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Let G1 × G2 denote the strong product of graphs G1 and G2, that is, the graph on

V (G1) × V (G2) in which (u1, u2) and (v1, v2) are adjacent if for each i = 1, 2 we have ui = vi
or uivi ∈ E(Gi). The Shannon capacity of G is c(G) = limn→∞ α(Gn)1/n, where Gn denotes

the n-fold strong power of G, and α(H) denotes the independence number of a graph H .

The normalized Shannon capacity of G is

C(G) =
log c(G)

log |V (G)| .

Alon [1] asked whether for every ε > 0 there are graphs G and G′ satisfying C(G), C(G′) < ε

but with C(G + G′) > 1 − ε. We show that the answer is no.
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Despite much impressive work (e.g., [1, 3, 4, 5, 7]) since the introduction of the Shannon

capacity in [8], many natural questions regarding this parameter remain wide open (see

[2, 6] for surveys). Let G1 + G2 denote the disjoint union of the graphs G1 and G2. It is

easy to see that c(G1 + G2) � c(G1) + c(G2). Shannon [8] conjectured that c(G1 + G2) =

c(G1) + c(G2), but this was disproved in a strong form by Alon [1], who showed that there

are n-vertex graphs G1, G2 with c(Gi) < ec
√

log n log log n but c(G1 + G2) � √
n. In terms of the

normalized Shannon capacity, this implies that for any ε > 0, there exist graphs G1, G2

with C(Gi) < ε but C(G1 + G2) > 1/2 − ε. Alon [1] asked whether ‘1/2’ can be changed

to ‘1’ here. In this short note we will give a negative answer to this question. In fact, the

following result implies that ‘1/2’ is tight.
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Theorem. If C(G1) � ε and C(G2) � ε, then

C(G1 + G2) � 1 + ε

2
+

1 − ε

2 log2(|V (G1)| + |V (G2)|)
.

Proof. Let Ni = |V (Gi)| for i = 1, 2. Fix a maximum size independent set I in (G1 + G2)
n

for some n ∈ N. We write |I | =
∑

S⊂[n] |IS |, where

IS = {x = (x1, . . . , xn) ∈ I : xi ∈ V (G1) ⇔ i ∈ S}.

To bound |IS |, we may suppose that S = [m] for some 0 � m � n. Then IS is an

independent set in Gm
1 × Gn−m

2 . As C(G1) � ε, by supermultiplicativity α(Gm
1 ) � Nεm

1 ;

similarly, α(Gn−m
2 ) � N

ε(n−m)
2 . For any x ∈ V (G1)

m, the set of y ∈ V (G2)
n−m such that

(x, y) ∈ IS is independent in Gn−m
2 , so |IS | � Nm

1 N
ε(n−m)
2 . Similarly, |IS | � Nεm

1 Nn−m
2 .

We multiply these bounds: |IS |2 � (Nm
1 N

n−m
2 )1+ε. Writing

γ =
N1

N1 + N2
,

we have

α((G1 + G2)
n) = |I | =

∑
S⊂[n]

|IS | �
n∑

m=0

(
n

m

)
(N

(1+ε)/2
1 )m(N

(1+ε)/2
2 )n−m

= (N
(1+ε)/2
1 + N

(1+ε)/2
2 )n

= (γ(1+ε)/2 + (1 − γ)(1+ε)/2)n(N1 + N2)
(1+ε)n/2

� 2(1−ε)n/2(N1 + N2)
(1+ε)n/2,

as γb + (1 − γ)b is maximized at γ = 1/2 for 0 < b < 1 and 0 � γ � 1. Therefore

C(G1 + G2) = lim
n→∞

log α((G1 + G2)
n)

n log (N1 + N2)
� 1 + ε

2
+

1 − ε

2 log2(N1 + N2)
.
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