)

The next step is to use dominated convergence in (2.28). For this we use the following

estimates. For convenience, we let κc(n
−1 + λn−4/3) and its expectation f̄n(λ) be defined

for all real λ, by trivially defining κc(p) = κc(0) = 0 for p < 0 and κc(p) = κc(1) = 1 for

p > 1.

There exist integrable functions g1(λ), g2(λ), g3(λ), not depending on n, such that

f̄n(λ) = E κc(n
−1 + λn−4/3) � g1(λ), λ � 0, (2.32)

P
(
κc(n

−1 + λn−4/3) = 0
)

� g2(λ), λ � 0, (2.33)

f̄n(λ) − 1 = E κc(n
−1 + λn−4/3) − 1 � g3(λ), λ � 0. (2.34)

Equations (2.32), (2.33) and (2.34) are proved in Lemma 3.2 below.

Equation (2.33) implies that 1 − f̄n(λ) � g2(λ) for λ � 0, and so

|f̄n(λ) − 1{λ > 0}| �
{
g1(λ) λ � 0,

g2(λ) + g3(λ) λ > 0.

This justifies using dominated convergence in the integral in (2.28), and equation (3.1)

implies ∫ n4/3−n1/3

λ=−n1/3

(
f̄n(λ) − 1{λ > 0}

)
dλ → c2c =

∫ ∞

λ=−∞

(
f(λ) − 1{λ > 0}

)
dλ. (2.35)

Hence (2.28) yields ∫ 1

p=0

fn(p) dp = 1 − 1

n
+ c2cn

−4/3 + o(n−4/3), (2.36)

which is the desired result except for the expression for c2c.

We transform the expression for c2c in (2.35) by first writing it as

c2c = lim
A→∞

(
−A+

∫ A

λ=−∞
f(λ) dλ

)

= lim
A→∞

(
−A+

1√
2π

∫ A

λ=−∞

∫ ∞

x=0

ψ2(x3/2)e−F(x,λ)x−5/2 dx dλ

)
. (2.37)

By (2.29) we have ψ2(t) = O(t2) for small t, which together with (1.7) shows that

ψ2(t) = O
(
t2et

2/24
)
, t � 0,

https://doi.org/10.1017/S0963548315000024 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000024


On the Length of a Random Minimum Spanning Tree 99

and thus by (2.30), for all x > 0 and λ ∈ (−∞,∞),

ψ2(x3/2)e−F(x,λ) � C1x
3e−x(λ−x/2)2/2.

Hence, for A > 0, with the substitutions x = 2A+ s and λ = A− t,∫
x>2A

∫
λ<A

ψ2(x3/2)e−F(x,λ)x−5/2 dx dλ � C1

∫
x>2A

∫
λ<A

e−x(λ−x/2)2/2x1/2 dx dλ

= C1

∫
s>0

∫
t>0

e−(2A+s)(t+s/2)2/2(2A+ s)1/2 dt ds

� C1

∫
s>0

∫
t>0

e−(2A+s)(t2/2+s2/8)(2A+ s)1/2 dt ds

= C2

∫
s>0

e−(2A+s)s2/8 ds � C3A
−1/2.

Similar estimates show also that∫
x<2A

∫
λ>A

ψ2(x3/2)e−F(x,λ)x−5/2 dx dλ � C4

∫ 2A

s=0

e−(2A−s)s2/8 ds � C5A
−1/2.

Consequently, we can subtract and add these integrals to (2.37), yielding

c2c = lim
A→∞

(
−A+

1√
2π

∫ ∞

λ=−∞

∫ 2A

x=0

ψ2(x3/2)e−F(x,λ)x−5/2 dx dλ

)
. (2.38)

It follows from (2.30) that∫ ∞

λ=−∞
e−F(x,λ) dλ = e−x3/24

∫ ∞

λ=−∞
e−x(λ−x/2)2/2 dλ = e−x3/24

√
2π/x. (2.39)

Hence, by Fubini, (2.38) yields

c2c = lim
A→∞

(
−A+

∫ 2A

x=0

ψ2(x3/2)e−x3/24x−3 dx

)
=

∫ ∞

x=0

(
x−3ψ2(x3/2)e−x3/24 − 1

2

)
dx.

(2.40)

This completes the proof of Lemma 2.1 and the proof of Theorem 1.1.

3. Auxiliary lemmas

Lemma 3.1. For any fixed λ ∈ (−∞,∞), as n → ∞,

f̄n(λ) → f(λ) =
1√
2π

∫ ∞

x=0

ψ2(x3/2)e−F(x,λ)x−5/2 dx. (3.1)

Proof. We note first that the integral in (3.1) is convergent; for small x we have

ψ2(x) = O(x2) and for large x we have ψ2(x) = O(x2ex
2/24) by (1.5) and

e−F(x,λ) � e−x3/6+λx2/2 = O(e−x3/7)

by (2.30); remember that λ is fixed in the integral.

We convert the sum over k in (2.26) to an integral by setting k = 
xn2/3�. Thus

f̄n(λ) = fn(p) =

∫ ∞

x=0

∑
j�1

E κ
(

xn2/3�, j, p

)
n2/3 dx. (3.2)
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For any fixed λ and fixed x > 0, j � 1, and p = n−1 + λn−4/3 and k = 
xn2/3� as above,

we have as n → ∞, by (2.2) and (2.3) and standard calculations,

E κ(k, j, p) ∼ nk

k!
exp

(
− k2

2n
− k3

6n2

)
C(k, k + j)n−k−j(1 + λn−1/3

)k
exp

(
−p(nk − k2/2)

)
∼ n−j C(k, k + j)

k!
exp

(
−k − F(kn−2/3, λ)

)
∼ (2π)−1/2wj+1k

−1

(
k3/2

n

)j

e−F(kn−2/3 ,λ)

∼ n−2/3(2π)−1/2wj+1x
3j/2−1e−F(x,λ)

(for further details see, e.g., [17, Section 4] or [1, Section 11.10]). Thus, as n → ∞,

n2/3
E κ(
xn2/3�, j, p) → (2π)−1/2wj+1x

3j/2−1e−F(x,λ). (3.3)

Moreover, Bollobás [3, Theorem 5.20] has shown the uniform bound

C(k, k + j) �
(
C6

j

)j/2

kk+(3j−1)/2 (3.4)

for some constant C6 and all k, j � 1. Let A � 1 be a constant, and first consider only

components of size k � An2/3. For such k, all j � 1 and p = n−1 + λn−4/3, (2.2) and (3.4)

yield, by calculations similar to those above,

E κ(k, j, p)

� C7
nk

k!
exp

(
− k2

2n

)
C(k, k + j)n−k−j(1 + λn−1/3

)k+j
exp

(
−p(nk − k2/2 − j)

)
� C8n

−j C(k, k + j)

k!
e−k+j×o(1)

� C8n
−j

(
2C6

j

)j/2

k3j/2−1

(with C3 possibly depending on A), and thus

n2/3
E κ(k, j, p) � C8

(
C9A

3/2

j

)j/2

.

The sum over j of the right-hand side converges, and thus (3.3) and dominated convergence

yield (recalling (2.29))∫ A

x=0

∑
j�1

E κ
(

xn2/3�, j, p

)
n2/3 dx → 1√

2π

∫ A

x=0

ψ2(x3/2)e−F(x,λ)x−5/2 dx. (3.5)

For k > An2/3 we use the fact shown in [17, (6.6)] that the expected number of vertices

in tree components of size at most n2/3 is n− O(n2/3); consequently, the expected number

of vertices in all components (complex or not) of size larger than n2/3 is O(n2/3), and the

expected number of components larger than An2/3 is � C10/A. The left-hand side of (3.5)

thus converges uniformly to the right-hand side of (3.2) as n → ∞, and the result (3.1)

follows from (3.5) by letting A → ∞.
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Lemma 3.2. There exist integrable functions g1(λ), g2(λ), g3(λ), not depending on n, such

that

(i)

f̄n(λ) = E κc(n
−1 + λn−4/3) � g1(λ), λ � 0,

(ii)

P
(
κc(n

−1 + λn−4/3) = 0
)

� g2(λ), λ � 0,

(iii)

f̄n(λ) − 1 = E κc(n
−1 + λn−4/3) − 1 � g3(λ), λ � 0.

Proof. We use the method in Janson [10]. We consider G(n, p), p ∈ [0, 1], as a random

graph process in the usual way: we regard p as time, edges are added as p grows from 0

to 1, and an edge e is added at a time Te with a uniform distribution on [0, 1], with all Te
independent.

As G(n, p) evolves, there are at first only tree components, but later unicyclic components

and complex components appear as edges are added to the graph. If we consider only the

complex components, a new complex component is created if a new edge is added to a

unicyclic component, or if it joins two unicyclic components. (Note that these are the only

possibilities: we do not regard the growth of an already existing complex component as

creating a new complex component. Creation of a new complex component may occur one

or several times. It is shown in [14] that it occurs only once with probability converging

to 5π/18, but we will not need this.) As evolution continues, the complex components

may grow by merging with trees or unicyclic components, and they may merge with each

other, until at the end only one complex component remains, containing all vertices.

Let ϕn(k, p) be the intensity of creation on new complex components of size k, that is,

the probability of creating a new complex component of size k in the interval [p, p+ dp]

is ϕn(k, p) dp. (For p < 0, p > 1 or k > n, we set ϕn(k, p) = 0.) Further, let

Φn(p) =
∑
k�1

ϕn(k, p),

the intensity of creation of complex components regardless of size. We change variables

as above and also define

ψn(x, λ) = n−2/3ϕn(
xn2/3�, n−1 + λn−4/3),

Ψn(λ) = n−4/3Φn(n
−1 + λn−4/3) =

∫ ∞

x=0

ψn(x, λ) dx.

(The notation is not exactly as in [10], where the two ways of creating a complex

component are treated separately, but the estimates are the same.)

We have

ϕn(k, p) =

(
n

k

)
Ĉ(k)pk(1 − p)(n−k)k+(k2)−k−1,
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where Ĉ(k) is the number of ways to create a multicyclic component by either adding an

edge to a unicyclic component on [k] or adding an edge joining two unicyclic components

whose vertex sets are complementary subsets of [k]. The first case contributes

C(k, k)

((
k

2

)
− k

)
= O(kk+3/2)

to Ĉ(k) and the second

1

2

k−3∑
i=3

(
k

i

)
C(i, i)C(k − i, k − i)i(k − i) � C11

k−3∑
i=3

(
k

i

)
eii! ek−i(k − i)!

� C11ke
kk! = O(kk+3/2);

hence

Ĉ(k) = O(kk+3/2) = O
(
kekk!

)
.

(Compare the more precise [10, (2.30)].) The intensity ψn(x, λ) is bounded in [10, (2.12)–

(2.19)] by calculations similar to those in the proof of Lemma 3.1. (In these bounds, and

our versions below, δ, δ1, . . . are some positive constants.)

We use the results of [10] with some small modifications. Equation (2.12) of [10] shows

(together with the comments after it) that

ψn(x, λ) � C12xe
−δx3−δxλ2

for k � δ1n and − n1/3 � λ � δ2n
1/3.

Then one line before (2.15) of [10] proves that

ψn(x, λ) � C13xe
−δx3−δ3xλn

1/3/3 for k � δ3n and λ � δ2n
1/3.

Because λ � n4/3 always, it is legitimate to replace −δ3xλn
1/3/3 by −δ3xλ

5/4 to give

ψn(x, λ) � C13xe
−δx3−δ3xλ

5/4/3 for k � δ3n and λ � δ2n
1/3.

Then (2.17) of [10] proves that

ψn(x, λ) � C14ne
−2δ5n for min{δ1, δ3}n � k � n.

Using min{δ1, δ3}n1/3 � x � n1/3 and λ � n4/3, we replace this by

ψn(x, λ) � C15xe
−δ5x

3

(1 + λ4)−1.

We therefore have, for all x and λ,

0 � ψn(x, λ) � g(x, λ)

= C12xe
−δx3−δxλ2

+ C13xe
−δx3−δ3x|λ|5/4/3 + C15xe

−δ5x
3

(1 + λ4)−1 (3.6)

(recalling that ψn(x, λ) = 0 if x > n1/3, λ < −n1/3 or λ > n4/3).

Integrating, we find

Ψ(λ) �
∫ ∞

x=0

g(x, λ) dx � C16

1 + |λ|5/2
. (3.7)
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The number of complex components at any time is at most the number of complex

components that have been created so far. Taking expectations, we thus obtain, using

(3.7),

f̄n(λ) = E κc(n
−1 + λn−4/3) �

∫ λ

μ=−∞
Ψ(μ) dμ �

∫ λ

μ=−∞

C16

1 + |μ|5/2
dμ. (3.8)

This verifies (i), with g1(λ) = C17(1 + |λ|3/2)−1 for λ � 0.

Similarly, if at some time there is no complex component, at least one complex

component has to be created later. Thus,

P
(
κc(n

−1 + λn−4/3) = 0
)

�
∫ ∞

μ=λ

Ψ(μ) dμ �
∫ ∞

μ=λ

C16

1 + |μ|5/2
dμ, (3.9)

which verifies (ii) with g2(λ) = C18(1 + λ3/2)−1 for λ � 0.

For (iii), let Y (p) =
(
κc(p)

2

)
be the number of pairs of complex components in Gn,p. Since

κc(p) − 1 � Y (p), it suffices to estimate EY (p).

If there is a pair of complex components in Gn,p, then these components have been

created at times p1 and p2 with p1 � p2 � p. The intensity of this happening, with sizes

k1 = 
x1n
2/3� and k2 = 
x2n

2/3� of the components at the moments of their creations, is

bounded in [10, (2.24)–(2.26)] by

C19g(x1, λ1)g(x2, λ2) dλ1 dλ2 dx1 dx2

(using modifications as above, and g is defined in (3.6)). Moreover, if the two components

are still distinct components in Gn,p, then, at least (ignoring further conditions from the

growth of the components), the original vertex sets of sizes k1 and k2 are not connected

by any edge in the time interval [p2, p]; the (conditional) probability of this is

(
1 − p− p2

1 − p2

)k1k2

� (1 − (p− p2))k1k2 � e−k1k2(p−p2) � e−x1x2(λ−λ2).

Consequently,

f̄n(λ) − 1

� EY (n−1 + λn−4/3) � g3(λ)

=

∫ λ

λ1=−∞

∫ λ

λ2=λ1

∫ ∞

x1=0

∫ ∞

x2=0

C19g(x1, λ1)g(x2, λ2)e−x1x2(λ−λ2) dλ1 dλ2 dx1 dx2.

https://doi.org/10.1017/S0963548315000024 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000024


104 C. Cooper, A. Frieze, N. Ince, S. Janson and J. Spencer

This yields (iii), but it remains to verify that
∫ ∞
λ=0

g3(λ) dλ < ∞. Indeed, by Fubini and

(3.6), ∫ ∞

λ=−∞
g3(λ) dλ

=

∫ ∞

λ1=−∞

∫ ∞

λ2=λ1

∫ ∞

x1=0

∫ ∞

x2=0

C19g(x1, λ1)g(x2, λ2)

×
∫ ∞

λ=λ2

e−x1x2(λ−λ2) dλ dλ1 dλ2 dx1 dx2

=

∫ ∞

λ1=−∞

∫ ∞

λ2=λ1

∫ ∞

x1=0

∫ ∞

x2=0

C19
g(x1, λ1)g(x2, λ2)

x1x2
dλ1 dλ2 dx1 dx2

� C19

(∫ ∞

λ=−∞

∫ ∞

x=0

g(x, λ)

x
dλ dx

)2

< ∞.

4. Final remarks

Remark 3. We have shown that when the Xe are uniform [0, 1] then E(Ln) converges to

ζ(3) with an error term of order 1/n. The constant c1 is positive, and so for large n we have

E(Ln) > ζ(3). Fill and Steele [4] computed E(Ln) for n � 8. E(Ln) increased monotonically,

and it was natural to conjecture from this that E(Ln) increases monotonically for all n.

However, since E(Ln) converges to ζ(3) from above, we now see that this turns out not to

be true. Note, however, that c2 < 0, and that |c2| is much larger than c1. Thus we expect

that ELn > ζ(3) only for very large n.

If our numerical estimates are correct, we have |c2|/c1 ≈ 45, so a naive guess, ignoring

higher-order terms, would be that ELn > ζ(3) for n > 453 ≈ 105. We do not want to

conjecture this, as we have no idea about the next term.

Remark 4. By (1.2), we obtain for Eexp(Ln) the same result as in Theorem 1.1 except that

c1 is increased by ζ(3) (while c2 remains the same). This gives a somewhat simpler c1,

which suggests that this version might be slightly simpler to analyse. Note that formula

(2.1) holds for Eexp(Ln) if we replace Gn,p by the multigraph where each pair of vertices

is connected by a Po(t) number of edges, and integrate for t ∈ (0,∞). This suggests that

it might be profitable to make a version of the argument below using these multigraphs,

but we have not pursued this. (Compare the use of multigraphs in [14].)
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Appendix: Estimation of c2

The constant c2 in Theorem 1.1 is the sum of the three coefficients for n−4/3 in

Lemma 2.1(a–c), which we denote by c2a, c2b and c2c. By the change of variable t = x3/24,

and integration by parts (cf. [22, § 5.9.5]), we obtain, as stated in Remark 2,

c2a =
24−2/3

3

∫ ∞

t=0

t−5/3(e−t − 1) dt = −1

8
3−2/3Γ

(
1

3

)
= −0.16098 . . . , (A.1)

c2b =

√
π

8

24−1/6

3

∫ ∞

t=0

t−7/6(e−t − 1) dt = −1

2
3−1/6

√
π Γ

(
5

6

)
= −0.83298 . . . . (A.2)

The coefficient c2c is given by an integral in Lemma 2.1; see also (2.40). To evaluate c2c,

we change variables by x = y1/3 and use the definition (2.29) of ψ2 to obtain

c2c =
1

3

∫ ∞

y=0

(
y−1ψ2(y1/2) − 1

2
ey/24

)
e−y/24y−2/3 dy

=
1

3

∫ ∞

y=0

∞∑
k=1

(
w2ky

k−1 + w2k+1y
k−1/2 − yk−1

2 · 24k−1(k − 1)!

)
e−y/24y−2/3 dy. (A.3)

We interchange the order of integration and summation, which is justified below, and

obtain

c2c =
1

3

∞∑
k=1

∫ ∞

y=0

(
w2ky

k−1 + w2k+1y
k−1/2 − yk−1

2 · 24k−1(k − 1)!

)
e−y/24y−2/3 dy

=
241/3

3

∞∑
k=1

(
w2k24k−1Γ(k − 2/3) + w2k+124k−1/2Γ(k − 1/6) − Γ(k − 2/3)

2 Γ(k)

)
. (A.4)

We note that (2.4) and (1.4) yield, together with Stirling’s formula, w� ∼ 6 · 24−�/2/Γ(�/2),

which implies that

w2k24k−1Γ(k − 2/3) ∼ w2k+124k−1/2Γ(k − 1/6) ∼ 1
4
k−2/3 as k → ∞,

so the three terms in the sum in (A.4) are all of order k−2/3, showing that we cannot sum

them separately. However, their leading terms cancel. A more precise calculation using

(1.6) yields

EBrex =
√

18 r

(
r

12e

)r/2

(1 + O(r−1)), r > 0, (A.5)

and thus by (2.4) and Stirling’s formula,

w� =
3
√
�√
π

(
e

12�

)�/2

(1 + O(�−1)) =
6 · 24−�/2

Γ(�/2)
(1 + O(�−1)), � � 1. (A.6)

Hence,

w2k24k−1Γ(k − 2/3) = 1
4
k−2/3(1 + O(k−1)), as k → ∞, (A.7)

and the same estimate holds for w2k+124k−1/2Γ(k − 1/6), while

Γ(k − 2/3)/Γ(k) = k−2/3(1 + O(k−1)).
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Consequently, the summand in (A.4) is O(k−5/3).

The constants wk can be computed by a recursion formula (see [30] and [12]), and a

numerical summation of the first 1000 terms in (A.4) yields −0.7331. It can be shown,

using (1.6) with the further second-order term given in [15] (which replaces O(x−2) by

− 1
9
x−2 + O(x−4)), that the terms in the sum in (A.4) are ∼ − 1

6
k−5/3, and using this to

estimate the sum of the terms with k > 1000 yields the estimate c2c ≈ −0.7355, which

together with (A.1)–(A.2) yields

c2 ≈ −1.7295. (A.8)

The tail estimate is not rigorous. Replacing O(x−4) by � Cx−4 for some estimate C is what

is needed to make the tail estimate rigorous. Nevertheless, it seems unlikely that the estimate

in (A.8) is very far off.

To justify the interchange of summation and integration above, by Fubini’s theorem it

is sufficient to verify that

∞∑
k=1

∫ ∞

y=0

∣∣∣∣w2ky
k−1 + w2k+1y

k−1/2 − yk−1

2 · 24k−1(k − 1)!

∣∣∣∣e−y/24y−2/3 dy < ∞. (A.9)

Indeed, we claim that the integral in (A.9) is O(k−7/6). Using (A.7), its analogue for

2k + 1, and Γ(k − 2/3)/Γ(k) = k−2/3(1 + O(k−1)), it follows easily that the integral is, after

another change of variable t = y/24,

241/3

4
k−2/3

∫ ∞

t=0

∣∣∣∣ tk−7/6

Γ(k − 1/6)
− tk−5/3

Γ(k − 2/3)

∣∣∣∣e−t dt+ O(k−5/3). (A.10)

Let Ik denote the integral in (A.10). By the Cauchy–Schwarz inequality,

I2
k �

∫ ∞

t=0

tk−1e−t dt ·
∫ ∞

t=0

(
tk−7/6

Γ(k − 1/6)
− tk−5/3

Γ(k − 2/3)

)2

t1−ke−t dt

= Γ(k)

(
Γ(k − 2/6)

Γ(k − 1/6)2
− 2

Γ(k − 5/6)

Γ(k − 1/6)Γ(k − 4/6)
+

Γ(k − 8/6)

Γ(k − 4/6)2

)
= O(k−1).

Consequently, Ik = O(k−1/2), which shows that (A.10) is O(k−7/6), and thus (A.9) holds as

claimed above.
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