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Let G; x Gy denote the strong product of graphs G; and G, that is, the graph on
V(Gy) X V(G>) in which (ug,u) and (vy,v;) are adjacent if for each i = 1,2 we have u; = v;
or u;v; € E(G;). The Shannon capacity of G is ¢(G) = lim,—,, a(G")Y/", where G" denotes
the n-fold strong power of G, and o(H) denotes the independence number of a graph H.
The normalized Shannon capacity of G is

log c(G)
log[V(G)I'

Alon [1] asked whether for every e > 0 there are graphs G and G’ satisfying C(G), C(G') < €
but with C(G + G') > 1 — . We show that the answer is no.

C(G) =
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Despite much impressive work (e.g., [1, 3, 4, 5, 7]) since the introduction of the Shannon
capacity in [8], many natural questions regarding this parameter remain wide open (see
[2, 6] for surveys). Let Gy 4+ G, denote the disjoint union of the graphs G; and G. It is
easy to see that ¢(Gy + G3) = ¢(Gy) + ¢(G3). Shannon [8] conjectured that ¢(Gy + G,) =
¢(G1) 4 ¢(Gy), but this was disproved in a strong form by Alon [1], who showed that there
are n-vertex graphs G, G, with ¢(G;) < ecviognloglogn byt (G + G,) > /1 In terms of the
normalized Shannon capacity, this implies that for any e > 0, there exist graphs Gy, G
with C(G;) < e but C(G; + G,) > 1/2 —e. Alon [1] asked whether ‘1/2’ can be changed
to ‘I’ here. In this short note we will give a negative answer to this question. In fact, the
following result implies that ‘1/2’ is tight.
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Theorem. If C(G;) < € and C(G;) < €, then

14+e€ 1—e
C(G; + G,) < + :
(G1+G) 2 2log, (|V(Gy)| + [V(Ga)])

Proof. Let N; = |V(Gy)| for i = 1,2. Fix a maximum size independent set I in (G{ + G,)"
for some n € N. We write [I| =} g, 5], where

Is ={x=(x1,....,x,) €] : x; € V(G)) = i€ S}

To bound |Ig], we may suppose that S = [m] for some 0 < m < n Then Is is an
independent set in G' x G5~". As C(Gy) <€, by supermult1phcat1v1ty a(GY') < N{™;
similarly, o(G5™) < NG(" ™ For any x € V(Gl)m the set of y € V(G,)"™ such that
(x,y) € Is is independent in G5 ™, so |I5| < NJ'N3 n=m) - Similarly, [Is] < N¢mNg—™,

We multiply these bounds: \IS|2 (NP'Ny~ ’")”f Writing

TTN AN

we have

n

OC((G] + G2)11) _ |I| _ Z |IS| < Z (;)( 1+€)/2)m(N(1+E /2)11 m

Sc(n] m=0
_ (N(1+€ +N 1+€)/2)n
=(y (1+e)/2 +(1—7) 1+E)/2) (N1 + Nz)(1+€)n/2
<2 lfe)n/Z(N1 + Nz)(1+e)n/2’

as 9P + (1 — y)? is maximized at y = 1/2 for 0 < b < 1 and 0 < y < 1. Therefore

loga((G1 +G2)") _ 1+e 1—¢
C(Gi + G,) = lim < '
( 1+ 2) P nlog(N1+N2) 2 210g2(N1+N2) -
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