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CONTINUITY OF HILBERT–KUNZ MULTIPLICITY
AND F-SIGNATURE

THOMAS POLSTRA and ILYA SMIRNOV

Abstract. We establish the continuity of Hilbert–Kunz multiplicity and F-

signature as functions from a Cohen–Macaulay local ring (R,m, k) of prime

characteristic to the real numbers at reduced parameter elements with respect

to the m-adic topology.

§1. Introduction

In this paper we consider the problem of determining when two rings

have similar singularities. As a motivating example let R= k[[x1, . . . , xn]]

be the power series ring in n variables over a field k and f ∈R. If we add

a term of sufficiently high order to f , will the new singularity be similar to

that of f?

The origin of the above question can be traced at least as far back

as 1956. Samuel [Sam56] proved if the Jacobian ideal J(f) of f is m-

primary and if f − g ∈ (x1, . . . , xn)J(f)2, then there is an automorphism

ϕ : R→R such that ϕ(f) = g. In particular, Samuel’s result asserts that if

f has an isolated singularity and g is sufficiently close to f , then the rings

R/(f) and R/(g) are isomorphic. Samuel’s result was furthered by Hironaka

[Hir65]: if R/I is a reduced and equidimensional isolated singularity, then

there is an integer e > 0 such that for any ideal J that also defines a

reduced and equidimensional singularity of same dimension and if I ≡ J
mod (x1, . . . , xn)e then R/I ∼=R/J .

More recently, Cutkosky and Srinivasan have extended Samuel’s result to

include all complete intersection prime ideals and Hironaka’s theorem to all

reduced equidimensional ideals. See [CS93] for precise statements.

However, when f ∈ k[[x1, . . . , xn]] does not have an isolated singularity,

the results of Samuel, Hironaka, and Cutkosky and Srinivasan do not allow
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us to relate the singularities of R/(f) with the singularities of R/(g). To

compare the singularity of R/(f) with the singularity of R/(g) we first

require a formal notion of “closeness” of singularities. For example, one

could require the Hilbert–Samuel functions of R/(f) and R/(g) to coincide.

Srinivas and Trivedi [ST96] have shown if I = (f1, . . . , fh) is a complete

intersection1, or more generally if I is a parameter ideal in a generalized

Cohen–Macaulay ring, then the associated graded rings of I and an ideal

J = (f1 + ε1, . . . , fh + εh) will be isomorphic, provided ε1, . . . , εh are in a

sufficiently large power of the maximal ideal.

We now turn our attention to numerical invariants in positive charac-

teristic. In particular, we introduce and explore the behavior of F-pure

threshold, Hilbert–Kunz multiplicity, and F-signature with respect to m-adic

topologies. In what follows, let (R,m) be a local ring of prime characteristic

p. Let F : R→R denote the Frobenius endomorphism. Given ideal I ⊆R
and e ∈ N let I [p

e] = (ip
e | i ∈ I) be the expansion of I along F e. We shall

always assume R is F-finite, meaning that F is a finite map.

The study of F-pure thresholds was initiated by Takagi and Watanabe

[TW04]. If (R,m, k) is regular then the F-pure threshold of an element

f ∈R can be defined as the limit fpt(f) = lime→∞ (νe(f)/pe) where νe(f) =

max{t ∈ N | f t 6∈m[pe]}. Two elementary observations concerning F-pure

thresholds are that if f, g ∈R then fpt(f + g) 6 fpt(f) + fpt(g) and that

if f ∈m[pe0 ] then fpt(f) 6 1/pe0 . From these observations it follows that

the F-pure threshold function is continuous as a function from R→ R:

specifically, if f ∈R and δ > 0 then there exists N ∈ N such that for all

g ∈R such that f − g ∈mN , |fpt(f)− fpt(g)|< δ. Continuity of the F-pure

threshold function motivates studying continuity properties of Hilbert–Kunz

multiplicity and F-signature and sheds light onto the problem of relating the

singularities of R/(f) with R/(g) when f and g are suitably close.

In 1983, Monsky, building on the earlier work of Kunz [Kun69, Kun76],

defined a new invariant, the Hilbert–Kunz multiplicity of R, as the limit

eHK(R) = lim
e→∞

λ(R/m[pe])

ped
.

Monsky [Mon83] showed that this limit always exists. Values of eHK(R)

dictate the severity of the singularities of R. Most notable is that under mild

1This result was recently reproved by Adamus and Patel [AP17] using a more
combinatorial method.
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hypotheses eHK(R) > 1 with equality if and only if R is regular [WY00]. It

has also been shown in [BE04, AE08] that small enough values of eHK(R)

imply R is Gorenstein and strongly F-regular. To be able to relate the

singularities of R/(f) and R/(g) when f and g are suitably close it is

natural to investigate the following question, which was originally asked

to the second author by Luis Núñez-Betancourt:

Question 1.1. Let (R,m, k) be a regular local ring of prime character-

istic. Is the Hilbert–Kunz multiplicity function defined by f 7→ eHK(R/(f))

a continuous function in the m-adic topology? Namely, if f ∈R is an element

and we are given δ > 0, can we find an integer N such that for all g ∈R
such that f − g ∈mN ,

|eHK(R/(f))− eHK(R/(g))|< δ?

We now turn our attention to F-signature. Given finitely generated R-

module M we let frk(M) denote the largest rank of a free R-module F for

which there is a surjection M → F . The F-signature of (R,m, k) was defined

by Huneke and Leuschke [HL02], conceptualizing the earlier work [SVdB97]

of Smith and Van den Bergh, as the limit

s(R) = lim
e→∞

frk(R1/pe)

rank(R1/pe)
.

The number frk(R1/pe) will be denoted by ae(R) and referred to as the

eth Frobenius splitting number of R. Tucker [Tuc12] showed existence of the

above limit for all local rings2. F-signature is a measurement of singularities:

in particular, s(R) 6 1 with equality if and only if R is regular by [HL02] and

s(R)> 0 if and only if R is strongly F-regular by [AL03]. As with Hilbert–

Kunz multiplicity, it is natural to relate the singularities of R/(f) with

R/(g) by investigating continuity properties of F-signature with respect to

the m-adic topology.

Question 1.2. Let (R,m, k) be a regular local ring of prime charac-

teristic. Is the F-signature function defined by f 7→ s(R/(f)) a continuous

function with respect to the m-adic topology? Namely, if f ∈R is an element

and we are given δ > 0, can we find an integer N such that for all g ∈R

2The existence of the above limit has been recently established without the local
hypothesis in [DPY16].
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such that f − g ∈mN

|s(R/(f))− s(R/(g))|< δ?

We are able to answer Questions 1.1 and 1.2, provided that f has no

multiple factors, that is, R/(f) is reduced. Our main contribution is the

following theorem:

Theorem 1.3. Let (R,m, k) be a complete Cohen–Macaulay F-finite

ring of prime characteristic p > 0. If (f1, . . . , fc) is a parameter ideal such

that R/(f1, . . . , fc) is reduced then for any δ > 0 there exists an integer

N > 0 such that for any ε1, . . . , εc ∈mN:

(1) (Corollary 3.7) |eHK(R/(f1, . . . , fc))− eHK(R/(f1 + ε1, . . . , fc + εc))|
< δ; and

(2) (Theorem 3.12) |s(R/(f1, . . . , fc))− s(R/(f1 + ε1, . . . , fc + εc))|< δ.

We show that Hilbert–Kunz multiplicity and F-signature functions are

the uniform limit of functions which are locally constant with respect

to the m-adic topology. Naively, one might also expect the Hilbert–Kunz

multiplicity and F-signature functions are locally constant with respect to

the m-adic topology: eHK(R/(f)) = eHK(R/(g)) and s(R/(f)) = s(R/(g))

can be forced by making f − g is sufficiently small. We point that this cannot

hold for Hilbert–Kunz multiplicity in Example 4.1 and for F-signature in

Example 4.2.

Similar to a number of recent developments in the study of invariants in

prime characteristic rings, the proof of Theorem 1.3 comes by showing uni-

form convergence of continuous functions. We get our uniform convergence

result by using the methods of Polstra and Tucker [PT18], where it was

shown that suitable Noether normalizations provide a kind of “canonical”

convergence estimate. The essential reason is that when R is a module-finite

generically separable extension of a regular local ring A, then R[A1/p]∼=
R⊕p

d
. The “canonicity” in our construction comes from discriminants, and

we show that the discriminant of R/(f) does not “change” much when f

changes slightly (Lemma 3.3). This allows us to show that one can control

the convergence rate of Hilbert–Kunz function uniformly, independent of a

small perturbation (Theorem 3.5).

§2. Preliminary results

Definition 2.1. Let A be a ring and R a finite A-algebra which is

free as an A-module. Let e1, . . . , en be a basis of R as an A-module.
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The discriminant of R is

DA(R) = det


Tr(e21) Tr(e1e2) · · · Tr(e1en)

Tr(e2e1) Tr(e22) · · · Tr(e2en)
...

... · · ·
...

Tr(ene1) Tr(ene2) · · · Tr(e2n)

 ,

where Tr(r) denotes the trace of the multiplication map ×r on R. Up to

multiplication by a unit of A, the discriminant is independent of the choice

of basis.

If A is a regular local ring and R is a finite Cohen–Macaulay extension

of A, then R is necessarily a free A-module by the Auslander–Buchsbaum

formula, and thus the discriminant of R over A is well defined. We begin by

recording some well-known and useful facts concerning discriminants.

Proposition 2.2. Let A be a ring and R a finitely generated A-algebra

which is free as an A-module.

(1) If A is a normal domain, then DA(R) ∈A.

(2) If I is an ideal of A then the image of DA(R) in R/IR is DA/I(R/IR).

(3) If A is a domain then the ring R is generically separable over A if and

only if DA(R) 6= 0.

Proof. We refer the reader to [Hoca, p. 200] for a proof of (1). For (2),

if e1, . . . , en ∈R form a basis of R as an A-module then the images of

e1, . . . , en form a basis of R/IR as an A/IA-module. Moreover, if x ∈R
and x denotes the image of x in R/IR, then Tr(x) = Tr(x). Hence the image

of DA(R) in R/IR is indeed DA/I(R/IR).

For (3), as a first step, let L be the fraction field of A. We observe that

DA(R) = DL(R⊗A L), since the decomposition of an element a=
∑
aiei

over A can be considered as a decomposition of a⊗ 1 =
∑
aiei ⊗ 1 of an

element a⊗ 1 over L and ei ⊗ 1 still form a basis of R⊗A L over L. Thus

we can replace R by R⊗A L and assume A= L is a field. It is well known

that DL(R) 6= 0 if R is a finite separable field extension of L. By linearity

this can be extended to the product and show one direction.

For the other direction, we first show that R is reduced. Since the

nilradical is an ideal, it is a vector space over L, so we may extend a basis

of it to a basis of R over L. If x is a nilpotent element, then Tr(xe) = 0 for

any element e ∈R, because the trace of a nilpotent matrix is nilpotent. This

shows that Tr gives a degenerate bilinear form and DL(R) = 0. Since R is

https://doi.org/10.1017/nmj.2018.43 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.43


CONTINUITY OF HILBERT–KUNZ MULTIPLICITY AND F-SIGNATURE 327

reduced and finite over L, it is a direct sum of fields. Again, by linearity we

can see that each of these fields must be separable over L.

Let (R,m, k) be a complete local ring of positive characteristic p > 0

with the residue field k. Cohen’s structure theorem shows that there is an

injection φ : k→R such that the induced map to R/m is an isomorphism.

We call φ(k) a coefficient field. Moreover, Cohen’s structure theorem

asserts that for any system of parameters x1, . . . , xd the k-subalgebra of

R generated by the system of parameters, k[x1, . . . , xn], is isomorphic to a

polynomial ring. Since R is complete, it therefore contains the completion

A= k[[x1, . . . , xd]] and, since x1, . . . , xd form a system of parameters, R is

module-finite over A. Of course, there is a lot of freedom in choosing a system

of parameters; the Cohen–Gabber structure theorem [GO08, Théorème 7.1]3

asserts that x1, . . . , xd can be chosen so that R is generically separable over

k[[x1, . . . , xd]].

Theorem 2.3. Let (R,m, k) be a reduced complete local ring of equidi-

mension d and of prime characteristic p. There exist a system of parameters

x1, . . . , xd of R and coefficient field k ⊆R such that R is finite and

generically separable over the power series ring k[[x1, . . . , xd]].

It is useful to keep in mind that generic separability is equivalent to generic

étaleness.

§3. Main theorem and its applications

We say that a sequence f1, . . . , fc ∈m is a parameter sequence if

dimR/(f1, . . . , fi+1)< dimR/(f1, . . . , fi) for all i. We use f to denote a

sequence of elements f1, . . . , fc. If I is an ideal, we say f ∈ (I)⊕c if each

element is in I. We add sequences componentwise, so f + g is the sequence

f1 + g1, . . . , fc + gc. We will use λ(M) to denote the length of a module,

and µ(M) to denote the minimal number of generators.

We borrow the following property observed in [ST96, Lemma 1].

Lemma 3.1. Let (R,m, k) be a local ring and f ∈ (m)⊕c be a parameter

sequence. Then for any ideal I such that λ(R/(I, f)) is finite, there exists

N > 0 such that for all ε ∈ (mN )⊕c

(I, f) = (I, f + ε).

In particular, λ(R/(I, f)) = λ(R/(I, f + ε)) for all ε ∈ (mN )⊕c.

3We refer the reader to [KS18] for an elementary proof of Theorem 2.3.
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Proof. Take N such that mN ⊆ (I, f). Then (I, f) = (I, f + ε) for all

ε ∈ (mN )⊕c.

As observed in [ST96, Lemma 2], a small enough perturbation of a system

of parameters remains a system of parameters.

Corollary 3.2. Let (R,m, k) be a local ring. Suppose f ∈ (m)⊕c is a

part of a system of parameters. Then there exists N ∈ N such that for each

ε ∈ (mN )⊕c, f + ε is a part of a system of parameters.

Proof. Let d be the dimension of the ring. We may complete f to a

full system of parameters f, y1, . . . , yd−c. Setting I = (y1, . . . , yd−c) in the

previous lemma we obtain N such that for any ε ∈ (mN )⊕c

(f1, . . . , fc, y1, . . . , yd−c) = (f1 + ε1, . . . , fc + εc, y1, . . . , yd−c).

In particular f1 + ε1, . . . , fc + εc, y1, . . . , yd−c are d elements that generate

an m-primary ideal, so they form a system of parameters.

Lemma 3.3. Let (R,m, k) be a complete Cohen–Macaulay local ring

with coefficient field k ⊆R and let f1, . . . , fc, x1, . . . , xd−c be a system of

parameters for R. Let A= k[[T1, . . . , Td−c]] be the power series ring in d− c
variables over the field k. There exists C > 0 such that for all n> 1 and all

ε ∈ (mCn)⊕c,

f1 + ε1, . . . , fc + εc, x1, . . . , xd−c

is a system of parameters and

DA(R/(f))≡DA(R/(f + ε)) (mod mn
A),

where R/(f) and R/(f + ε) are A-algebras by mapping Ti 7→ xi and iden-

tifying the coefficient field of A with the induced coefficient fields of R/(f)

and R/(f + ε).

Proof. We can choose C as in Lemma 3.1, so for all ε ∈ (mC)⊕c we

have (f + ε, x1, . . . , xd−c) = (f, x1, . . . , xd−c) and thus f + ε, x1, . . . , xd−c
is a system of parameters. Hence R/(f) and R/(f + ε) are free A-modules

of the same rank λA(R/(f, x1, . . . , xd−c)). Moreover, if r1, . . . , rn ∈R are

chosen so that their images in R/(f) serve as a basis for R/(f) as an A-

module, then for each ε ∈ (mC)⊕c, because the images of r1, . . . , rn form

a basis of R/(f + ε,mA) =R/(f, x1, . . . , xd−c), the images of r1, . . . , rn in

R/(f + ε) are a basis of R/(f + ε) too.
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Observe that for each n> 1, mCn ⊆ (x1, . . . , xd−c)
n + (f). Thus for

each ε ∈ (mCn)⊕c, R/(f,mn
A) =R/(f + ε,mn

A) as A/mn
A-algebras. Then by

part (2) of Lemma 2.2

DA(R/(f)) mod mn
AR/(f) = DA/mnA

(R/(f,mn
A))

= DA/mnA
(R/(f + ε,mn

A))

= DA(R/(f + ε)) mod mn
AR/(f + ε),

where the middle equality holds since we have a common basis r1, . . . , rn ∈
R for R/(f + ε) and R/(f) as A-modules.

Suppose (R,m, k) satisfies the hypotheses of Lemma 3.3. The following

corollary shows that if f ∈m is a parameter element and R/(f) is generically

separable over a regular ring A, then R/(g) is generically separable over the

same regular local ring A, provided g is a small enough perturbation of f .

Corollary 3.4. Let (R,m, k) be a complete Cohen–Macaulay local

ring with coefficient field k ⊆R. Let f1, . . . , fc, x1, . . . , xd−c be a system

of parameters for R. Let A= k[[T1, . . . , Td−c]] be the power series ring in

d–c variables over the field k and consider R/(f) is an A-algebra by mapping

Ti 7→ xi and identifying the coefficient field of A with the induced coefficient

field of R/(f). Suppose that A⊆R/(f) is generically separable. Then there

exists N > 1 such that for any ε ∈ (mN )⊕c, A⊆R/(f + ε) is generically

separable as an A-algebra given by mapping Ti 7→ xi and identifying the

coefficient field of A with the induced coefficient field of R/(f + ε).

Proof. The assumption R/(f) is generically separable over A is equiv-

alent to DA(R/(f)) 6= 0 by Part (1) of Lemma 2.2. Let C > 0 as given

by Lemma 3.3. By Krull’s intersection theorem we can choose n> 1 so

that DA(R/(f)) 6≡ 0 mod mn
A. Then for any ε ∈ (mCn)⊕c, DA(R/(f + ε))≡

DA(R/(f)) mod mn
A 6= 0, so DA(R/(f + ε)) 6= 0.

3.1 Continuity of Hilbert–Kunz multiplicity

It is time to set up the uniform convergence machinery. We closely follow

[PT18, Lemma 2.3, Theorem 3.2]. Let (R,m, k) be an F-finite local ring

and I be an m-primary ideal. Then F e∗R⊗R R/I ∼= F e∗R/I
[pe] and we may

compute

λR(F∗R⊗R R/I) = [k : kp]λR(R/I [p]).

https://doi.org/10.1017/nmj.2018.43 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.43


330 T. POLSTRA AND I. SMIRNOV

Theorem 3.5. Let (R,m, k) be an F-finite Cohen–Macaulay local ring

of prime characteristic p and of dimension d+ c. If f = f1, . . . , fc is a

parameter sequence such that R̂/(f)R̂ is reduced, then there exists a constant

C > 0 and an integer N > 1 such that for any e> 1 and ε ∈ (mN )⊕c

|λ(R/(f + ε,m[pe+1]))− pdλ(R/(f + ε,m[pe]))|6 Cpe(d−1).

Proof. Without loss of generality, we may assume R is complete.

Because R is Cohen–Macaulay, R/(f) is equidimensional and reduced.

By Theorem 2.3 there exists a coefficient field k ⊆R/(f) and parameters

x1, . . . , xd ∈R such that x1, . . . , xd is a system of parameters for R/(f)

and R/(f) is module-finite and generically separable over the regular local

ring A := k[[x1, . . . , xd]].

We observe that the coefficient field can be lifted from R/(f) to R.

Essentially, the proof of [Mat86, Theorem 28.3] shows that a coefficient

field is determined by the lifts of a p-basis of k (see also [Hocb, Theorem,

p. 12]). Thus we may just lift the p-basis to R.

By Lemma 6.5 of [HH90] (the proof still holds if we replace R∞ by R1/p),

we have an exact sequence

0→R/(f)[A1/p]→ (R/(f))1/p→M → 0

where 0 6= c= DA(R/(f)) annihilates M .

By Lemma 3.3 and Corollary 3.4, we can find N such that A⊆R/(f + ε)

is still generically separable. Therefore we have an exact sequence

0→R/(f + ε)[A1/p]→ (R/(f + ε))1/p→Mε→ 0

where cε = DA(R/(f + ε)) annihilates Mε and cε − c ∈mN
A .

By [Kun69] A1/p is a free A-module of rank [k : kp]pd, so tensoring the

above sequence with m[pe] we get that

[k : kp]λ(R/(f + ε,m[pe+1]))

− [k : kp]pdλ(R/(f + ε,m[pe])) 6 λ(Mε/m
[pe]Mε).

Since Mε is a R/(f + ε, cε)-module and a quotient of (R/(f + ε))1/p,

λ(Mε/m
[pe]Mε) 6 λ(R/(f + ε, cε,m

[pe]))µ((R/(f + ε))1/p).

Furthermore, it easily follows from the inclusion (x1, . . . , xd)⊆m that

µ((R/(f + ε))1/p) 6 λ((R/(xp1, . . . , x
p
d, f + ε))1/p),
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thus

µ((R/(f + ε))1/p) 6 [k : kp]λ(R/(xp1, . . . , x
p
d, f + ε))

6 [k : kp]pdλ(R/(x1, . . . , xd, f)),

where the last inequality follows by filtration.

Now, we can complete 0 6= c to a system of parameters c, t1, . . . , td−1
in A and, after increasing N if necessary, by Lemma 3.3 we can

assume that cε, t1, . . . , td−1 is still a system of parameters and that (f +

ε, cε, t1, . . . , td−1) = (f, c, t1, . . . , td−1). Therefore

λ(R/(f + ε, cε,m
[pe])) 6 λ(R/(f + ε, cε, t

pe

1 , . . . , t
pe

d−1))

6 pe(d−1)λ(R/(f, c, t1, . . . , td−1)).

Let

C = pdλ(R/(f, c, t1, . . . , td−1))λ(R/(x1, . . . , xd, f))

and observe that we found one of the two required inequalities:

λ(R/(f + ε,m[pe+1]))− pdλ(R/(f + ε,m[pe])) 6 Cpe(d−1).

For the other inequality, we can repeat the proof for the exact sequence

0→ (R/(f))1/p
c−→R/(f)[A1/p]→ L→ 0

where the map is multiplication by c= DA(R/(f)). Again the cokernel is

annihilated by c, because R/(f)[A1/p]⊆ (R/(f))1/p. Moreover, we get for

each ε a short exact sequence

0→ (R/(f + ε))1/p
cε−→R/(f + ε)[A1/p]→ Lε→ 0.

Most of the proof carries through as above, except that now we estimate

λ(Lε/m
[pe]Lε) 6 µ(R/(f)[A1/p])λ(R/(f + ε, cε,m

[pe]))

= [k : kp]pdλ(R/(f + ε, cε,m
[pe]))

and from there obtain

pdλ(R/(f + ε,m[pe]))− λ(R/(f + ε,m[pe+1]))

6 (pd[k : kp]λ(R/(f, c, t1, . . . , td−1)))p
e(d−1).

Following the treatment in [Tuc12], we obtain the following corollary:
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Corollary 3.6. Let (R,m, k) be an F-finite Cohen–Macaulay local

ring of prime characteristic p and of dimension d+ c. If f is a parameter

sequence of length c and such that R̂/(f)R̂ is reduced, then there exist a

constant C > 0 and an integer N > 1 such that for any e> 1 and ε ∈ (mN )⊕c

|eHK(R/(f + ε))− p−edλ(R/(f + ε,m[pe]))|6 Cp−e.

Proof. Using induction on q′ as in the proof of [Tuc12, Proposition 3.4]

we may obtain from Theorem 3.5 that

|λ(R/(f + ε,m[pe+e
′
]))− pe′dλ(R/(f + ε,m[pe]))|

6 Cp(e+e
′−1)(d−1)(1 + p+ · · ·+ pe

′−1).

Thus, dividing by p(e+e
′)d we get that

|p−(e+e′)dλ(R/(f + ε,m[pe+e
′
]))− p−edλ(R/(f + ε,m[pe]))|

6 C
(1 + p+ · · ·+ pe

′−1)

pd−1pe+e′
.

Note that

C
(1 + p+ · · ·+ pe

′−1)

pd−1pe+e′
=

C(pe
′ − 1)

(p− 1)pd−1pe′
p−e 6 Cp−e,

so the claim follows after letting e′→∞.

Continuity of Hilbert–Kunz multiplicity follows from Corollary 3.6.

Corollary 3.7. Let (R,m, k) be a Cohen–Macaulay F-finite local ring

of prime characteristic p and dimension d+ c. If f is a parameter sequence

of length c and such that R̂/(f)R̂ is reduced, then for any δ > 0 there exists

an integer N > 0 such that for any ε ∈ (mN )⊕c

|eHK(R/(f))− eHK(R/(f + ε))|< δ.

Proof. By Lemma 3.1, for any given e there exists N such that

λ(R/(f + ε,m[pe])) = λ(R/(f,m[pe]))

for all ε ∈ (mN )⊕c. By Corollary 3.6, we may further assume that for some

constant C > 0∣∣∣∣eHK(R/(f + ε))− 1

ped
λ(R/(f + ε,m[pe]))

∣∣∣∣<Cp−e.
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Thus

|eHK(R/(f + ε))− eHK(R/(f))|< 2Cp−e

and the claim follows.

3.2 Continuity of F-signature

To establish continuity of F-signature we will need an effective way

of comparing the eth Frobenius splitting numbers of rings which are the

homomorphic image of a common ring. We begin by recalling an effective

method which allows us to measure Frobenius splitting numbers in rings

which are approximately Gorenstein [Hoc77].

Lemma 3.8. Let (R,m, k) be an F-finite approximately Gorenstein ring,

that is there exists a descending chain of irreducible m-primary ideals {It}
cofinal with {mt}. Let ut generate the socle modulo It.

(1) Then for each e there exists te such that ae(R) = [k : kp
e
]λ(R/(I

[pe]
t :R

up
e

t )) for all t> te.

(2) If R is Cohen–Macaulay and J ⊆R is an ideal of R isomorphic to the

canonical module of R and x1 ∈ J is not a zero divisor, then It can be

taken to be (xt−11 J, xt2, . . . , x
t
d) where x2, . . . , xd is a system of parame-

ters for R/J . Moreover, u generates the socle mod (J, x2, . . . , xd) then

ut := (x1 · · · xd)t−1 generates the socle mod It.

(3) Under the assumptions and notation of (2), there exists te such that

ae(R) = [k : kp
e
]λ(R/(J, xt2, . . . , x

t
d)

[pe] :R (x2 · · · xd)tp
e
)

for all t> te.

We refer the reader to [PT18, Lemma 6.2] and the proof of [PT18,

Corollary 6.6] for details.

Lemma 3.9. Let (R,m, k) be a complete Cohen–Macaulay domain of

dimension at least c+ 1, not necessarily of prime characteristic. Let f be a

regular sequence of length c and such that R/(f) is generically Gorenstein.

Then there exists a canonical ideal J ⊆R such that the ideal J + (f) of

R/(f) is the canonical module of R/(f). Moreover, there exists N ∈ N such

that for all ε ∈ (mN )⊕c, the ideal (f + ε, J)/(f) of R/(f + ε) is the canonical

module of R/(f + ε).

Proof. Recall that R has a canonical ideal ω if and only if it is generically

Gorenstein [BH93, Proposition 3.3.18]. We also recall that R is generically

Gorenstein if and only if RPi is Gorenstein for any minimal prime Pi of R.
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Let S =R \ ∪Pi where Pi are the minimal primes of (f). Then S−1ω ⊆
S−1R is a canonical module of S−1R and, since S−1R is Gorenstein, S−1ω =

(u) is a principal ideal, and we may assume that u ∈ ω. This means that

there exists s ∈ S such that for some ideal J in R,

sω = uJ ⊆ uR.

Since R is a domain, ω ∼= J . Furthermore, we claim that J 6⊆ ∪Pi. Namely,

if J ⊆ Pi for some i, then sω = uJ ⊆ uPi ⊆ ωPi. But then localizing at Pi
we obtain that ωRPi ⊆ PiωRPi , which contradicts Nakayama’s lemma.

We verify that J satisfies the assertions of the theorem. Since J is

not contained in any minimal prime of (f), ht(J, f) > c+ 1. Moreover,

J has height 1 and R is Cohen–Macaulay, so ht(f, J)R/J > c and f

must be a parameter sequence in R/J . Since R/J is Gorenstein [BH93,

Proposition 3.3.18], the images of f form a regular sequence. Hence

J + (f)

(f)
=

J

(f) ∩ J
=

J

(f)J
= JR/(f)

is a canonical module of R/(f). By Corollary 3.2 we can choose a neigh-

borhood mN such that the images of f + ε are still a part of a system of

parameters in the Gorenstein ring R/J for all ε ∈ (mN )⊕c and the statement

follows.

Corollary 3.10. Let (R,m, k) be a complete Cohen–Macaulay F-finite

domain of prime characteristic p. Let f be a regular sequence of length c such

that R/(f) is generically Gorenstein. Then for any integer e there exists an

integer N such that ae(R/(f)) = ae(R/(f + ε)) for any ε ∈ (mN )⊕c.

In particular, if R is also normal, then the functions ae : R→ R, f 7→
ae(R/f), are locally constant at parameter elements with respect to the m-

adic topology.

Proof. If dim(R) = c, then R/(f) is Artinian and, thus, has a splitting

if and only if it is a field. If we take ε ∈ (m2)⊕c, then (f) = m if and only

if (f + ε) = m. So the Frobenius splitting numbers of R/(f) and R/(f + ε)

will be the same, either 0 or [k : kp
e
], the latter of which occurs if and only

if (f) = m.

Suppose dim(R) = d+ c > c and choose J and N as in Lemma 3.9. If

J =R replace J by a principal ideal (g) such that f, g is a regular sequence.

Let x2, . . . , xd be a system of parameters for R/(f, J). If necessary, increase
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N so that mN ⊆m[pe] and mN ⊆ (f, J, x2, . . . , xd). In particular, we have

for each ε ∈mN that x2, . . . , xd is a system of parameters for R/(f + ε, J).

For each ε ∈ (mN )⊕c, (f + ε, J)/(f) is the canonical module of R/(f + ε)

by Lemma 3.9; hence

J + (f + ε, x2, . . . , xd) = J + (f, x2, . . . , xd)

is an irreducible m-primary ideal [BH93, Proposition 3.3.18]. Let u ∈R
generate the socle mod (f, J, x2, . . . , xd) = (f + ε, J, x2, . . . , xd). For each

t ∈ N let It = (J, xt2, . . . , x
t
d) and ut = (x2 · · · xd)t−1u. By Lemma 3.8 there

is for each ε ∈ (mN )⊕c a tε such that

ae(R/(f + ε)) = [k : kp
e
]λ

 R

(f + ε, (I
[pe]
tε :R u

pe

tε ))


and

ae(R/(f)) = [k : kp
e
]λ

 R

(f, (I
[pe]
tε :R u

pe

tε ))

 .

Moreover, we have m[pe] ⊆ (f + ε, (I
[pe]
tε :R u

pe

tε )). Since N was chosen so that

mN ⊆m[pe], we have

(f, (I
[pe]
tε :R u

pe

tε )) = (f + ε, (I
[pe]
tε :R u

pe

tε )).

Therefore for each ε ∈ (mN )⊕c, ae(R/(f)) = ae(R/(f + ε)).

We need less assumptions for an inequality.

Lemma 3.11. Let (R,m, k) be a complete F-finite ring of positive

characteristic p > 0. Then for any parameter sequence f of length c and

a fixed positive integer e there exists integer N such that for all ε ∈ (mN )⊕c

ae(R/(f + ε)) 6 ae(R/(f)).

Proof. Since R is complete, we can represent it as a quotient of a regular

local ring (S,m), R= S/I. Then by [EY11, Proposition 3.1]

ae(R/(f)) = [k : kp
e
]λS

(
(I, f)[p

e] :S (I, f) + m[pe]

m[pe]

)
.
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Let ε ∈ (mN )⊕c for an arbitrary N . Then

(I, f + ε)[p
e] :S (I, f + ε)⊆ ((I, f)[p

e] + mN ) :S (I, f + ε).

Since εi are in mN ,

((I, f)[p
e] + mN ) :S (I, f + ε) = ((I, f)[p

e] + mN ) :S (I, f).

By Krull’s intersection theorem

∞⋂
n=1

((I, f)[p
e] + mn) :S (I, f) = ((I, f)[p

e]) :S (I, f),

so by Chevalley’s lemma we could have chosen N so that

((I, f)[p
e] + mN ) :S (I, f)⊆ ((I, f)[p

e]) :S (I, f) + m[pe].

In which case ae(R/(f + ε)) 6 ae(R/(f)).

Theorem 3.12. Let (R,m, k) be a Cohen–Macaulay F-finite ring of

prime characteristic p and dimension d+ c. If f is a parameter sequence

of length c such that R̂/(f)R̂ is reduced then for any δ > 0 there exists an

integer N > 0 such that for any ε ∈ (mN )⊕c

|s(R/(f))− s(R/(f + ε))|< δ.

Proof. We may assume R is complete. By Theorem 2.3 we may choose

parameters x1, . . . , xd ∈R such that x1, . . . , xd is a system of parameters

for R/(f) and R/(f) is module-finite and generically separable over the

regular local ring A := k[[x1, . . . , xd]]. In which case we have a short exact

sequence

0→R/(f)[A1/p]→ (R/(f))1/p→M → 0

and 0 6= c= DA(R/(f)) annihilates M .

Let M and Mε be as in the proof of Theorem 3.5. In which case, there

are isomorphisms R/(f + ε)[A1/p]∼=⊕pd[k:kp](R/(f + ε)) and short exact

sequences

0→R/(f + ε)[A1/p]→ (R/(f + ε))1/p→Mε→ 0.

Apply the exact functor (−)1/p
e

to the above to get the exact sequence

0→
pd[k:kp]⊕

((R/(f + ε)1/p
e
))→ (R/(f + ε))1/p

e+1 →M1/pe

ε → 0.
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By [PT18, Lemma 2.1]

frk((R/(f + ε))1/p
e+1

) 6 pd[k : kp] frk((R/(f + ε))1/p
e
) + µ((Mε)

1/pe),

or, equivalently,

ae+1(R/(f + ε)) 6 pd[k : kp]ae(R/(f + ε)) + µ((Mε)
1/pe).

Techniques used in the proof of Theorem 3.5 give the existence of a constant

C such that for all ε ∈ (mN )⊕c

µ((Mε)
1/pe) = λ(Mε/m

[pe]Mε) 6 Cpe(d−1).

Let L and Lε be as in the proof of Theorem 3.5. Similarly, we can also

bound

pd[k : kp] frk((R/(f + ε))1/p
e
)− frk((R/(f + ε))1/p

e+1
) 6 λ(Lε/m

[pe]Lε)

and can once again obtain constant C independent of ε so that

|ae+1(R/(f + ε))− pd[k : kp]ae(R/(f + ε))|<Cpe(d−1).

Since rankR1/pe = ped[k : kp
e
] [Kun76, Proposition 2.3], as explained in

Corollary 3.7, this gives us a uniform convergence statement: there exist

D, N > 0 such that for all ε ∈ (mN )⊕c∣∣∣∣s(R/(f + ε))− 1

rankR1/pe
ae(R/(f + ε))

∣∣∣∣< D

pe
.

Now, if s(R/(f)) = 0, for any given δ > 0 we can find e such that

ae(R/(f))< δ/2 and D/pe < δ/2. By Lemma 3.11, we can find N such that

for any ε ∈ (mN )⊕c,

ae(R/(f + ε)) 6 ae(R/(f))< δ/2.

Thus, in this case the claim follows from the bound

s(R/(f + ε)) 6
1

rankR1/pe
ae(R/(f + ε)) +

D

pe
< δ.

If s(R/(f))> 0, then R/(f) is strongly F -regular and, in particular,

is a domain [AL03, main result]. Thus (f) is a prime ideal, so R/(f)

is then generically Gorenstein. The statement now follows by employing

Corollary 3.10 and using the methods of the proof of Corollary 3.7.
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§4. Examples and questions

In this section we want to present examples relevant to the results in

Section 3. The first example shows that we cannot expect Hilbert–Kunz

multiplicity to be locally constant at reduced parameter elements.

Example 4.1. Consider an element f = xy in R= k[[x, y, t]]. An

easy computation shows that eHK(R/(xy)) = 2, while we will show that

eHK(R/(xy + tn)) = 2− 2/n for n> 2. Thus:

(1) there is no neighborhood of xy such that eHK is constant;

(2) of course, e(R/(xy + tn)) = 2 = e(R/(xy)) for all n> 2;

(3) moreover, we have Gr(x,y,t)(R/(xy + tn)) = k[x, y, t]/(xy) = Gr(x,y,t)
(R/(xy)) for all n> 3.

In order to compute the Hilbert–Kunz multiplicity we will compute the

length of

k[[x, y, t]]/(xy − tn, xpe , ype)

by counting monomials. It is easy to see that a basis is given by monomials

of the form xatn, yatb where a < pe − bb/nc and b < pe. Thus when e→∞
the number of such monomials is

2

pe−1∑
b=0

(pe − bb/nc)≈ 2p2e − 2
pe(pe − 1)

n
≈
(

2− 2

n

)
p2e.

Example 4.2. Essentially the same example works for F-signature.

Clearly, k[[x, y, t]]/(x2 + y2) is not normal, so the F-signature is 0. On the

other hand, k[[x, y, t]]/(x2 + y2 + tn) is the An−1 singularity, its F-signature

is known to be 1/n [HL02, Example 18].

By comparison, it is not that hard to see that Hilbert–Samuel multiplicity

is locally constant at parameter elements in regular local ring. In fact,

Srinivas and Trivedi [ST96, Corollary 5] showed that the entire Hilbert

function is locally constant.

4.1 Cohen–Macaulayness

The Cohen–Macaulay assumption of our main results may not be

completely necessary. For a possible extension, one could recall that Srinivas

and Trivedi [ST96, Corollary 5] show continuity of the Hilbert–Samuel

multiplicity if R is generalized Cohen–Macaulay, that is, λ(Hi
m(R))<∞

for all i < dimR.
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We also want to give two examples that show that one cannot relax

Cohen–Macaulayness too much. The first example comes from [ST96,

Example 1].

Example 4.3. Let R be the localization at m = (x, y, z) of k[x, y, z]/

(xy, xz). Note that R is not equidimensional. Because dimR/(y) = 1, the

two multiplicities coincide and we easily see that

eHK(R/(y)) = e(R/(y)) = e(k[x, z]m/(xz)) = 2.

On the other hand, R/(y + xN ) = k[x, z]m/(x
N+1, xz) has the only min-

imal prime (x) for all N . Hence, by the associativity formula,

eHK(R/(y + xN )) = e(R/(y + xN )) = e(R/(x))λ(R(x)) = 1.

Proposition 4.4. Let R be the subring k[[x3, x2y, y3, y2z, z3, z2x]]⊆
k[[x, y]]. Observe that x3, y3, z3 form a system of parameters and consider

a family of ideals Jk = (x3, y3 + z3k). Then:

(1) eHK(R/(x3, y3)) = e(R/(x3, y3)) = 11;

(2) eHK(R/Jk) = e(R/Jk) 6= 11 for all k 6= 1 (mod 3).

Proof. First, we observe that dimR/(x3, y3) = dimR/Jk = 1, so multi-

plicity equals to Hilbert–Kunz multiplicity.

We compute e(R/(x3, y3)) by using the associativity formula. Observe

that

P = (x3, x2y, y3, y2z, z2x) =
√

(x3, y3)

is prime. Thus the associativity formula gives that eHK(R/(x3, y3)) =

eHK(R/P )λ(RP /(x
3, y3)).

The quotient R/P ∼= k[z3] is regular, so eHK(R/P ) = 1. Now,

R̂P /(x
3, y3)∼= k(z3)[[x3, y3, x2y, y2/z2, x/z]]/(x3, y3)

and it is easy to compute the basis of this ring over k(z3):

1, x/z, y2/z2, x2/z2, x2y, xy2, x2y2/z, x3y/z, y4/z, xy4/z2, x4y/z2.

Therefore, e(R/(x3, y3)) = 11.

The computation for Jk is similar but a bit more complicated. First of

all, if k 6= 1 (mod 3) (so 2k + 1 is not divisible by 3), then

Q= (x3, x2y, z2x, y3 − z3k) =
√
Jk
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is prime as can be seen by taking the presentation

k[[a, b]]/(a3 − b2k+1)→R/Q∼= k[[y2z, z3]]/(y3 − z3k).

In this case, e(R/Q) = 3, so e(R/Jk) is divisible by 3 and we already know

that it cannot be equal to 11.

Thus even Hilbert–Samuel multiplicity does not behave well in this

example. Observe that xy2 = x3y3/x2y and xyz = y3z2x/y2z, so the nor-

malization of R is the Veronese subring

V = k[[x3, x2y, xy2, y3, y2z, yz2, z3, z2x, zx2]].

Because xy2 · y3n /∈R for all n, the quotient S/R does not have finite length.

On the other hand, x3y3V ⊆R, so dim S/R must equal to 1.

Therefore since depth V = 2, from the exact sequence of local cohomology

we have

0→H0
m(S/R)→H1

m(R)→ 0→H1
m(S/R)→H2

m(R)→ 0 = H2
m(S).

Therefore, λ(H1
m(R))<∞, but λ(H2

m(R)) =∞. This example shows that the

assumptions of Srinivas and Trivedi are close to being necessary.

4.2 Questions

The techniques used to prove the main theorems of the paper, which are

summarized in Theorem 1.3, rely on the assumption that the parameter

sequence f1, . . . , fh forms a reduced ideal.

Question 4.5. Let (R,m, k) be a complete Cohen–Macaulay F-finite

ring of prime characteristic p. If (f1, . . . , fc) is a parameter ideal, but

R/(f1, . . . , fc) is not reduced, then given δ > 0 does there exit an integer

N > 0 such that for any ε1, . . . , εh ∈mN :

(1) |eHK(R/(f1, . . . , fc))− eHK(R/(f1 + ε1, . . . , fc + εc))|< δ; and

(2) s(R/(f1 + ε1, . . . , fc + εc))< δ? Note that s(R/(f1, . . . , fc)) = 0 since

R/(f1, . . . , fc) is not reduced.

Originally, the second author hoped to approach Question 1.1, by

passing to the associated graded ring. Namely, Srinivas and Trivedi [ST96,

Theorem 3] show Grm(R/(f)) is a locally constant function of f in m-adic

topology, which immediately implies that Hilbert–Samuel multiplicity is

locally constant.
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However the Hilbert–Kunz multiplicities of a local ring and its associated

graded ring need not be equal ([WY00, p. 302] and also Example 4.1).

Moreover, Hilbert–Kunz multiplicity is not an invariant of the associated

graded ring, that is, as we see in Example 4.1, it may happen that

eHK(R) 6= eHK(S) even though GrmR(R)∼= GrmS (S). Investigation of the

following question could yield an explanation.

Question 4.6. Does the convergence rate of the Hilbert–Kunz multi-

plicity come from the associated graded ring? Namely, is there a constant

C that depends only on the associated graded ring of S (not S!) such that∣∣∣∣eHK(S)− 1

ped
λ(S/(m)[p

e])

∣∣∣∣< C

pe

for all e?

This question can be stated even more explicitly: consider the family of

ideals in Grm(R)

Je =
⊕
n>0

m[pe] ∩mn + mn+1

mn+1
.

By the definition, λ(R/m[pe]) = λ(Grm(R)/Je). Because J
[p]
e ⊆ Je+1, we can

show the existence of eHK(R) directly in Grm(R) [PT18, Theorem 4.3].

However, in order to get the convergence rate, the current techniques [PT18,

Corollary 4.5] require us to find a p−1-linear map ψ on Grm(R) such that

ψ(Je+1)⊆ Je for all e.

Because for a fixed e the individual Hilbert–Kunz function R/(f,m[pe])

is clearly continuous (Lemma 3.1), we can employ the uniform convergence

machinery to show that a positive answer to Question 4.6 gives a positive

answer to Question 1.1. However, we currently do not see how to approach

Question 4.6, so we had to search for other methods.

We also want to offer two questions motivated by intuitive understanding

of singularities: we expect that singularity will not get worse after a

sufficiently small perturbation.

Question 4.7. Let (R,m, k) be a local ring of prime characteristic p.

Is there N such that for all ε ∈mN eHK(R/(f)) > eHK(R/(f + ε))?

Question 4.8. Let (R,m, k) be a local ring of prime characteristic p.

Is there N such that for all ε ∈mN s(R/(f)) 6 s(R/(f + ε))?
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We remark that Srinivas and Trivedi [ST96, Corollary 2] showed that the

analogue of Question 4.7 holds for Hilbert–Samuel multiplicity. They prove

that if (R,m, k) is local then one can always find a small neighborhood mN

such that e(R/(f)) > e(R/(f + ε)) for all ε ∈mN .

4.3 Comments on F-pure thresholds

A conjecture related to the results of this paper is the Ascending Chain

Condition conjecture for F-pure thresholds, very recently resolved by Sato

[Sat17, Sat18], which states that if (R,m, k) is a regular local ring and

f1, f2, f3, . . . are elements of R such that

fpt(f1) 6 fpt(f2) 6 fpt(f3) 6 · · ·

then fpt(fn) = fpt(fn+1) for all n� 0. The conjecture is motivated by

Shokurov’s ACC conjecture for log canonical thresholds [Sho92], which was

also resolved in the smooth case [dFEM10, HMX14]. As the F-pure threshold

function is continuous with respect to the m-adic topology, it follows that

if the ACC conjecture holds then for each f ∈R there exists N ∈ N such

that for each ε ∈mN , fpt(f + ε) > fpt(f). Hernández, Núñez-Betancourt,

and Witt [HNnW17] recently investigated this particular implication of the

ACC conjecture. Their techniques establish that if the Jacobian ideal of

an element f ∈R is m-primary, then fpt(f) = fpt(g) for all g sufficiently

close to f . Their result is also recovered by Samuel’s theorem from [Sam56]

mentioned in the introduction.

A natural analogue to the ACC conjecture for Hilbert–Kunz multi-

plicity would be a descending chain condition. That is given a sequence

of elements f1, f2, f3, . . . in a regular local ring (R,m, k) such that

eHK(R/(f1)) > eHK(R/(f2)) > eHK(R/(f3)) > · · · is it necessarily the case

that eHK(R/(fn)) = eHK(R/(fn+1)) for all n� 0? Work of Monsky [Mon98]

shows the natural analogue of the ACC conjecture for Hilbert–Kunz

multiplicity does not hold.

Example 4.9. In [Mon98] Monsky computed the Hilbert–Kunz mul-

tiplicity of a family of hypersurfaces of the form Rα = k[[x, y, z]]/(z4 +

xyz2 + (x3 + y3)z + αx2y2) where α ∈ k, an algebraically closed field of

characteristic 2. His computations show that there is a sequence αn such

that eHK(Rαn) = 3 + 4−n, which gives an infinite decreasing sequence.
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We suspect there is a family of hyperplanes, similar to that of Exam-

ple 4.9, whose F-signatures form an infinite increasing sequence.
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