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ABSTRACT

In the context of insurance, the smallest and largest claim amounts turn out
to be crucial to insurance analysis since they provide useful information for
determining annual premium. In this paper, we establish sufficient conditions
for comparing extreme claim amounts arising from two sets of heteroge-
neous insurance portfolios according to various stochastic orders. It is firstly
shown that the weak supermajorization order between the transformed vec-
tors of occurrence probabilities implies the usual stochastic ordering between
the largest claim amounts when the claim severities are weakly stochastic
arrangement increasing. Secondly, sufficient conditions are established for the
right-spread ordering and the convex transform ordering of the smallest claim
amounts arising from heterogeneous dependent insurance portfolios with pos-
sibly different number of claims. In the setting of independent multiple-outlier
claims, we study the effects of heterogeneity among sample sizes on the stochas-
tic properties of the largest and smallest claim amounts in the sense of the
hazard rate ordering and the likelihood ratio ordering. Numerical examples
are provided to highlight these theoretical results as well. Not only can our
results be applied in the area of actuarial science, but also they can be used in
other research fields including reliability engineering and auction theory.

KEYWORDS

Largest claim amounts, smallest claim amounts, stochastic orders, occurrence
probabilities, majorization.

1. INTRODUCTION

In the context of insurance, the annual premium, the amount paid by the
policyholder on an annual basis to cover the cost of the insurance policy
being purchased, is the primary cost to the policyholder of transferring the
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risk to the insurer which depends on the type of insurance. Therefore, the
stochastic behaviors of claim amounts become crucial in insurance analysis
since they provide useful information for determining the annual premium.
Stochastic orders, which have been widely used in various areas including
financial economics, actuarial science, operations research and reliability engi-
neering, turn out to be powerful tools for exploring the stochastic behaviors of
claim amounts from different viewpoints (c.f. Müller and Stoyan, 2002; Shaked
and Shanthikumar, 2007).

Let X1, . . . ,Xn be a set of non-negative random variables with Xi denot-
ing the ith claim size in a given insurance portfolio, for i= 1, . . . , n, and let
I1, . . . , In be a group of Bernoulli random variables, independent of the Xi’s,
with Ii indicating whether the claim Xi occurs or not and such that E[Ii]= pi,
for i= 1, . . . , n. In the literature, there has been tremendous study on the aggre-
gate claim number

∑n
i=1 Ii and the aggregate claim amount

∑n
i=1 IiXi by using

various stochastic orders; see, for example, Ma (2000), Denuit and Frostig
(2006), Khaledi and Ahmadi (2008), Barmalzan et al. (2015), Zhang and Zhao
(2015) and Zhang et al. (2018b).

Let Yi:n and Y ∗
i:n be the ordered claim amounts from the portfolio of risks

Y1, . . . ,Yn and Y ∗
1 , . . . ,Y

∗
n , where Yi = IiXi and Y ∗

i = I∗
i X

∗
i , for i= 1, . . . , n.

Since Yi is a discrete-continuous type random variable, traditional results on
stochastic comparisons for order statistics cannot be applied to the ordered
claim amounts. Barmalzan et al. (2016) established the likelihood ratio
ordering between Y1:n and Y ∗

1:n when Xi’s and X ∗
i ’s are independent and

heterogeneous Weibull distributed claims. Barmalzan et al. (2017) discussed
the ordering properties of Y1:n and Yn:n in the sense of the usual stochastic and
hazard rate orders by employing the multivariate chain majorization order.
Balakrishnan et al. (2018) provided sufficient conditions to compare Yn:n and
Y ∗
n:n according to some magnitude orderings (e.g., the usual stochastic order

and the hazard rate order) when the claims severitiesXi’s andX ∗
i ’s have general

distributions. Recently, Zhang et al. (2018a) stochastically compared Y2:n and
Y ∗

2:n and applied their results in comparing the lifetimes of two fail-safe systems
subjected to random shocks.

To the best of the authors’ knowledge, there is little study on stochastic
properties of extreme claim amounts when the claim sizes or the occurrence
probabilities are dependent. For instance, the claim severities are usually posi-
tively dependent for insureds in an area suffering from serious natural disasters
such as drought, floods and earthquakes. In this article, we shall show that
the weak supermajorization order between the transformed vectors of occur-
rence probabilities implies the usual stochastic ordering between the largest
claim amounts when the claim sizes are positively dependent via the weakly
stochastic arrangement increasing (WSAI).

It is also worth noting that the abovementioned study only focuses on dis-
cussing magnitude orderings of the extreme claim amounts. Rare results are
available for the dispersion orders (e.g., dispersive order, convex order and
right-spread order) and the shape orders (e.g., convex transform order and
star order). Barmalzan and Payandeh Najafabadi (2015) might be the first to
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discuss stochastic comparisons between Y1:n and Y ∗
1:n in the sense of the right-

spread and the convex transform orders under certain conditions when the
claims have Weibull distributions. However, their results are restricted in the
setting that all of the occurrence levels are independent and the claim severities
have Weibull distributions. Besides, it is assumed that the number of claims is
the same for any two concerned insurance portfolios. Let Y ∗

i:n∗ be the ordered
claim amounts from the portfolio of risks Y ∗

1 , . . . ,Y
∗
n∗ , where Y ∗

i = I∗
i X

∗
i , for

i= 1, . . . , n∗. In this paper, we shall focus on the right-spread ordering and the
convex transform ordering of the smallest claim amounts Y1:n and Y ∗

1:n∗ when
the occurrence levels are dependent and the claim numbers n and n∗ are pos-
sibly different. To a large extent, these results generalize those corresponding
ones in Barmalzan and Payandeh Najafabadi (2015).

It is also of great significance to establish sufficient conditions for some
strong stochastic orders such as the hazard rate order and the likelihood ratio
order, both of which play an important role in actuarial science to compare
different risks and are preserved under the Tail Value-at-Risk (TVaR) measure
and Esscher premium principle (c.f. Bühlmann, 1980; Van Heerwaarden et al.,
1989), respectively. Though Barmalzan et al. (2016) provided sufficient con-
ditions for the likelihood ratio ordering between the smallest claim amounts
from Weibull claims, however, their results are not correct since they misused
the density functions of the smallest claim amounts, and thus neglected the
stochastic behavior of the density ratio function at point 0. In this work, we
shall amend this (see Remark 4.7) and provide sufficient conditions to ana-
lyze the effects of heterogeneity among sample sizes on the largest and smallest
claim amounts arising from two sets of independent multiple-outlier claims in
the sense of the hazard rate order and the likelihood ratio order.

It should be mentioned that our results derived here not only can be applied
in the area of actuarial science but also can be used in other research fields such
as reliability engineering and auction theory (c.f. Balakrishnan et al., 2018;
Zhang et al., 2018a). In the context of first-price reverse auction, the bidders
(sellers) are required to submit sealed bids to the auctioneer (buyer) who seeks
for the purchase of items when the auction begins. The lowest bidder is assumed
to win the bid and will be paid the amount of the lowest price from the auc-
tioneer. However, such things may happen that some of the bidders would like
to drop out of the auction before the start of the auction due to some unfore-
seen circumstances. For this reason, the final cost on the auction turns out to
be the smallest order statistics arising from I1X1, . . . , InXn, where Ii denotes
whether the bidder i attends the auction or not, and Xi is interpreted as the bid-
ding price for the ith bidder if he/she participates in the auction, i= 1, . . . , n.
The results developed in the present paper can provide quantitative analysis on
the effects of number of bidders, their attending probabilities and biding price
distributions on the final auction price.

The remainder of the paper is rolled out as follows. Section 2 recalls
some pertinent definitions and notions used in the sequel. In Section 3,
the usual stochastic ordering is firstly established between the largest claim
amounts arising from two sets of heterogeneous portfolios with dependent
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claim severities. Secondly, stochastic comparisons are conducted on the
smallest claim amounts arising from two sets of heterogeneous dependent
insurance portfolios (with possibly different number of claims) in the sense
of the right-spread ordering and the convex transform ordering. In Section 4,
sufficient conditions for the hazard rate ordering and likelihood ratio ordering
are built to compare the largest and smallest claim amounts arising from two
sets of independent multiple-outlier claim models having different sample
sizes. Section 5 concludes the paper. All proofs are delegated to the appendix
for ease of presentation.

2. DEFINITIONS AND SOME PRELIMINARIES

Throughout, the term increasing is used for monotone non-decreasing and
decreasing is used for monotone non-increasing. All random variables are
defined on a common probability space and all expectations exist whenever
they appear. Let R= (− ∞,∞), R+ = [0,∞) and D+

n = {x : x1 ≥ x2 ≥ · · · ≥
xn ≥ 0}. We use ‘

sign= ’ to denote both sides of the equality have the same sign.

2.1. Stochastic orders

Assume that non-negative random variables X and Y have distribution func-
tions F and G, survival functions F = 1− F and G= 1−G, probability density
functions f and g, and hazard rate functions hF and hG, respectively.

Definition 2.1. X is said to be larger than Y in the

(i) usual stochastic order (denoted by X ≥stY) if F(x)≥G(x) for all x ∈R+;

(ii) hazard rate order (denoted by X ≥hr Y) if F(x)/G(x) is increasing in
x ∈R+, or equivalently, hF (x)≤ hG(x) for all x ∈R+;

(iii) likelihood ratio order (denoted by X ≥lr Y) if f (x)/g(x) is increasing in
x ∈R+;

(iv) increasing convex order (denoted by X ≥icx Y) if
∫∞
x F(t)dt≥ ∫∞

x G(t)dt,
for all x ∈R+;

(v) convex transform order (denoted by X ≥c Y) if F−1[G(x)] is convex in
x ∈R+, or equivalently, X ≥c Y if and only if G−1[F(x)] is concave in
x ∈R+;

(vi) star order (denoted by X ≥� Y) if F−1[G(x)] is star-shaped in the sense
that F−1[G(x)]/x is increasing in x ∈R+;

(vii) dispersive order (denoted by X ≥disp Y) if F−1(v)− F−1(u)≥G−1(v)−
G−1(u), for 0< u≤ v< 1; and

(viii) right-spread order (denoted by X ≥RS Y) if
∫∞
F−1(u) F(t)dt≥

∫∞
G−1(u) G(t)dt,

for all u ∈ (0, 1).
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It is well known that the following implication always holds:

X ≥lr Y =⇒X ≥hr Y =⇒X ≥st Y =⇒X ≥icx Y =⇒E[X ]≥E[Y ].

The convex transform order was proposed by Van Zwet (1970) to compare
the skewness of different probability distributions. The star order is called the
more increasing failure rate in average (IFRA) in reliability theory and is one
of the partial orders which are scale invariant. It is common knowledge that

X ≥c Y =⇒X ≥� Y =⇒CV(X )≥CV(Y ),

where CV(X )= √
Var[X ]/E[X ] and CV(Y )= √

Var[Y ]/E[Y ] denote the coef-
ficients of variation of X and Y , respectively. The dispersive order, which is
stronger than the right-spread order, is a kind of partial orders to compare
the variabilities in two probability distributions. The increasing convex order
is commonly termed as stop-loss order in the context of actuarial science to
measure the severity of different risks according to the stop-loss premiums.
It is known that the hazard rate order, the usual stochastic order and the
right-spread order (also called excess wealth order in economics) imply the
increasing convex order. For comprehensive discussions on these useful orders,
the reader may refer to the excellent monographs by Müller and Stoyan (2002)
and Shaked and Shanthikumar (2007).

It should be mentioned that the VaR and all distortion risk measures agree
with the usual stochastic order, the TVaR and distortion risk measures with
concave distortion functions agree with the increasing convex order, and thus
the TVaR is coherent with the hazard rate order. For more discussions on these
risk measures and their applications in actuarial problems, we refer interested
readers to Yaari (1987) and Wang (1996).

2.2. Majorizations

The notion of majorization is quite useful in establishing various inequalities
arising from actuarial science, applied probability and reliability theory. Let
x1:n ≤ · · · ≤ xn:n be the increasing arrangement of the components of the vector
x = (x1, . . . , xn).

Definition 2.2. A vector x= (x1, . . . , xn) ∈Rn is said to

(i) majorize another vector y= (y1, . . . , yn) ∈Rn (written as x
m
 y) if∑j

i=1 xi:n ≤∑j
i=1 yi:n for j= 1, . . . , n− 1, and

∑n
i=1 xi:n =∑n

i=1 yi:n;

(ii) weakly supermajorize another vector y ∈Rn (written as x
w
 y) if

∑j
i=1 xi:n ≤∑j

i=1 yi:n for j= 1, . . . , n; and
(iii) weakly submajorize another vector y ∈Rn (written as x
w y) if

∑n
j=i xj:n ≥∑n

j=i yj:n for i= 1, . . . , n.
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For any two vectors x and y, it is evident that x
m
 y implies both x

w
 y and
x
w y, while the reverse is not true in general. Interested readers are referred
to Marshall et al. (2011) for comprehensive discussions on majorization-type
orders.

2.3. Stochastic versions of arrangement increasing

For any (i, j) with 1≤ i< j ≤ n, let τij(x)= (x1, . . . , xj, . . . , xi, . . . , xn) and
denote

G i,j
sai(n) = {g(x) : g(x)≥ g(τij(x)) for any xi ≤ xj},

G i,j
wsai(n) = {g(x) : g(x)− g(τij(x)) is increasing in xj},

G i,j
rwsai(n) = {g(x) : g(x)− g(τij(x)) is increasing in xj ≥ xi}.

Definition 2.3. A random vector X= (X1, . . . ,Xn) is said to be

(i) stochastic arrangement increasing (SAI) if E[g(X)]≥E[g(τij(X))] for any
g ∈ G i,j

sai(n) and any pair (i, j) such that 1≤ i< j ≤ n;
(ii) weakly stochastic arrangement increasing (WSAI) if E[g(X)]≥E[g(τij(X))]

for any g ∈ G i,j
wsai(n) and any pair (i, j) such that 1≤ i< j ≤ n; and

(iii) right tail weakly stochastic arrangement increasing (RWSAI) if E[g(X)]≥
E[g(τij(X))] for any g ∈ G i,j

rwsai(n) and any pair (i, j) such that 1≤ i< j ≤ n.

It is clear that SAI implies RWSAI, which in turn implies WSAI. Many
well-known distributions are SAI including the multivariate versions of
Dirichlet distribution, inverted Dirichlet distribution, F distribution and
Pareto distribution of type I. The notion of SAI has been applied in actu-
arial science to model the dependence among ordered random risks; see, for
instance, Hua and Cheung (2008) and Zhang and Zhao (2015). RWSAI and
WSAI are introduced by Cai and Wei (2014, 2015), and have been also applied
in the field of financial engineering and actuarial science; see, for example, Cai
and Wei (2015) and Zhang et al. (2018b).

3. HETEROGENEOUS DEPENDENT PORTFOLIOS

In this section, we deal with the ordering properties of the largest and smallest
claim amounts coming from heterogeneous insurance portfolios consisting of
dependent claim severities and/or dependent occurrence levels.

3.1. Largest claim amounts

In this subsection, we use the usual stochastic order to compare the largest
claim amounts arising from two sets of heterogeneous portfolios with depen-
dent claim sizes.
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Assume that X1, . . . ,Xn are non-negative random variables denoting the
claim sizes for n risks faced by the insurer. Let Ip1 , . . . , Ipn [Ip∗

1
, . . . , Ip∗

n
] be a set of

independent Bernoulli random variables, independent ofXi’s, such thatE[Ipi ]=
pi[E[Ip∗

i
]= p∗

i ], for i= 1, 2, . . . , n. In the following, let Yn:n[Y1:n] and Y ∗
n:n[Y

∗
1:n]

denote the largest[smallest] claim amount from claims Ip1X1, . . . , IpnXn and
Ip∗

1
X1, . . . , Ip∗

n
Xn, respectively. The following result illustrates that more hetero-

geneity among some specified transformed occurrence probabilities in the sense
of the weak supermajorization order leads to greater tail function of the largest
claim amount.

Theorem 3.1. Let X= (X1, . . . ,Xn) be WSAI. If h( p), h( p∗) ∈D+
n , where h( p)=− log p or h( p)= (1− p)/p, then it holds that

(h( p1), h( p2), . . . , h( pn))
w
 (h( p∗

1), h( p
∗
2), . . . , h( p

∗
n))=⇒Yn:n ≥st Y ∗

n:n.

Remark 3.2. For the case of independent claim amount X, Balakrishnan et al.
(2018) proved the result of Theorem 3.1 when the transformation function h is
differentiable and strictly decreasing convex. It remains as an open problem to
establish the result of Theorem 3.1 for other forms of the function h.

Next, we present some numerical examples to illustrate the effectiveness of
Theorem 3.1 and show that some conditions required there cannot be removed.

Example 3.3. Let X1,X2 be two exponential random variables with hazard rates
λ1 and λ2, respectively. Assume thatX= (X1,X2) has Clayton copula (see Nelsen,
2006) with generator ψ(x)= (x+ 1)−

1
θ for θ > 0, and its inverse φ(x)=ψ−1(x)=

x−θ − 1, for x ∈ [0, 1]. Then, the joint distribution function of X is given by

P(X1 ≤ x,X2 ≤ x) = ψ (φ(P(X1 ≤ x)+ φ(P(X2 ≤ x)))

= [
(1− exp{−λ1x})−θ + (1− exp{−λ2x})−θ − 1

]− 1
θ, x ∈R+.

Then, we can calculate that

FY2:2 (x)− FY∗
2:2
(x)

= P(Ip∗
1
X1 ≤ x, Ip∗

2
X2 ≤ x)− P(Ip1X1 ≤ x, Ip2X2 ≤ x)

= ( p∗
1p

∗
2 − p1p2)

[
(1− exp{−λ1x})−θ + (1− exp{−λ2x})−θ − 1

]− 1
θ

+ [ p∗
1(1− p∗

2)− p1(1− p2)](1− exp{−λ1x})
+ [ p∗

2(1− p∗
1)− p2(1− p1)](1− exp{−λ2x})

+ (1− p∗
1)(1− p∗

2)− (1− p1)(1− p2), x ∈R+.

Taking λ1 = 1.5, λ2 = 1 and θ = 0.5, it is easy to check that X1 ≤hr X2 and xφ′(x)
is increasing. Then, we know that X is RWSAI according to Theorem 5.7 of Cai
and Wei (2014), and thus X is WSAI.
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FIGURE 1: Plot of FY2:2 (x)− FY∗
2:2
(x) for x ∈R+ in Example 3.3.

(a) Set p1 = 0.2, p2 = 0.7, p∗
1 = 0.3, p∗

2 = 0.4 and h(x)= − log x for x ∈ (0, 1).

Observe that (h( p1), h( p2)), (h( p∗
1), h( p

∗
2)) ∈D+

2 and (h( p1), h( p2))
w
 (h( p∗

1),
h( p∗

2)), which satisfy the conditions of Theorem 3.1. Figure 1(a) shows that
FY2:2 (t)− FY∗

2:2
(t) is always non-negative for t ∈R+, which is in accordance

with theoretical result of Theorem 3.1.
(b) Set p1 = 0.2, p2 = 0.75, p∗

1 = 0.25, p∗
2 = 0.4 and h(x)= (1− x)/x for

x ∈ (0, 1). Clearly, (h( p1), h( p2)), (h( p∗
1), h( p

∗
2)) ∈D+

2 and (h( p1), h( p2))
w


(h( p∗
1), h( p

∗
2)). As seen in Figure 1(b), it appears to be FY2:2 (t)≥ FY∗

2:2
(t) for

all t ∈R+. Therefore, we have Y2:2 ≥st Y ∗
2:2, and the effectiveness of Theorem

3.1 is verified.
(c) Set p1 = 0.8, p2 = 0.3, p∗

1 = 0.4 and p∗
2 = 0.5. It is easy to verify that

(h( p∗
1), h( p

∗
2)) ∈D+

2 , (h( p1), h( p2)) /∈D+
2 and (h( p1), h( p2))

w
 (h( p∗
1), h( p

∗
2))

for h(x)= − log x. Figure 1(c) exhibits that FY2:2 (t)− FY∗
2:2
(t) is not always

non-negative for all t ∈R+, which implies Y2:2 �st Y ∗
2:2 and Y2:2 �st Y ∗

2:2.
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3.2. Smallest claim amounts

In this subsection, we turn to examining the smallest claim amounts arising
from two sets of heterogeneous portfolios comprising dependent occurrence
probabilities in the sense of the right-spread order and the convex transform
order.

3.2.1. Right-spread order. Independent random variables X1, . . . ,Xn are said
to follow PHR model if the survival function of Xi can be written as Fi(x)=
[F(x)]λi , for i= 1, . . . , n, where F(x) is the survival function of some underly-
ing random variable X . The survival function of Xi can be written as Fi(x)=
e−λiR(x), for i= 1, . . . , n, where R(x)= ∫ x0 r(t)dt is the cumulative hazard rate
function of X and r( · ) is the hazard rate function of X . Many well-known dis-
tributions are special cases of the PHR model such as exponential, Weibull,
Pareto, Lomax, and so on.

The following useful lemma, which was given by Kochar and Xu (2010)
to establish equivalent characterizations of the right-spread order in one
parameter family, is needed to prove the main results.

Lemma 3.4. Suppose {Fb | b ∈R} is a class of distribution functions such that Fb
is supported on some interval (x0, x1)⊆ (0,∞) and has density fb which does not
vanish on any subinterval of (x0, x1). Then, Fb∗ ≤RS Fb, for b, b∗ ∈R, b≤ b∗, if and
only if W ′

b(x)

Fb(x)
is decreasing in x, where W ′

b is the derivative of Wb(x)=
∫∞
x Fb(t)dt

with respect to b.

Let Xi[X ∗
i ] be a non-negative random variable denoting the size of the ith

claim, i= 1, 2, . . . , n[n∗], and let Ii[I∗
i ] be a Bernoulli random variable such that

E[Ii]= pi[E[I∗
i ]= p∗

i ], i= 1, 2, . . . , n[n∗]. In this part, we use Y1:n and Y ∗
1:n∗ to

denote the smallest claim amounts from I1X1, . . . , InXn and I∗
1X

∗
1 , . . . , I

∗
n∗X ∗

n∗ ,
respectively.

Next, we present sufficient conditions to compare the smallest claim
amounts from two sets of heterogeneous dependent PHR claims in the sense
of the right-spread order. Some results given in Barmalzan and Payandeh
Najafabadi (2015) are substantially generalized.

Lemma 3.5. Let Xi[X ∗
i ] be independent random variables with survival func-

tion G
λi [G

λ∗
i ], i= 1, 2, . . . , n[n∗]. If G has DHR (decreasing hazard rate) and∑n

i=1 λi ≤
∑n∗

i=1 λ
∗
i , then we have X1:n ≥RS X ∗

1:n∗ .

Next, sufficient conditions are given to stochastically compare the smallest
claim amounts arising from two sets of heterogeneous portfolios with depen-
dent occurrence probabilities and PHR claims in the sense of the right-spread
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order, which generalizes the result of Theorem 1 in Barmalzan and Payandeh
Najafabadi (2015).

Theorem 3.6. Let Xi[X ∗
i ] be independent random variables with respective sur-

vival function G
λi [G

λi ], i= 1, 2, . . . , n[n∗], where G denotes the survival function of
some baseline random variable. Let In[I ∗

n∗ ] be one multivariate Bernoulli random
vector independent of Xi[X ∗

i ]’s. Assume that the following conditions hold:

(i) G has DHR;
(ii) P(In = 1)= P(I ∗

n∗ = 1); and
(iii)

∑n
i=1 λi ≤

∑n∗
i=1 λ

∗
i .

Then, we have Y1:n ≥RS Y ∗
1:n∗ .

It should be mentioned that the condition
∑n

i=1 λi ≤
∑n∗

i=1 λ
∗
i is necessary for

the result of Theorem 3.6 as addressed in Lemma 2 of Barmalzan and Payandeh
Najafabadi (2015).

The following result, which strengthens Theorem 2 of Barmalzan and
Payandeh Najafabadi (2015), presents equivalent characterizations for the
right-spread ordering and the increasing convex ordering between the small-
est claim amounts from two sets of heterogeneous portfolios with dependent
occurrence probabilities and PHR claims.

Theorem 3.7. Under the setup of Theorem 3.6, it is assumed that G has DHR and
P(In = 1)= P(I ∗

n∗ = 1). Then, the following several statements are equivalent:

(i) Y1:n ≥RS Y ∗
1:n∗;

(ii) Y1:n ≥icx Y ∗
1:n∗; and

(iii)
∑n

i=1 λi ≤
∑n∗

i=1 λ
∗
i .

3.2.2. Convex transform order. In this part, we study the convex transform
ordering of the smallest claim amounts from heterogeneous and dependent
portfolios with dependent occurrence levels and Weibull claims. We not only
provide a complete proof for the desired result but also generalize Theorem 3
of Barmalzan and Payandeh Najafabadi (2015) to the case of heterogeneous
dependent portfolios with different number of claims.

The Weibull distribution is known for its exceptional ability to fit a wide
variety of data and has been widely employed in reliability engineering, life-
time testing, statistics and actuarial science. Recall that a random variable X
has the Weibull distribution with shape parameter γ > 0 and scale param-
eter λ> 0 (denoted by X ∼W (γ , λ)) if its probability density function is
given by

f (x;γ , λ)= γ λγxγ−1e−(λx)γ , x> 0.
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Of course, the distribution reduces to the exponential distribution when γ = 1.
Otherwise, it is useful in modeling size of loss distributions for 0< γ < 1 and
in modeling component lifetime distribution for γ > 1. Interested readers may
refer to Murthy et al. (2004) for detailed discussions on various properties and
applications of the Weibull distribution.

Theorem 3.8. Suppose Xi ∼W (γ1, λi)[X ∗
i ∼W (γ2, λ∗

i )], for i= 1, . . . , n[n∗]. Let
In[I ∗

n∗ ] be a Bernoulli random vector, independent of Xi[X ∗
i ]’s, indicating whether

the claims occur or not. Then, for γ2 ≥ 1, γ1 ≥ γ2
2γ2−1 and P(I

∗
n∗ = 1)≤ P(In = 1), we

have Y1:n ≥c Y ∗
1:n∗ .

It is of importance to note that the smallest claim amount in a concerned
insurance portfolio with larger occurrence probability that all claims happen is
more skewed than that from a portfolio with smaller occurrence probability,
where the sample size plays no role and the shape parameters in general have
no relations.

Remark 3.9. Suppose that I1, . . . , In[I∗
1 , . . . , I

∗
n ] are independent Bernoulli ran-

dom variables such that E[Ii]= pi[E[I∗
i ]= p∗

i ], for i= 1, . . . , n[n∗]. Under
the assumptions that n= n∗, γ1 = γ2 ≥ 1 and

∏n
i=1 p

∗
i ≤∏n

i=1 pi, the result of
Theorem 3 in Barmalzan and Payandeh Najafabadi (2015) can be obtained from
Theorem 3.8. Therefore, Theorem 3.8 substantially generalizes Theorem 3 of
Barmalzan and Payandeh Najafabadi (2015) to the case of dependent occurrence
levels, different claim numbers and different shape parameters when the claim
sizes have Weibull distribution. It is worth mentioning that in the proof of
Theorem 3 in Barmalzan and Payandeh Najafabadi (2015), it was not discussed
whether the expression F−1

Y1:n
(FY∗

1:n
(x)) is well defined or not; but fortunately, this

requirement holds naturally under the assumption
∏n

i=1 p
∗
i ≤∏n

i=1 pi.

The next result provides sufficient conditions for the star ordering between
the smallest claim amounts.

Theorem 3.10. Suppose Xi ∼W (γ1, λi)[X ∗
i ∼W (γ2, λ∗

i )], for i= 1, . . . , n[n∗]. Let
In[I ∗

n∗ ] be a Bernoulli random vector, independent of Xi[X ∗
i ]’s, indicating whether

the claims occur or not. Then, we have Y1:n ≥� Y ∗
1:n∗ if either of the following two

conditions holds:

(i) γ2 ≥ γ1 and P(I ∗
n∗ = 1)= P(In = 1) and

(ii) γ2 ≥ 1, γ1 ≥ γ2
2γ2−1 and P(I

∗
n∗ = 1)≤ P(In = 1).

The next theorem provides sufficient conditions for comparing the smallest
claim amounts from two sets of heterogeneous dependent insurance portfolios
in the sense of the dispersive ordering.
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Theorem 3.11. Suppose Xi ∼W (γ1, λi)[X ∗
i ∼W (γ2, λ∗

i )], for i= 1, . . . , n[n∗]. Let
In[I ∗

n∗] be a Bernoulli random vector, independent of Xi[X ∗
i ]’s, indicating whether

the claims occur or not. Then, for
∑n

i=1 λ
γ1
i ≤∑n∗

i=1 (λ
∗
i )
γ2 , we have Y1:n ≥disp Y ∗

1:n∗
if either of the following two conditions holds:

(i) γ2 ≥ γ1 and P(I ∗
n∗ = 1)= P(In = 1) and

(ii) γ2 ≥ 1, γ1 ≥ γ2
2γ2−1 and P(I

∗
n∗ = 1)≤ P(In = 1).

4. INDEPENDENT MULTIPLE-OUTLIER PORTFOLIOS

In practical scenarios, it may happen that some insureds have larger occurrence
probabilities or claim sizes than the others in an insurance portfolio. In this
regard, a natural way for describing this phenomena is to fall into the multiple-
outlier model. In this section, we explore the largest and smallest claim amounts
arising from two batches of independent multiple-outlier claims having differ-
ent sample sizes in the sense of some strong stochastic orders including the
hazard rate order and the likelihood ratio order.

4.1. Largest claim amounts

The next result establishes sufficient conditions for the likelihood ratio order-
ing between the largest claim amounts arising from two sets of independent
multiple-outlier claims with different sample sizes.

Theorem 4.1. Let X1, . . . ,Xn and X1, . . . ,Xn∗ be two sets of independent ran-
dom variables with common distributions G. Let Ii[I∗

i ] be independent Bernoulli
random variables, independent of Xi’s, such that E[Ii]= p1[E[I∗

i ]= p1] for
i= 1, 2, . . . , n1[n∗

1], and let Ij[I
∗
j ] be another set of independent Bernoulli variables

having sample size n2[n∗
2], independent of Xj’s, such that E[Ij]= p2[E[I∗

j ]= p2] for
j= n1[n∗

1]+ 1, . . . , n[n∗], where n1 + n2 = n and n∗
1 + n∗

2 = n∗. Set Yi = IiXi[Y ∗
i =

I∗
i Xi], i= 1, . . . , n[n∗]. If p1 ≥ p2 and n∗

2 ≥ n2, then

n∗ ≤ n=⇒Yn:n ≥lr Y ∗
n∗:n∗ .

It is remarkable that the result established in Theorem 4.1 adheres to the
intuition. Under the assumption that the insureds in a set of risk portfolio have
the same claim distribution, the largest claim amount tends to be increased by
reducing the number of insureds having lower occurrence probabilities while
increasing the number of all insureds.

We next provide an example to illustrate the theoretical result of
Theorem 4.1.
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FIGURE 2: Plot of the likelihood ratio functions in Example 4.2.

Example 4.2. Under the setup of Theorem 4.1, let X1, . . . ,Xn1 [X1, . . . ,Xn∗
1
] be

independent non-negative random variables with common distribution G1, and
Xn1+1, . . . ,Xn[Xn∗

1+1, . . . ,Xn∗ ] be another set of independent non-negative vari-
ables having sample size n2[n∗

2] with common distribution G2. The following two
cases are considered:

(a) G1(t)=G2(t)= 1− e−1.2t, p1 = 0.7, p2 = 0.5, n∗
1 = 2, n∗

2 = 6, n1 = 4, n2 = 5.
In this case, n∗

2 > n2 and n∗
1 + n∗

2 < n1 + n2. Figure 2(a) shows that the ratio
fY9:9 (t)/fY∗

8:8
(t) is increasing in t> 0, which is in accordance with Theorem 4.1.

(b) G1(t)= 1− e−0.3t, G2(t)= 1− e−1.2t, p1 = 0.4, p2 = 0.3, n∗
1 = 2, n∗

2 = 5, n1 = 3,
n2 = 4. It is easy to verify that n∗

2 > n2 and n∗
1 + n∗

2 = n1 + n2. However,
Figure 2(b) exhibits that the ratio fY7:7 (t)/fY∗

7:7
(t) is not monotone in t> 0,

which implies that the restriction G1 =G2 cannot be taken out.

Let X1, . . . ,Xn be a set of non-negative independent random variables with
common distributionsG. Let Ii[I∗

i ] be independent Bernoulli random variables,
independent of Xi’s, such that E[Ii]= p1[E[I∗

i ]= p∗
1] for i= 1, 2, . . . , n1, and let

Ij[I∗
j ] be another set of independent Bernoulli variables having sample size n2,

independent of Xj’s, such that E[Ij]= p2[E[I∗
j ]= p∗

2] for j= n1 + 1, . . . , n, where
n1 + n2 = n. One natural question is that whether Yn:n ≥lr Y ∗

n:n could be derived
from the majorization order between the vectors of occurrence probabilities?
Unfortunately, the answer is negative by using the following counterexample.

Counterexample 4.3. Set G(t)= 1− e−0.9t, p1 = 0.9, p2 = 0.1, p∗
1 = 0.7, p∗

2 = 0.3

and n1 = n2 = 1, we then have ( p1, p2)
m
 ( p∗

1, p
∗
2). Figure 3, however, exhibits that

the ratio fY2:2 (t)/fY∗
2:2
(t) is not monotone in t ∈R+, which implies that Y2:2 �lr Y ∗

2:2

and Y2:2 �lr Y ∗
2:2.
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FIGURE 3: Plot of the likelihood ratio function fY2:2 (t)/fY∗
2:2
(t) for t ∈R+.

4.2. Smallest claim amounts

First, we discuss the hazard rate order for the smallest claim amounts arising
from two sets of independent multiple-outlier claims.

Theorem 4.4. Let Xi[X ∗
i ] be independent random variables with common dis-

tribution G1, for i= 1, . . . , n1[n∗
1], and Xj[X ∗

j ] be another set of independent
random variables having sample size n2[n∗

2] with common distribution G2, for j=
n1[n∗

1]+ 1, . . . , n[n∗], where n1 + n2 = n and n∗
1 + n∗

2 = n∗. Let Ii[I∗
i ] be independent

Bernoulli random variables, independent of Xi’s, such that E[Ii]= p1[E[I∗
i ]= p1]

for i= 1, 2, . . . , n1[n∗
1], and let Ij[I∗

j ] be another set of independent Bernoulli
variables independent of Xj’s, such that E[Ij]= p2[E[I∗

j ]= p2] for j= n1[n∗
1]+

1, . . . , n[n∗]. If G1 ≤hr G2, n2 ≥ n∗
2 and p1 ≤ p2, we then have

n≤ n∗ =⇒Y1:n ≥hr Y ∗
1:n∗ .

For the case of independent multiple-outlier claim models, Theorem 4.4 states
that the smallest claim amount will be increased in the sense of the hazard
rate order by increasing the number of insureds with larger claims and larger
occurrence probabilities while decreasing the total sample size. It remains open
to investigate whether if Theorem 4.4 still holds when the larger claims are
accompanied with smaller occurrence probabilities.

We now move on to compare the smallest claim amounts arising from
multiple-outlier models in the sense of the likelihood ratio order. In what fol-
lows, it is assumed that δ := limt→0

g2(t)
g1(t)

always exits and is also unique to avoid
technicality discussion.

https://doi.org/10.1017/asb.2019.7 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.7


EXTREME CLAIM AMOUNTS FROMHETEROGENEOUS PORTFOLIOS 539

Theorem 4.5. Under the setting of Theorem 4.4, suppose that G1 ≤lr G2, n2 ≥
max{n∗

1, n
∗
2}, p1 ≤ p2 and

δ

[
n2

(
1

p
n∗
1

1 p
n∗
2

2

− 1

)
− n∗

2

(
1

pn11 p
n2
2

− 1
)]

≥ n∗
1

(
1

pn11 p
n2
2

− 1
)

− n1

(
1

p
n∗
1

1 p
n∗
2

2

− 1

)
, (4.1)

where g1 and g2 are probability density functions of G1 and G2, respectively. Then,
we have

(n1, n2)
w
 (n∗

1, n
∗
2)=⇒Y1:n ≥lr Y ∗

1:n∗ .

Note that the condition in (4.1) looks clumsy and ugly, but it is necessary for
the likelihood ratio order between the smallest claim amounts, which can be
seen clearly from the proof of the density ratio function of the smallest claim

amounts at the point 0. Moreover, it can be seen that the condition (n1, n2)
w


(n∗
1, n

∗
2) implies n1 + n2 ≤ n∗

1 + n∗
2, and (4.1) is an additional condition required

for the likelihood ratio ordering compared with the hazard rate ordering result
in Theorem 4.4.

Remark 4.6. It should be mentioned that, in general, δ is not equal to g2(0)/g1(0),
which may be not even well defined (e.g., g1(0)= 0 for some distributions such
as the gamma distribution with shape parameter strictly less than 1). For many
well-known distributions , δ not only exits but also is unique. For example,

• Under the setting of PHR model, consider G1(t)= e−λ1R(t) and
G2(t)= e−λ2R(t) with λ1 >λ2. It can be checked that G1 ≤lr G2 and
δ = limt→0 (λ2/λ1)e(λ1−λ2)R(t) = λ2/λ1, which is finite and unique.

• Suppose that G1 and G2 have the form of gamma distribution with respective
paired shape and scale parameters (r1, λ) and (r2, λ) such that r1 < r2. Thus, we
have G1 ≤lr G2. It is easy to check that δ = 0. Then, the condition (4.1) boils
down to n1[1/( p

n∗
1

1 p
n∗
2

2 )− 1]≥ n∗
1[1/( p

n1
1 p

n2
2 )− 1].

• Assume that G1 and G2 have the form of gamma distribution with respective
paired shape and scale parameters (r, λ1) and (r, λ2) such that λ1 >λ2, from
which we have G1 ≤lr G2. For this case, it can be seen that δ = (λ2/λ1)r.

It can be roughly speaking from Theorem 4.5 that the smallest claim amount
would be increased in the sense of the likelihood ratio order through decreasing
the total sample size while increasing the number of insureds with higher claims
and higher occurrence probabilities.
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Remark 4.7. Denote Z∼W (γ , λ) if Z is a Weibull distribution random
variable having shape parameter γ > 0 and scale parameter λ> 0. Let Xi ∼
W (γ , λi)[X ∗

i ∼W (γ , λ∗
i )], i= 1, . . . , n. Suppose I1, . . . , In[I∗

1 , . . . , I
∗
n ] is a set of

independent Bernoulli random variables, independent of Xi[X ∗
i ], with E(Ii)=

pi[E(I∗
i )= p∗

i ], i= 1, . . . , n. Let Yi = IiXi and Y ∗
i = I∗

i X
∗
i , for i= 1, . . . , n.

Barmalzan et al. (2016) showed that, without any restriction on the occur-
rence probabilities, the condition

∑n
i=1 λ

γ

i ≤∑n
i=1 (λ

∗
i )
γ implies that Y1:n ≥lr Y ∗

1:n.
However, this result is not correct due to the reason that they neglected the value
of the density ratio function fY1:n(t)/fY∗

1:n
(t) at point t= 0. In order to ensure the

likelihood ratio order to hold, it is required that

1−∏n
i=1 pi

1−∏n
i=1 p

∗
i

≤
∏n

i=1 pi
∑n

i=1 λ
γ

i∏n
i=1 p

∗
i

∑n
i=1 (λ

∗
i )γ

.

In this regard, we have to consider the following two cases:

(i) If
∏n

i=1 pi <
∏n

i=1 p
∗
i , then Y1:n �lr Y ∗

1:n.
(ii) If

∏n
i=1 pi ≥

∏n
i=1 p

∗
i and

1/
∏n

i=1 pi − 1
1/
∏n

i=1 p
∗
i − 1

n∑
i=1

(λ∗
i )
γ ≤

n∑
i=1

λ
γ

i ≤
n∑
i=1

(λ∗
i )
γ , (4.2)

then Y1:n ≥lr Y ∗
1:n.

Therefore, the sufficient conditions for the likelihood ratio order between Y1:n and
Y ∗

1:n should be such that
∏n

i=1 pi ≥
∏n

i=1 p
∗
i and (4.2).

The following numerical example is presented as an illustration of Theorem
4.5.

Example 4.8. Under the setting of Theorem 4.5, we take G1(t)= 1− exp (− 0.9t)
and G2(t)= 1− exp (− 0.1t), t≥ 0. Set p1 = 0.3, p2 = 0.5, n1 = 1, n2 = 5, n∗

1 = 2,

n∗
2 = 5, and we then have (n1, n2)

w
 (n∗
1, n

∗
2) and G1 ≤lr G2. It can be observed from

Figure 4 that Y1:n ≥lr Y ∗
1:n∗ , which supports the theoretical result of Theorem 4.5.

The following corollary can be readily derived from Theorem 4.5.

Corollary 4.9. Under the setting of Theorem 4.5, if G1 =G2, n2 ≥max{n∗
1, n

∗
2}

and p1 ≤ p2, then, we have

(n1, n2)
m
 (n∗

1, n
∗
2)=⇒Y1:n ≥lr Y ∗

1:n∗ .
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FIGURE 4: Plot of the ratio fY1:6 (t)/fY∗
1:7
(t) in Example 4.8.

5. CONCLUDING REMARKS

It is known that the extreme claim amounts turn out to be quite important in
analyzing insurance portfolios since they provide important information for
determining annual premium. In this paper, we establish sufficient conditions
to stochastically compare the largest/smallest claim amounts arising from two
sets of heterogeneous insurance portfolios in the sense of the usual stochas-
tic, hazard rate, likelihood ratio, right-spread and convex transform orders.
The effects of heterogeneity among sample sizes and occurrence probabilities
as well as the dependence among claim sizes and/or occurrence probabilities
are investigated. These results can provide insights for insurance companies to
choose underwriting strategies.

It is of great importance to investigate the dispersion and shape orders
for the largest claim amounts arising from two sets of heterogeneous insur-
ance portfolios, which is still absent in the literature. We are currently working
on it and some interesting findings have been found. We shall report more
meaningful results in another future paper.
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APPENDIX A. PROOFS FOR ALLMAIN RESULTS

A.1. Proof of Theorem 3.1

Proof. Since the weak supermajorization order can be constructed by using the usual
majorization order, the proof can be finished by conducting the following two steps:

Step 1. For real vectors a= (a1, . . . , an) and x= (x1, . . . , xn), let us use a ◦ x=
(a1x1, . . . , anxn) to denote the Hadamard product. For any pair i, j such that 1≤ i< j ≤ n,
we use x{i,j} = {x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn} to represent the sub-vector with
ith and jth entries removed. Let I = {Ip1 , . . . , Ipn } and A= {Ip1X1, . . . , IpnXn}. By the nature
of majorization, it suffices to prove that, for any increasing function u,

E
[
u
(
max{IpiXi, IpjXj ,A{i,j}}

)]
≥E

[
u
(
max{Ip∗i Xi, Ip∗j Xj ,A{i,j}}

)]
, (A.1)

under the conditions (h( pi), h( pj))
m
 (h( p∗

i ), h( p
∗
j )),

(
h( pi), h( pj)

) ∈D+
2 and

(
h( p∗

i ), h( p
∗
j )
) ∈

D+
2 and 1≤ i< j ≤ n. Note that, for any increasing function u, binary vector a{i,j} with ak = 0

or 1 and xk > 0 for k /∈ {i, j},
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E
[
u
(
max{IpiXi, IpjXj ,A{i,j}}

)
|I {i,j} = a{i,j},X{i,j} = x{i,j}

]
−E

[
u
(
max{Ip∗i Xi, Ip∗j Xj ,A{i,j}}

)|I{i,j} = a{i,j},X{i,j} = x{i,j}
]

=E
[
u
(
max{IpiXi, IpjXj , {a ◦ x}{i,j}}

)
|X{i,j} = x{i,j}

]
−E

[
u
(
max{Ip∗i Xi, Ip∗j Xj , {a ◦ x}{i,j}}

)|X{i,j} = x{i,j}
]

= [ pi(1− pj)− p∗
i (1− p∗

j )]

×
{
E
[
u
(
max{Xi, {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]− u

(
max{a ◦ x}{i,j}

)}
+ [ pj(1− pi)− p∗

j (1− p∗
i )]

×
{
E
[
u
(
max{Xj , {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]− u

(
max{a ◦ x}{i,j}

)}
+ ( pipj − p∗

i p
∗
j )

×
{
E
[
u
(
max{Xi,Xj , {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]− u

(
max{a ◦ x}{i,j}

)}
.

Since h(x) is decreasing and convex, the condition (h( pi), h( pj))
m
 (h( p∗

i ), h( p
∗
j )) implies that

pi ≤ p∗
i ≤ p∗

j ≤ pj . Denoting by h−1 the inverse function of h, it is known that h−1 is also
decreasing and convex, which implies that pi + pj is Schur-convex in

(
h( pi), h( pj)

)
upon

applying Proposition 3.C.1 of Marshall et al. (2011). Thus, we have

pi + pj ≥ p∗
i + p∗

j . (A.2)

Consider the following two cases:

Case 1: h(p)= − log p. Obviously, (− log pi,− log pj)
m
 (− log p∗

i ,− log p∗
j ) implies

pipj = p∗
i p

∗
j , it follows from inequality (A.2) that pi(1− pj)+ pj(1− pi)≥ p∗

i (1− p∗
j )+

p∗
j (1− p∗

i ).

Case 2: h(p)= (1− p)/p. Clearly, ((1− pi)/pi, (1− pj)/pj)
m
 ((1− p∗

i )/p
∗
i , (1− p∗

j )/p
∗
j )

implies

1− pi
pi

+ 1− pj
pj

= 1− p∗
i

p∗
i

+ 1− p∗
j

p∗
j

,

which further implies

pi + pj
pipj

= p∗
i + p∗

j

p∗
i p

∗
j

and

pi(1− pj)+ pj(1− pi)
pipj

= p∗
i (1− p∗

j )+ p∗
j (1− p∗

i )

p∗
i p

∗
j

.

From inequality (A.2) again, we have pipj ≥ p∗
i p

∗
j and pi(1− pj)+ pj(1− pi)≥ p∗

i (1− p∗
j )+p∗

j (1− p∗
i ).
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Hence, we can conclude that, for either h( p)= − log p or h( p)= (1− p)/p, we have

pipj ≥ p∗
i p

∗
j , (A.3)

pj(1− pi)− p∗
j (1− p∗

i )≥ p∗
i (1− p∗

j )− pi(1− pj)≥ 0. (A.4)

Since X is non-negative and u is increasing, it must be true that

E
[
u
(
max{Xj , {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]≥ u

(
max{a ◦ x}{i,j}

)
(A.5)

and

E
[
u
(
max{Xi,Xj , {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]≥ u

(
max{a ◦ x}{i,j}

)
. (A.6)

On the other hand, for 1≤ i< j ≤ n, the WSAI property of X implies that of (Xi,Xj)|X{i,j} =
x{i,j} by Proposition 3.2 of Cai and Wei (2015), and hence [Xj|X{i,j} = x{i,j}]≥st [Xi|X{i,j} =
x{i,j}]. Then, for any increasing u,

E
[
u
(
max{Xj , {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]

≥E
[
u
(
max{Xi, {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]
. (A.7)

Thus, for any ak = 0 or 1, xk > 0, k /∈ {i, j} and 1≤ i< j ≤ n, we have

E
[
u
(
max{IpiXi, IpjXj ,A{i,j}}

)
|I{i,j} = a{i,j},X{i,j} = x{i,j}

]
−E

[
u
(
max{Ip∗i Xi, Ip∗j Xj ,A{i,j}}

)|I{i,j} = a{i,j},X{i,j} = x{i,j}
]

≥ [ p∗
i (1− p∗

j )− pi(1− pj)]
{
E
[
u
(
max{Xj, {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]

−E
[
u
(
max{Xi, {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]}

+ ( pipj − p∗
i p

∗
j )
{
E
[
u
(
max{Xi,Xj , {a ◦ x}{i,j}}

) |X{i,j} = x{i,j}
]

− u
(
max{a ◦ x}{i,j}

)}≥ 0,

where the first inequality follows from inequalities (A.4) and (A.5), and the second one stems
from inequalities (A.3), (A.4), (A.6) and (A.7). Taking the iterated expectation, we have, for
any increasing u,

E
[
u
(
max{IpiXi, IpjXj ,A{i,j}}

)]
=E

[
E
[
u
(
max{IpiXi, IpjXj ,A{i,j}}

)
|I{i,j},X{i,j}

]]
≥E

[
E
[
u
(
max{Ip∗i Xi, Ip∗j Xj ,A{i,j}}

)|I{i,j},X{i,j}
]]

=E
[
u
(
max{Ip∗i Xi, Ip∗j Xj ,A{i,j}}

)]
,

which completes the proof.
Step 2. Since h( p), h( p∗) ∈D+

n , we have h( p1)≥ h( p2)≥ · · · ≥ h( pn)≥ 0 and h( p∗
1)≥

hp∗2 ≥ · · · ≥ h( p∗
n)≥ 0. Then, it follows that 0≤ p1 ≤ · · · ≤ pn and 0≤ p∗

1 ≤ · · · ≤ p∗
n. From the
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definition of weak supermajorization order, it is known that
∑n

i=j h( pi)≤
∑n

i=j h( p∗
i ), for

1≤ j ≤ n. Then, there must exist some p′ such that

h( p′)≥max{h( p1), h( p∗
1)} and (h( p′), h( p2), . . . , h( pn))

m
 (h( p∗
1), h( p

∗
2), . . . , h( p

∗
n)),

which implies that p′ ≤min{p1, p∗
1}. Let Zn:n be the largest claim amount arising from port-

folio of risks Ip′X1, Ip2X2, . . . , IpnXn. Then, we have Zn:n ≥st Y∗
n:n from Step 1. In what

follows, we only need to prove that Yn:n ≥st Zn:n, which is equivalent to showing that, for
any increasing function u,

E
[
u
(
max{Ip1X1,A{1}}

)]≥E
[
u
(
max{Ip′X1,A{1}}

)]
, (A.8)

where A{1} = {Ip2X2, Ip3X3, . . . , IpnXn}. Note that, for any increasing function u, binary a{1}
with ak = 0 or 1 and xk > 0 for k �= 1,

E
[
u
(
max{Ip1X1,A{1}}

) |I{1} = a{1},X{1} = x{1}
]

−E
[
u
(
max{Ip′X1,A{1}}

)|I{1} = a{1},X{1} = x{1}
]

=E
[
u
(
max{Ip1X1, {a ◦ x}{1}}

) |X{1} = x{1}
]

−E
[
u
(
max{Ip′X1, {a ◦ x}{1}}

)|X{1} = x{1}
]

= ( p1 − p′)
{
E
[
u
(
max{X1, {a ◦ x}{1}}

)|X{1} = x{1}
]− u

(
max{a ◦ x}{1}

)}
≥ 0,

where the last inequality holds because of p′ ≤ p1, the increasing property of u and the non-
negativity of X. Then, taking the double expectation leads to the inequality (A.8), and hence
the proof is finished. �

A.2. Proof of Lemma 3.5

Proof. Step 1. First, we consider the exponential case, that is, G(x)= e−x. Let λ :=∑n
i=1 λi

and λ∗ :=∑n∗
i=1 λ

∗
i . The survival function of X1:n can be written as

FX1:n (x)= e−
∑n

i=1 λix = e−λx.

Denote

WX1:n (x)=
∫ ∞

x
FX1:n (t)dt=

∫ ∞

x
e−λtdt.

Taking the derivative ofWX1:n (x) with respect to λ gives rise to

W ′
X1:n

(x)= −
∫ ∞

x
te−λtdt.

In light of Theorem 1 of Barmalzan and Payandeh Najafabadi (2015), it holds that the
function W ′

X1:n
(x)/FX1:n (x) is decreasing in x ∈R+. Hence, the desired result follows by

Lemma 3.4.
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Step 2. The remaining proof is similar to that of Theorem 4.1 in Kochar and Xu (2009).
Note that the cumulative hazard rate function of G is given by H(x)= − logG(x). Then, it
follows that for x ∈R+ and i= 1, 2, . . . , n,

P(H(Xi)> x)= P(Xi >H−1(x))=G
λi (G

−1
(e−x))= e−λix,

where H−1 is the right inverse of H. Letting X ′
i :=H(Xi), one can note that X ′

i is expo-
nential random variable with hazard rate λi, for i= 1, . . . , n. Similarly, let X∗′

i :=H(X∗
i ) be

exponential random variable with hazard rate λ∗
i , for i= 1, . . . , n∗. From Step 1, it follows

that, for
∑n

i=1 λi ≤
∑n∗

i=1 λ
∗
i , X

′
1:n ≥RS X∗′

1:n∗ , which is equivalent to H(X1:n)≥RS H(X∗
1:n∗ ).

Since G has DHR, we know that H is increasing and concave, and thus H−1 is increasing
and convex. Now, the required result follows from Theorem 4.1 in Kochar et al. (2002). �

A.3. Proof of Theorem 3.6

Proof. Let λ :=∑n
i=1 λi and λ

∗ :=∑n∗
i=1 λ

∗
i . The survival function of Y1:n can be written as,

for any x ∈R+,

Fλ(x) =
n∏
i=1

P(Xi > x)P(In = 1)

= P(In = 1)e−(
∑n

i=1 λi)R(x) = P(In = 1)e−λR(x),

whereR(x)= ∫ x0 r(t)dt is the baseline cumulative hazard rate function. Similarly, the survival
function of Y∗

1:n∗ , for x ∈R+, is given by Fλ∗ (x)= P(I∗n∗ = 1)e−λ∗R(x). Let

Wλ(x)=
∫ ∞

x
Fλ(t)dt= P(In = 1)

∫ ∞

x
e−λR(t)dt.

Taking the derivative ofWλ(x) with respect to λ, we have

W ′
λ(x)= −P(In = 1)

∫ ∞

x
R(t)e−λR(t)dt.

The desired result boils down to showing that

W ′
λ(x)

Fλ(x)
= − ∫∞

x R(t)e−λR(t)dt
e−λR(x)

is decreasing in x ∈R+, which can be obtained from Lemmas 3.4 and 3.5 �

A.4. Proof of Theorem 3.7

Proof. Making use of Corollary 4.A.32 of Shaked and Shanthikumar (2007), we know
that the right-spread order implies the increasing convex order for non-negative random
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variables, which means that (i) implies (ii). Next, we prove that (ii) implies (iii). Suppose
that Y1:n ≥icx Y∗

1:n∗ , it follows that E[Y1:n]≥E[Y∗
1:n∗ ], that is,

E[Y1:n]= P(In = 1)
∫ ∞

0
e−
(∑n

i=1 λi
)
R(x)dx≥E[Y∗

1:n∗ ]= P(I∗n∗ = 1)
∫ ∞

0
e
−
(∑n∗

i=1 λ
∗
i

)
R(x)

dx.

(A.9)
If
∑n

i=1 λi >
∑n∗

i=1 λ
∗
i , then it can be seen from (A.9) that E[Y1:n]<E[Y∗

1:n∗ ], which contra-
dicts with the assumption (ii). Thus, (iii) is implied by (ii). On the other hand, it has been
proved in Theorem 3.6 that (iii) implies (i). Therefore, the theorem follows. �

A.5. Proof of Theorem 3.8

Proof. The distribution functions of Y1:n and Y∗
1:n can be written as

FY1:n (x)= 1− P(In = 1)e
−
(∑n

i=1 λ
γ1
i

)
xγ1

and

FY∗
1:n∗ (x)= 1− P(I∗n∗ = 1)e

−
(∑n∗

i=1 (λ
∗
i )
γ2
)
xγ2

.

Note that

F−1
Y1:n

(x)=
(

− 1∑n
i=1 λ

γ1
i

ln
(

1− x
P(In = 1)

))1/γ1

, x≥ 1− P(In = 1).

First, in order to make sure that F−1
Y1:n

(FY∗
1:n
(x)) is well defined, we need that FY∗

1:n∗ (x)≥
FY1:n (0), which holds naturally from the condition P(I∗n∗ = 1)≤ P(In = 1). Note that

F−1
Y1:n

(FY∗
1:n∗ (x)) =

(
− 1∑n

i=1 λ
γ1
i

ln

(
1− FY∗

1:n∗ (x)

P(In = 1)

))1/γ1

=
(

− 1∑n
i=1 λ

γ1
i

ln
(
P(I∗n∗ = 1)
P(In = 1)

)
+
∑n∗

i=1 (λ
∗
i )
γ2∑n

i=1 λ
γ1
i

xγ2

)1/γ1

.

The desired result can be reached if we can show that F−1
Y1:n

(FY∗
1:n∗ (x)) is convex in x> 0. By

taking the derivative of F−1
Y1:n

(FY∗
1:n∗ (x)) with respect to x, we have

dF−1
Y1:n

(FY∗
1:n∗ (x))

dx
sign= xγ2−1

(
− 1∑n

i=1 λ
γ1
i

ln
(
P(I∗n∗ = 1)
P(In = 1)

)
+
∑n∗

i=1 (λ
∗
i )
γ2∑n

i=1 λ
γ1
i

xγ2

)1/γ1−1

,
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based on which we can obtain

d2F−1
Y1:n

(FY∗
1:n∗ (x))

dx2

sign= (γ2 − 1)xγ2−2

(
− 1∑n

i=1 λ
γ1
i

ln
(
P(I∗n∗ = 1)
P(In = 1)

)
+
∑n∗

i=1 (λ
∗
i )
γ2∑n

i=1 λ
γ1
i

xγ2

)1/γ1−1

+ γ2

(
1
γ1

− 1
) ∑n∗

i=1 (λ
∗
i )
γ2∑n

i=1 λ
γ1
i

x2γ2−2

×
(

− 1∑n
i=1 λ

γ1
i

ln
(
P(I∗n∗ = 1)
P(In = 1)

)
+
∑n∗

i=1 (λ
∗
i )
γ2∑n

i=1 λ
γ1
i

xγ2

)1/γ1−2

sign= − γ2 − 1∑n
i=1 λ

γ1
i

ln
(
P(I∗n∗ = 1)
P(In = 1)

)
+
∑n∗

i=1 (λ
∗
i )
γ2∑n

i=1 λ
γ1
i

(
2γ2 − 1− γ2

γ1

)
xγ2 . (A.10)

From the assumptions that γ2 ≥ 1, γ1 ≥ γ2
2γ2−1 and P(I∗n∗ = 1)≤ P(In = 1), we can conclude

that (A.10) is non-negative. Thus, the proof is finished. �

A.6. Proof of Theorem 3.10

Proof. We only give the proof for (i) since the result for the case of (ii) can be
obtained directly from Theorem 3.8. According to P(I∗n∗ = 1)= P(In = 1), we know
that F−1

Y1:n
(FY∗

1:n∗ (x)) is well defined. The desired result is equivalent to showing that

F−1
Y1:n

(FY∗
1:n∗ (x))/x is increasing in x> 0. According to the proof of Theorem 3.8, we have

F−1
Y1:n

(FY∗
1:n∗ (x))

x
=
(∑n∗

i=1 (λ
∗
i )
γ2∑n

i=1 λ
γ1
i

xγ2−γ1
)1/γ1

,

which is obviously increasing in x> 0 due to γ2 ≥ γ1. �

A.7. Proof of Theorem 3.11

Proof. We only give the proof for the case of (i) since the proof for (ii) can be completed
in a similar manner. It is easy to check that Y1:n ≥st Y∗

1:n∗ by using
∑n

i=1 λ
γ1
i ≤∑n∗

i=1 (λ
∗
i )
γ2

and P(I∗n∗ = 1)= P(In = 1). On the other hand, we have Y1:n ≥� Y∗
1:n∗ by applying Theorem

3.10. According to the statement on Page 473 in Bartoszewicz (1985) (see also Theorem 2.3
in Ahmed et al., 1986), we must have Y1:n ≥disp Y∗

1:n∗ . �

A.8. Proof of Theorem 4.1

Proof. The distribution function of Yn:n is given by

FYn:n (t)=
(
1− p1G(t)

)n1 (1− p2G(t)
)n2 , t≥ 0,
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and this leads to the density function of Yn:n given as

fYn:n (t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− p1)n1 (1− p2)n2 + n1p1g(0)(1− p1)n1−1(1− p2)n2

+n2p2g(0)(1− p1)n1 (1− p2)n2−1 for t= 0,

n1p1g(t)
(
1− p1G(t)

)n1−1 (
1− p2G(t)

)n2
+n2p2g(t)

(
1− p2G(t)

)n2−1 (
1− p1G(t)

)n1 for t> 0,

where g is the density function of G. Similarly, we can write the density function of Y∗
n∗:n∗ as

fY∗
n∗ :n∗ (t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1− p1)
n∗1 (1− p2)

n∗2 + n∗
1p1g(0)(1− p1)

n∗1−1(1− p2)
n∗2

+n∗
2p2g(0)(1− p1)

n∗1 (1− p2)
n∗2−1 for t= 0,

n∗
1p1g(t)

(
1− p1G(t)

)n∗1−1 (
1− p2G(t)

)n∗2
+n∗

2p2g(t)
(
1− p2G(t)

)n∗2−1 (
1− p1G(t)

)n∗1 for t> 0.

For the sake of convenience, denote

Sn1,n2 (t)=
(
1− p1G(t)

)n1 (1− p2G(t)
)n2 and Sn∗1,n∗2 (t)= (1− p1G(t))

n∗1 (1− p2G(t))
n∗2 .

First, it is necessary to require that Sn1,n2 (0)≤ Sn∗1,n∗2 (0), that is, (1− p1)n1 (1− p2)n2 ≤
(1− p1)

n∗1 (1− p2)
n∗2 . From the assumptions n∗

2 ≥ n2, n∗
1 + n∗

2 ≤ n1 + n2 and p1 ≥ p2, we

immediately have (1− p1)
n1−n∗1 ≤ (1− p1)

n∗2−n2 ≤ (1− p2)
n∗2−n2 , which proves the desired

inequality.
Next, we show that fYn:n (t)/fY∗

n∗ :n∗ (t) is increasing in t ∈R+.
Case 1: t> 0. For this case, the problem falls into proving that

ϕ(t) := n1p1Sn1−1,n2 (t)+ n2p2Sn1,n2−1(t)

n∗
1p1Sn∗1−1,n∗2 (t)+ n∗

2p2Sn∗1,n∗2−1(t)

is increasing in t> 0. Taking the derivative of ϕ(t) with respect to t, we have

ϕ′(t) sign=
[
n1p1S

′
n1−1,n2

(t)+ n2p2S
′
n1,n2−1(t)

]
×
[
n∗
1p1Sn∗1−1,n∗2 (t)+ n∗

2p2Sn∗1,n∗2−1(t)
]

− [n1p1Sn1−1,n2 (t)+ n2p2Sn1,n2−1(t)
]× [n∗

1p1S
′
n∗1−1,n∗2

(t)+ n∗
2p2S

′
n∗1,n∗2−1(t)

]
= n1n

∗
1p

2
1S

′
n1−1,n2

(t)Sn∗1−1,n∗2 (t)− n1n
∗
1p

2
1S

′
n∗1−1,n∗2

(t)Sn1−1,n2 (t)

+ n2n
∗
1p1p2S

′
n1,n2−1(t)Sn∗1−1,n∗2 (t)− n∗

1n2p1p2S
′
n∗1−1,n∗2

(t)Sn1,n2−1(t)

+ n1n
∗
2p1p2S

′
n1−1,n2

(t)Sn∗1,n∗2−1(t)− n1n
∗
2p1p2S

′
n∗1,n∗2−1(t)Sn1−1,n2 (t)

+ n2n
∗
2p

2
2S

′
n1,n2−1(t)Sn∗1,n∗2−1(t)− n∗

2n2p
2
2S

′
n∗1,n∗2−1(t)Sn1,n2−1(t)

=: A1 +A2 +A3 +A4, say,

where

A1 = n1n
∗
1p

2
1S

′
n1−1,n2

(t)Sn∗1−1,n∗2 (t)− n1n
∗
1p

2
1S

′
n∗1−1,n∗2

(t)Sn1−1,n2 (t)

sign=
(
Sn1−1,n2 (t)

Sn∗1−1,n∗2 (t)

)′
=
⎡
⎣(1− p1G(t)

)n1−n∗1(
1− p2G(t)

)n∗2−n2
⎤
⎦

′
,
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A2 = n2n
∗
1p1p2S

′
n1,n2−1(t)Sn∗1−1,n∗2 (t)− n∗

1n2p1p2S
′
n∗1−1,n∗2

(t)Sn1,n2−1(t)

sign=
(
Sn1,n2−1(t)

Sn∗1−1,n∗2 (t)

)′
=
⎡
⎣(1− p1G(t)

)n1−n∗1+1

(
1− p2G(t)

)n∗2−n2+1

⎤
⎦

′
,

A3 = n1n
∗
2p1p2S

′
n1−1,n2

(t)Sn∗1,n∗2−1(t)− n1n
∗
2p1p2S

′
n∗1,n∗2−1(t)Sn1−1,n2 (t)

sign=
(
Sn1−1,n2 (t)

Sn∗1,n∗2−1(t)

)′
=
⎡
⎣(1− p1G(t)

)n1−n∗1−1

(
1− p2G(t)

)n∗2−n2−1

⎤
⎦

′

and

A4 = n2n
∗
2p

2
2S

′
n1,n2−1(t)Sn∗1,n∗2−1(t)− n∗

2n2p
2
2S

′
n∗1,n∗2−1(t)Sn1,n2−1(t)

sign=
(
Sn1,n2−1(t)

Sn∗1,n∗2−1(t)

)′
=
⎡
⎣(1− p1G(t)

)n1−n∗1(
1− p2G(t)

)n∗2−n2
⎤
⎦

′
.

The assumptions n∗
2 ≥ n2 and n∗

1 + n∗
2 ≤ n1 + n2 imply that n1 − n∗

1 ≥ n∗
2 − n2 ≥ 0. Note that

the desired result is clearly true for the case when n1 − n∗
1 = n∗

2 − n2 = 0, and hence we need

to show the result when n1 − n∗
1 ≥ 1. Since p1 ≥ p2, we know

1− p1G(t)
1− p2G(t)

is increasing in t> 0,

that is,
(
1− p1G(t)
1− p2G(t)

)′
≥ 0. Then, it follows that

(
1− p1G(t)
1− p2G(t)

)n∗2−n2
is increasing in t> 0. On

the other hand, since 1− piG(t) is increasing in t> 0 for i= 1, 2, we can conclude Ai ≥ 0 for
i= 1, 2, 3, 4. Therefore, ϕ′(t)≥ 0, for t> 0, and thus the proof is finished.

Case 2: t= 0. Based on Case 1, it suffices to show that
fYn:n (0)
fY∗
n∗ :n∗

(0) ≤ ϕ(0) := limt→0 ϕ(t),

that is,

(1− p1)n1 (1− p2)n2 + n1p1g(0)(1− p1)n1−1(1− p2)n2 + n2p2g(0)(1− p1)n1 (1− p2)n2−1

(1− p1)
n∗1 (1− p2)

n∗2 + n∗
1p1g(0)(1− p1)

n∗1−1(1− p2)
n∗2 + n∗

2p2g(0)(1− p1)
n∗1 (1− p2)

n∗2−1

≤ n1p1g(0)(1− p1)n1−1(1− p2)n2 + n2p2g(0)(1− p1)n1 (1− p2)n2−1

n∗
1p1g(0)(1− p1)

n∗1−1(1− p2)
n∗2 + n∗

2p2g(0)(1− p1)
n∗1 (1− p2)

n∗2−1
,

which holds by proving that

(1− p1)n1 (1− p2)n2

(1− p1)
n∗1 (1− p2)

n∗2
≤ n1p1g(0)(1− p1)n1−1(1− p2)n2 + n2p2g(0)(1− p1)n1 (1− p2)n2−1

n∗
1p1g(0)(1− p1)

n∗1−1(1− p2)
n∗2 + n∗

2p2g(0)(1− p1)
n∗1 (1− p2)

n∗2−1
.

(A.11)
Arranging both sides of (A.11), we have

1≤ n1p1(1− p2)+ n2p2(1− p1)
n∗
1p1(1− p2)+ n∗

2p2(1− p1)
,

which is equivalent to showing that

p1(1− p2)(n1 − n∗
1)≥ p2(1− p1)(n

∗
2 − n2). (A.12)
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Since p1 ≥ p2, n∗
2 ≥ n2 and n1 + n2 ≥ n∗

1 + n∗
2, inequality (A.12) can be obtained immediately.

Hence, the proof is finished. �

A.9. Proof of Theorem 4.4

Proof. Note that the survival functions of Y1:n and Y∗
1:n∗ are given by

FY1:n (t)=
(
p1G1(t)

)n1 ( p2G2(t)
)n2 , t≥ 0,

and

FY∗
1:n∗ (t)=

(
p1G1(t)

)n∗1 ( p2G2(t)
)n∗2 , t≥ 0.

The desired result is equivalent to showing that FY1:n (t)/FY∗
1:n∗ (t) in increasing in t ∈R+ and

FY1:n (t)/FY∗
1:n∗ (t)≥ 1 for all t ∈R+. First, observe that

FY1:n (t)

FY∗
1:n∗ (t)

=
(
p1G1(t)

)n1 ( p2G2(t)
)n2

(
p1G1(t)

)n∗1 ( p2G2(t)
)n∗2

= pn11 p
n2
2

p
n∗1
1 p

n∗2
2

(
G2(t)

G1(t)

)n2−n∗2
[G1(t)]

n−n∗

is increasing in t ∈R+ by usingG1 ≤hr G2, n2 ≥ n∗
2 and n1 + n2 ≤ n∗

1 + n∗
2. On the other hand,

it is required that FY1:n (0)/FY∗
1:n∗ (0)≥ 1 since FY1:n (t)/FY∗

1:n∗ (t) in increasing in t ∈R+. In

other words, we need that pn11 p
n2
2 ≥ p

n∗1
1 p

n∗2
2 , that is, p

n1−n∗1
1 ≥ p

n∗2−n2
2 . Since p1 ≤ p2, n2 ≥ n∗

2

and n≤ n∗, we can obtain that p
n1−n∗1
1 ≥ p

n∗2−n2
1 ≥ p

n∗2−n2
2 . Thus, the proof is finished. �

A.10. Proof of Theorem 4.5

Proof. The density function of Y1:n can be written as

fY1:n (t)=

⎧⎪⎪⎨
⎪⎪⎩
1− pn11 p

n2
2 + pn11 p

n2
2 (n1g1(0)+ n2g2(0)) for t= 0,

pn11 p
n2
2

[
n1g1(t)

(
G1(t)

)n1−1 (
G2(t)

)n2
+ n2g2(t)

(
G2(t)

)n2−1 (
G1(t)

)n1] for t> 0.

Similarly, the density function of Y∗
1:n∗ is given by

fY∗
1:n∗ (t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1− p

n∗1
1 p

n∗2
2 + p

n∗1
1 p

n∗2
2 (n∗

1g1(0)+ n∗
2g2(0)) for t= 0,

p
n∗1
1 p

n∗2
2

[
n∗
1g1(t)

(
G1(t)

)n∗1−1 (
G2(t)

)n∗2
+ n∗

2g2(t)
(
G2(t)

)n∗2−1 (
G1(t)

)n∗1] for t> 0.

According to the proof of Theorem 4.4, we know that it should be required that
FY1:n (0)/FY∗

1:n∗ (0)≥ 1 since the likelihood ratio order implies the hazard rate order and
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the usual stochastic order. This holds obviously from the assumptions p1 ≤ p2, n2 ≥ n∗
2 and

(n1, n2)
w
 (n∗

1, n
∗
2).

Next, we need to show that fY1:n (t)/fY∗
1:n∗ (t) is increasing in t ∈R+.

Case 1: t> 0. Write

Tn1,n2 (t)=
(
G1(t)

)n1 (G2(t)
)n2 and Tn∗1,n∗2 (t)= (G1(t))

n∗1 (G2(t))
n∗2 .

It suffices to show that

fY1:n (t)

fY∗
1:n∗ (t)

= pn11 p
n2
2

[
n1g1(t)Tn1−1,n2 (t)+ n2g2(t)Tn1,n2−1(t)

]
p
n∗1
1 p

n∗2
2

[
n∗
1g1(t)Tn∗1−1,n∗2 (t)+ n∗

2g2(t)Tn∗1,n∗2−1(t)
]

is increasing in t> 0, which reduces to prove

ψ(t)= n1g1(t)Tn1−1,n2 (t)+ n2g2(t)Tn1,n2−1(t)

n∗
1g1(t)Tn∗1−1,n∗2 (t)+ n∗

2g2(t)Tn∗1,n∗2−1(t)

is increasing in t> 0. Taking the derivative of ψ(t) with respect to t, we have

ψ ′(t) sign=
[
n1g

′
1(t)Tn1−1,n2 (t)+ n1g1(t)T

′
n1−1,n2

(t)+ n2g
′
2(t)Tn1,n2−1(t)

+ n2g2(t)T
′
n1,n2−1(t)

]
×
[
n∗
1g1(t)Tn∗1−1,n∗2 (t)+ n∗

2g2(t)Tn∗1,n∗2−1(t)
]

− [
n1g1(t)Tn1−1,n2 (t)+ n2g2(t)Tn1,n2−1(t)

]× [n∗
1g

′
1(t)Tn∗1−1,n∗2 (t)

+ n∗
1g1(t)T

′
n∗1−1,n∗2

(t)+ n∗
2g

′
2(t)Tn∗1,n∗2−1(t)+ n∗

2g2(t)T
′
n∗1,n∗2−1(t)

]
= n1n

∗
1g

2
1(t)

[
T ′
n1−1,n2

(t)Tn∗1−1,n∗2 (t)−T ′
n∗1−1,n∗2

(t)Tn1−1,n2 (t)
]

+ n2n
∗
1g1(t)g2(t)

[
T ′
n1,n2−1(t)Tn∗1−1,n∗2 (t)−T ′

n∗1−1,n∗2
(t)Tn1,n2−1(t)

]
+ n1n

∗
2g1(t)g2(t)

[
T ′
n1−1,n2

(t)Tn∗1,n∗2−1(t)−T ′
n∗1,n∗2−1(t)Tn1−1,n2 (t)

]
+ n2n

∗
2g

2
2(t)

[
T ′
n1,n2−1(t)Tn∗1,n∗2−1(t)−T ′

n∗1,n∗2−1(t)Tn1,n2−1(t)
]

+ [g′
2(t)g1(t)− g2(t)g

′
1(t)
] [
n∗
1n2Tn1,n2−1(t)Tn∗1−1,n∗2 (t)− n1n

∗
2Tn1−1,n2 (t)Tn∗1,n∗2−1(t)

]
=: B1 +B2 +B3 +B4 +B5, say,

where

B1 = n1n
∗
1g

2
1(t)

[
T ′
n1−1,n2

(t)Tn∗1−1,n∗2 (t)−T ′
n∗1−1,n∗2

(t)Tn1−1,n2 (t)
]

sign=
(
Tn1−1,n2 (t)

Tn∗1−1,n∗2 (t)

)′
=
⎡
⎣(G2(t)

)n2−n∗2(
G1(t)

)n∗1−n1
⎤
⎦

′
,

B2 = n2n
∗
1g1(t)g2(t)

[
T ′
n1,n2−1(t)Tn∗1−1,n∗2 (t)−T ′

n∗1−1,n∗2
(t)Tn1,n2−1(t)

]
sign=

(
Tn1,n2−1(t)

Tn∗1−1,n∗2 (t)

)′
=
⎡
⎣(G2(t)

)n2−n∗2−1

(
G1(t)

)n∗1−n1−1

⎤
⎦

′
,
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B3 = n1n
∗
2g1(t)g2(t)

[
T ′
n1−1,n2

(t)Tn∗1,n∗2−1(t)−T ′
n∗1,n∗2−1(t)Tn1−1,n2 (t)

]
sign=

(
Tn1−1,n2 (t)

Tn∗1,n∗2−1(t)

)′
=
⎡
⎣(G2(t)

)n2−n∗2+1

(
G1(t)

)n∗1−n1+1

⎤
⎦

′
,

B4 = n2n
∗
2g

2
2(t)

[
T ′
n1,n2−1(t)Tn∗1,n∗2−1(t)−T ′

n∗1,n∗2−1(t)Tn1,n2−1(t)
]

sign=
(
Tn1,n2−1(t)

Tn∗1,n∗2−1(t)

)′
=
⎡
⎣(G2(t)

)n2−n∗2(
G1(t)

)n∗1−n1
⎤
⎦

′

and

B5 =
[
n∗
1n2Tn1,n2−1(t)Tn∗1−1,n∗2 (t)− n1n

∗
2Tn1−1,n2 (t)Tn∗1,n∗2−1(t)

]
× [g′

2(t)g1(t)− g2(t)g
′
1(t)
]

= (
G1(t)

)n1+n∗1−1 (
G2(t)

)n2+n∗2−1
(n∗

1n2 − n1n
∗
2)
[
g′
2(t)g1(t)− g2(t)g

′
1(t)
]
.

Both n2 ≥max{n∗
1, n

∗
2} and (n1, n2)

w
 (n∗
1, n

∗
2) imply that n1 ≤min{n∗

1, n
∗
2} ≤max{n∗

1, n
∗
2} ≤ n2

and n∗
1 − n1 ≥ n2 − n∗

2 ≥ 0. Also, we have n∗
1n2 ≥ n∗

2n1. We only need to deal with the case
when n∗

1 − n1 ≥ 1 since it is trivially true if n∗
1 − n1 = n2 − n∗

2 = 0. G1 ≤lr G2 means that
g2(t)/g1(t) is increasing in t> 0, which further implies g′

2(t)g1(t)≥ g2(t)g′
1(t) for t> 0. Thus,

we have B5 ≥ 0. On the other hand, it follows from G1 ≤lr G2 that G2(t)/G1(t) is increas-
ing in t> 0, that is,

(
G2(t)/G1(t)

)′ ≥ 0 for t> 0. Upon using an argument similar to that
of Theorem 4.1, we can readily get that Bi ≥ 0 for i= 1, 2, 3, 4; now we can conclude that
ψ ′(t)≥ 0 for t> 0. Hence, the proof is finished.

Case 2: t= 0. It suffices to show that

1− pn11 p
n2
2 + pn11 p

n2
2 (n1g1(0)+ n2g2(0))

1− p
n∗1
1 p

n∗2
2 + p

n∗1
1 p

n∗2
2 (n∗

1g1(0)+ n∗
2g2(0))

≤ pn11 p
n2
2 (n1g1(0)+ n2g2(0))

p
n∗1
1 p

n∗2
2 (n∗

1g1(0)+ n∗
2g2(0))

,

which can be guaranteed by showing that

1− pn11 p
n2
2

1− p
n∗1
1 p

n∗2
2

≤ pn11 p
n2
2

p
n∗1
1 p

n∗2
2

lim
t→0

n1g1(t)+ n2g2(t)
n∗
1g1(t)+ n∗

2g2(t)
= pn11 p

n2
2

p
n∗1
1 p

n∗2
2

n1 + n2δ
n∗
1 + n∗

2δ
.

This is obvious by arranging (4.1). Hence, the proof is finished. �
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