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Abstract
This study reviews the various conservation strategies applied to the four redwood species,

namely coast redwood (Sequoia sempervirens), Sierra redwood or giant sequoia (Sequoiaden-

dron giganteum), dawn redwood (Metasequoia glyptostroboides) and South American red-

wood or alerce (Fitzroya cupressoides), which are endemic in the USA, China and South

America, respectively. All four redwood genera belong to the family Cupressaceae; they are

monospecific, share a number of common phenotypic traits, including red wood, and are

threatened in their native ranges due to human activity and a changing climate. Therefore,

the management objective should be to conserve representative populations of the native

species with as much genetic diversity as possible for their future survival. Those representa-

tive populations exhibiting relatively high levels of genetic diversity should be selected for

germplasm preservation and monitored during the conservation phase by using molecular

markers. In situ and ex situ strategies for the preservation of germplasm of the redwoods

are discussed in this study. A holistic in situ gene conservation strategy calls for the regener-

ation of a large number of diverse redwood genotypes that exhibit adequate levels of neutral

and adaptive genetic variability, by generative and vegetative methods for their preservation

and maintenance in their endemic locations. At the same time, it would be desirable to con-

serve the redwoods in new ex situ reserves, away from their endemic locations with similar

as well as different environmental conditions for testing their growth and survival capacities.

In addition, other ex situ strategies involving biotechnological approaches for preservation

of seeds, tissues, pollen and DNA in genebanks should also be fully exploited in the face of

global climate change.

Keywords: climate change; endemics; germplasm conservation; genetic diversity;

molecular markers; redwoods; Sequoia; Sequoiadendron; Metasequoia; Fitzroya

Introduction

Conservation of germplasm and maintenance of genetic

diversity are important considerations for the survival of

forest trees, in particular the endemics, in the face

of global forest decline and climate change. The four

redwoods discussed in this study are endemics in

their native countries: coast redwood (Sequoia semper-

virens (D. Don) Endl.) and giant sequoia or Sierra red-

wood (Sequoiadendron giganteum (Lindl.) Buchholz),

in the USA (Olson et al., 1990; Weatherspoon, 1990);

dawn redwood (Metasequoia glyptostroboides Hu &

Cheng) in China (Chu and Cooper, 1999); and alerce

or South American redwood (Fitzroya cupressoides

(Mol.) Johnst.) in Chile/Argentina (Allnutt et al., 1999).

All four relectual genera are long-lived conifers and*Corresponding author. E-mail: mrahuja@hotmail.com
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belong to the family Cupressaceae. These redwood

genera are monospecific, share a number of common

phenotypic traits and have the same basic chromosome

number of x ¼ 11 (Gadek et al., 2000; Ahuja, 2009).

Although polyploidy is rare in conifers, two of the

four redwood genera are polyploids (Ahuja, 2005,

2009). Sequoia is a hexaploid (2n ¼ 6x ¼ 66) and in

fact the only hexaploid conifer (Saylor and Simons,

1970; Ahuja and Neale, 2002), while Fitzroya is a tetra-

ploid (2n ¼ 4x ¼ 44) (Hair, 1968). On the other hand,

both Sequoiadendron and Metasequoia are diploids

(2n ¼ 22) (Schlarbaum and Tsuchiya, 1984).

The native ranges, local environments and spatial

patterns of the four redwoods are shown in Table 1.

Sequoia extends from south-western corner of Oregon

(latitude 428090N) to Santa Lucia Mountains of southern

Monterey County (latitude 358410N) in California, USA.

The native redwood forests are confined to a narrow

coastal fog belt that is 725 km long and 8–56 km

wide. The mean annual temperatures vary between 10

and 168C, while the mean annual maximum and mini-

mum temperatures range between 12 and 218C in

the Sequoia region. The Sequoia forests remain frost-

free from 6 to 11 months. Most stands of Sequoia are

found between 30 and 760 m, and this region receives

an annual precipitation between 640 and 3100 mm/

year (Olson et al., 1990). Sequoia has undergone both

expansions and contractions in its range in the past

10,000 years, and currently it appears that Sequoia is

retreating from its southern range and expanding north-

wards (Sawyer et al., 2000).

The natural range of Sequoiadendron consists of 75

groves scattered over 420 km long and 24 km wide

belt extending from Tulare to Placer counties on the

western slopes, within an altitude range of 1400–

2000 m, in the Sierra Nevada region in central Califor-

nia, USA. The annual precipitation varies between 900

and 1400 mm, and the annual mean temperatures vary

between 24 and 298C, while the annual maximum

and minimum vary between 1 and 268C (Hartesveldt

et al., 1975; Weatherspoon, 1990). The third redwood

Metasequoia is now confined to its native range of

,800 km2, within an altitude range of 700–1350 m, in

western Hubei, eastern Chogqing and northern Hunan

provinces (latitudes 298100N to 308100N) in south-central

China. The annual precipitation is ,2360 mm, and the

moderate temperature mean is 16.38C in the Metase-

quoia region (Leng et al., 2007). The fourth redwood

Fitzroya is also an endemic to the temperate rain

forests, within an altitude range of 100–1200 m, in

southern South America. It grows in discontinuous

populations within an area of ,360 £ 200 km in the

coastal Cordilleras and central depression in Chile,

and on the western slopes of Andes in Chile and

Argentina from latitudes 398500S to 428450S. The

annual mean precipitation varies between 2000 and

4000 mm, and the temperature is between 13 and

168C in the native habitats of Fitzroya (Allnutt et al.,

1999; Premoli et al., 2000).

Although the spatial pattern of Sequoia is largely con-

tinuous in most of its native range (Table 1), it also has

fragmented populations in certain parts of its range

(Olson et al., 1990; Sawyer et al., 2000). Sequoiadendron,

by contrast, has mainly scattered groves in its entire range

(Weatherspoon, 1990). Metasequoia populations are frag-

mented and discontinuous (Leng et al., 2007), while

Fitzroya forests are highly fragmented and discontinuous

(Table 1) (Premoli et al., 2000). Fragmentation is disad-

vantageous in outcrossed conifers, as it leads to isolation

and inbreeding and a substantial loss of heterozygosity.

Common symptoms of inbreeding depression in conifers

are abortive embryos, reduced seed set, reduced vigour,

growth and survival in the inbreds (Wright, 1976; White

et al., 2007). Inbreeding depression has been investigated

in Sequoia (a hexaploid) and Metasequoia (a diploid).

Both redwoods exhibited reduced growth rates and sur-

vival in the inbred progenies compared with outcrossed

trees (Libby et al., 1981; Kuser, 1983). Species with poly-

ploid genomes, particularly allopolyploids, often do not

experience severe inbreeding depression (Stebbins,

1957). Even though Sequoia is a hexaploid, it did not

exhibit any buffering effect against inbreeding

depression. It is not clear whether the nature of poly-

ploidy in Sequoia (Ahuja and Neale, 2002), which may

be either an autoallohexaploid (AAAABB) or a segmental

allohexaploid (A1A1A2A2A2A2 or A1A1A2A2A3A3), but not

a strict allohexaploid (AABBCC), might have been

responsible for the lack of sheltering effect against

inbreeding depression.

All four genera are threatened in their native ranges,

due to human activity and a changing climate. According

to the International Union for Conservation of Nature and

Natural Resources (IUCN) categories of threat, Sequoia

and Sequoiadendron are classified as vulnerable, while

Metasequoia is listed as critically endangered and

Fitzroya as endangered species (IUCN, 2010). In this

study, we review strategies and current practices for

conservation of germplasm in the endemic redwoods in

the face of climate change.

Conservation of germplasm

Genetic diversity is essential for the survival and conser-

vation of a species in a changing environment. Greater

the level of genetic diversity in a species, better are the

chances for its survival and deployment over a wide

range of environments (Ledig, 1988). Appropriate levels
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of genetic variation must be maintained in the species

and populations for conservation planning (Ledig, 1986,

1987). This should be based on an understanding of gen-

etic architecture and how genetic variation is organized

and distributed within and among populations. Initially,

those populations with higher levels of genetic diversity

would be worth for germplasm conservation. In addition,

selection of genetic variation for traits related to adap-

tation to climate change, for example time of bud flush,

growth rates, drought and cold hardiness, and timing of

initiation and cessation of growth, would be more rel-

evant to conservation of genetics resources of redwoods.

In other words, the conservation of adaptive gene com-

plexes would be important for the future survival of

the redwoods. Molecular markers have been widely

applied to characterize patterns of genetic variation

within and among populations of a species. These pat-

terns provide baseline information for determining the

appropriate levels of genetic diversity within selected

populations for gene conservation. However, molecular

genetic markers, including isozymes, random amplifica-

tion of polymorphic DNAs (RAPDs), restriction fragment

length polymorphisms (RFLPs), simple sequence repeats

(SSRs), and amplified fragment length polymorphisms

(AFLPs), which are derived from non-coding DNA

sequences, are selectively neutral markers and may not

often be predictive of adaptive genetic diversity (Karhu

et al., 1996; González-Martinez et al., 2006; Holderegger

et al., 2006). Although in recent years, much emphasis

has been placed on the utility of adaptive genetic

diversity in population genetics and gene conservation

(Krutovsky and Neale, 2005; González-Martinez et al.,

2006; Hidalgo et al., 2010), very little is known about

the molecular genetic control (number of loci involved)

involved in the adaptive genetic diversity. Furthermore,

if adaptive traits are under a very strong selection

pressure and the numbers of gene loci are a few, much

of the genetic variance would be lost.

In spite of the controversy regarding the utility of

molecular makers in gene conservation, molecular

markers have many applications with regard to conser-

vation of genetic resources in forest trees. Molecular

markers are useful in the characterization of a number

of evolutionary forces that impact the maintenance of

genetic diversity, mating systems, gene flow and genetic

drift. Molecular markers can also reveal whether a small

isolated population is experiencing a bottleneck (Ledig

et al., 2002) and thus is particularly susceptible to

accelerated decline due to inbreeding depression and

genetic drift. Most molecular markers, including

isozymes, have provided useful estimates of the levels

of genetic variation in a tree species (Hamrick et al.,

1992; Millar and Westfall, 1992; Hidalgo et al., 2010).

Studies on these markers have revealed that conifers

exhibit greater levels of genetic diversity within popu-

lations as compared to between different populations.

Molecular genetic markers (isozymes) have revealed

that hexaploid Sequoia seems to have a relatively

higher level of genetic diversity (Libby et al., 1996;

Rogers, 1997, 2000) than Fitzroya (a tetraploid) and

Metasequoia and Sequoiadendron (both diploids)

(Kuser et al., 1997; Rogers, 2000; Premoli et al., 2000;

Chen et al., 2003; Ahuja, 2009). Preliminary studies

using molecular genetic markers (microsatellites) have

indicated relatively higher levels of genetic diversity

(Table 1) in the northern populations of Sequoia

(Brinegar et al., 2007) and Metasequoia (using RAPDs)

(Li et al., 2005). Higher levels of genetic diversity

were detected in the southern populations of Sequoia-

dendron (employing isozymes) (Fins and Libby, 1982)

and eastern populations of Fitzroya (using isozymes)

(Premoli et al., 2000). Although, these data are not

entirely comparable as different population sizes and

molecular markers were employed, they provide, at

least, preliminary baseline data on genetic diversity

for these redwoods. Again, both Sequoia and Fitzroya

are polyploids, and yet Sequoia, a complex hexaploid,

either an autoallohexaploid (AAAABB) or a segmental

allohexaploid (A1A1A2A2A2A2 or A1A1A2A2A3A3), see-

mingly has a relatively higher genetic diversity com-

pared with Fitzroya, a putative autotetraploid (AAAA),

as estimated by isozyme analyses (Rogers, 2000; Pre-

moli et al., 2000). The differences may be due to the

type and nature of polyploidy.

Although molecular markers have provided reason-

able estimates of genetic diversity in the redwood

populations, the molecular genetic basis of adaptive

genetic diversity still remains to be investigated. Struc-

tural and functional genomic information is still lacking

in these redwoods. Linkage maps have not been

constructed in the redwoods. Because of the large

genome sizes in these redwoods, ranging from

10,000 MB in Sequoiadendron and Metasequoia to

31,500 MB in Sequoia (Ahuja and Neale, 2005),

genome sequencing would be a very difficult and a

challenging problem in the redwoods. Initially, gene

discovery based on identifying expressed sequence

tags would be an alternative to genome sequencing

in the redwoods. Therefore, presently, the conservation

of germplasm would rely on the availability of

molecular marker-based genetic information that would

be relevant to the genetic diversity in the redwood

populations.

In order to evaluate the plans for conservation of

germplasm, it is important to recognize threats to gen-

etic diversity (human activity and climate change) and

to have adequate knowledge on geographic variation

of adaptive traits, so that, selected populations may
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be prioritized relative to the threat. In this context, a

better understanding of geographical variation in

adaptive traits and its relationship to the endemic

environment would be helpful in determining which

populations of redwoods are most threatened (for

example, northern or southern, coastal or inland, low

or high altitude, fragmented or continuous, sensitive

to frost or drought) and should be given priority for

germplasm conservation. However, for global conserva-

tion of redwood germplasm, selected genotypes with

high levels of diversity (both neutral and adaptive)

from the entire species range should be included in

the face of uncertainty regarding the climate change.

Conservation of germplasm can be accomplished by

in situ (on site, within the original ecosystem) and

ex situ (outside the natural habitat) methods, which

take into account the maintenance of genetic diversity

(Fig. 1). The conservation strategy has to be holistic,

which is based on the entire gene pool of a species.

One of the objectives of gene conservation is to ensure

that functionally adaptive alleles will be available in the

future for the breeding programmes and evolution of

the species (Ledig, 1986; Hattemer, 1995). In order to

hedge against uncertainty regarding the level of climate

change in the future, it would be desirable to maximize

genetic diversity by selecting individuals heterozygous

for a number of genes that exhibit hybrid vigour (Ledig

and Kitzmiller, 1992; Hamrick, 2004; Geburek and

Konrad, 2007). Since climate change is unlikely to

stabilize for a long time in the foreseeable future, the

maintenance of both neutral and adaptive genetic diversity

(Volis and Blecher, 2010) will be absolutely essential for

the survival of the forest trees. One of the best strategies

might be to deploy intimate mixture of seed from the

selected genotypes from disparate regions and environ-

ments for future in situ and ex situ forest tree plantations

in the face of uncertain climate change (Ledig and

Kitzmiller, 1992). Finally, it would be desirable to use mol-

ecular markers (Tikader et al., 2009; Hidalgo et al., 2010)

to monitor the genetic fidelity of populations/clones

during the conservation and management of redwood

germplasm in the in situ and ex situ programmes.

In situ conservation

In situ preservation of a forest tree includes conservation

of stands and populations via regeneration by generative

and vegetative methods within the area of natural occur-

rence (Fig. 1). Although this type of conservation has

been in practice in the national parks and nature

reserves, it is not necessarily based on genetic criteria.

However, a better approach to conservation of genetic

resources in the redwoods in the USA, China, Chile

and Argentina should be based on gene-ecological

approaches that ensure not only the conservation of the

redwoods but also the associated plant and animal

species in the ecosystem (Parker and Donoso, 1993; Li,

1999; Noss et al., 2000; Evarts and Popper, 2001; Premoli

et al., 2003). The regeneration of populations is essential,

and new generation of trees should originate from the

controlled hybridizations within the conserved but

diverse populations to enhance performance (hybrid

vigour) that would be advantageous for an overall con-

servation of genetic diversity in the face of climate

change. However, the potential consequences of genetic

swamping should be curtailed in these gene conservation

management programmes. Furthermore, the number of

genotypes, both for vegetative and for generative pro-

geny, should be large enough to preserve the common

alleles and the adaptive gene complexes. Thus, a gene

conservation strategy seeks not only to preserve germ-

plasm in the old growths and secondary growth popu-

lations, but also to maintain sufficient genetic variability

to allow adaptation in the new environment.

In the context of in situ conservation of redwoods, it is

important to recognize the species’ composition, their

abundant pattern, genetic architecture, ecological

dynamics, genetic diversity and ecosystem protection

and maintenance (Libby et al., 1996; Noss et al., 2000).

Each redwood species has a unique endemic environ-

mental niche in its native country (Table 1). An additional

understanding of the soil and nutritional requirements,

Gene conservation

In situ measures

On site preservation of stands,
population by generative and
vegetative means

Natural regeneration,
seed orchards,
clone orchards,
forest plantations

Regeneration by seed, or by
macro- and micropropagation,
and by genetic engineering of
DNA sequences into plants

Maintenance of
genetic diversity

Ex situ measures

Preservation of material away
form the original site under
filed conditions in seed
orchards, or
by storage, under controlled
conditions, of seed, pollen,
shoots, buds, meristems, and
embryos in gene banks, and
DNA sequences in genome
libraries

Fig. 1. Conservation of forest tree genetic resources by in situ
and ex situ strategies. Gene conservation approaches
should aim at maintaining genetic diversity in the forest tree
species.
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and companion forest and other vegetation can also pro-

vide the direction for the maintenance and conservation

of the redwoods in the present and future ecosystems

in the face of climate change. The contingency planning

for the conservation of genetic resources of future red-

wood forests would be to move their genetically diverse

populations in protected areas and reserves outside of

their native habitats before the anticipated rapid climate

changes impact them. That implies that ex situ strategies

for the conservation of redwood germplasm should be

fully explored at this stage.

Ex situ conservation

The ex situ measures conserve the genetic resources

outside the natural habitat of a species (Fig. 1). These

include (1) seed and clonal orchards under nursery and

field conditions, and (2) biotechnological approaches

for preservation of germplasm. We examine in the fol-

lowing sections the status of these ex situ preservation

methods in redwoods. Implementing ex situ programmes

can be time consuming and expensive. Among other

things, ex situ conservation has a drawback in that the

plant material is subjected to a selection pressure that

may be quite alien to that in nature under which the orig-

inal populations evolved (Ledig, 1986). However, these

problems can be partially circumvented by regularly

monitoring genetic fidelity and variation in the genotypes

by employing molecular markers.

Seed and clonal orchards

Seed and clonal orchards under nursery and field con-

ditions are a routine for the ex situ conservation of

forest tree species (Melchior et al., 1986; Ledig, 1986,

1988; Millar, 1993; Hattemer, 1995; Behm et al., 1997).

Ex situ plantations of redwoods have also been tested

for their performance within the USA and in a number

of countries. Sequoia has been successfully grown out

of its fog belt for more than 100 years in Placerville and

in the foothills of Sierra Nevada in California, Seattle,

Washington, Hawkinsville, Georgia, USA; and Victoria,

British Columbia, Canada (Kuser, 1981). It is now

known that Sequoia can be grown in many parts of the

world: Western Europe, Turkey, Crimea, New Zealand,

Chile, South Africa and Tasmania (Kuser et al., 1995).

A range-wide international provenance trial, which

included 180 clones from 90 locations throughout the

natural range of Sequoia, was carried out in four planta-

tion sites in the USA, two in France and one each in

Spain, England and New Zealand (Kuser et al., 1995).

Early results from this study suggest that provenances

from the north end of the Sequoia range survive well in

South Carolina and suffer less frost damage in northern

France. Provenances from Humboldt County (middle of

the Sequoia range) do survive well in Lafayette, Califor-

nia, and Entacon, France (Kuser et al., 1995). This implies

that the survival of redwoods outside their native range

depended on the comparable climate/soil conditions in

the distant locations. Therefore, differences in the origin

of the material are important consideration for ex situ

plantations of Sequoia.

Single trees or stands of Sequoiadendron were also

planted more than 100 years ago in a number of

countries of Europe (Hartesveldt, 1969). In several

countries, solitary trees in Arboretums/Parks or stands

of Sequoiadendron have survived (France, Hungary,

Greece, Belgium, Netherlands, Denmark, Norway and

Germany), while in other countries (Yugoslavia and

Romania), Sequoiadendron has not performed well

(Libby, 1981). Although healthy Sequoiadendron trees/

stands still exist in Europe, the species is sensitive to

frost and disease damage. In Germany, Sequoiadendron

has performed well in southwest Germany, but not in

northern Germany. One study tested frost tolerance in

Sequoiadendron at the seedling stage (Guinon et al.,

1982), and the second investigated the survival of

14-year-old trees under field conditions in Germany

(Melchior and Hermann, 1987). Significant differences

were observed in the degree of frost tolerance, as

measured by the freezing test conditions (temperatures

ranging from 25 to 2148C), in the 2-year-old seedlings

from 22 provenances (representing the entire natural

range of Sequoiadendron in California) in Germany

(Guinon et al., 1982). Significant differences were also

observed in the survival and growth performance of

14-year-old Sequoiadendron from four provinces at

three different locations in Germany (Melchior and

Hermann, 1987). In the northern location at Grosshans-

dorf, Germany, Sequoiadendron was badly damaged by

frost and infection by Armillaria mellea. The authors rec-

ommended the use of frost-tolerant genotypes of

Sequoiadendron for suitable locations in Germany

(Melchior and Hermann, 1987).

Metasequoia has also been planted outside China and

in different countries of the world as single trees in

Arboretums/Parks or stands (Satoh, 1999). Metasequoia

seems to be more resilient to environmental extremes,

for example, it has survived the heavy snows in the

botanical gardens of Hamilton and Montreal, Canada,

sizzling summer temperatures of Adelaide, Australia

(Satoh, 1999), and perhaps in other regions of the

world with similar climates. In the USA, Metasequoia

was introduced more than 50 years ago and showed

good growth in the eastern and western USA (Kuser,

1999). Even though Metasequoia is an endemic, it has
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a moderate reservoir of genetic (Kuser et al., 1997) and

phenotypic and ecotypic diversity (Li, 1999) for ex situ

plantations (Li et al., 2005) worldwide.

Although single trees may have been planted in the

botanical gardens/parks in some countries, only small

experimental stands of Fitzroya have been mainly

restricted to Chile and Argentina (C. Donoso, pers.

commun.). Of all the endemic redwoods, perhaps

Fitzroya is the most endangered species and must be

conserved in ex situ plantations and by other ex situ

approaches for the conservation of its genetic resources.

Genetic diversity in Fitzroya is lower than other conifers

(Premoli et al., 2000), but still has a moderate level of

diversity, similar to Metasequoia and Sequoiadendron

(Fins and Libby, 1982; Kuser et al., 1997), and should

be able to adapt to different environments. Therefore, it

is high time that, like other three redwoods, ex situ

plantations of Fitzroya are also established in suitable

locations in Chile/Argentina and other countries for

testing their adaptability and survival.

Biotechnological approaches for preservation of
germplasm

Biotechnological approaches for preservation of germ-

plasm include (1) in vitro storage of tissues at non-frozen

temperatures and (2) storage of germplasm (seed, tissues,

pollen and DNA) at sub-zero and ultra-low temperatures

(cryopreservation).

In vitro storage of tissues

Tissues (meristems and shoots) can be used as a resource

for clonal propagation and conservation of germplasm,

since these can be maintained in culture at 4–258C over

a long period of time (Aitkin-Christie and Singh, 1987;

Ahuja, 1994, 1999). The potential of tissue culture for

differentiation and organogenesis has been investigated

in Sequoia for more than 50 years. We have come a

long way from the early studies with callus cultures

(Ball, 1950) to differentiation of plantlets from shoot cul-

tures of juvenile and mature trees, up to 90 years of age,

in Sequoia (Boulay, 1997; Arnaud et al., 1993; Bon et al.,

1994; Liu et al., 2006). In general, stump shoots from the

base of mature trees are more responsive than shoots

from the crown of the same mature tree to in vitro differ-

entiation and organogenesis. We had employed tissue

culture using bud meristems from four frost-tolerant

Sequoia trees (23 years old) from a plantation near

Cologne, Germany, to clonally propagate them in 1986

at the Institute of Forest Genetics, Grosshansdorf,

Germany (Ahuja, 1996). More than 1000 clones were

produced by tissue culture, and several hundred clones

were tested under field conditions for their overwintering

capacity. Frost tolerance capacity of Sequoia clones

from the frost-tolerant donor trees was tested for many

years in Grosshansdorf and Trenthorst, in northern

Germany. The Sequoia clones grown in the Grosshans-

dorf nursery seemed to be frost-tolerant and have

survived in the winters in Germany. However, only

those frost-tolerant Sequoia clones survived in the field

trial in Trenthorst were sheltered by the tree canopy

during early growth (Ahuja, 1996). Therefore, it would

be necessary to shelter the putative frost-tolerant Sequoia

clones for several years of early growth for their survival

in climates with harsh winters.

Tissues (bud meristems) from juvenile and mature

trees (up to 100 years old) of Sequoiadendron have

been cultured in vitro, and plants have been regenerated

from such cultures (Monteuuis, 1987, 1991; Bon and

Monteuuis, 1991; Monteuuis et al., 2008). Tissue culture

offers opportunities for clonal propagation from selected

genotypes of redwoods, including frost-tolerant geno-

types in Sequoia, for ex situ plantations. To my

knowledge, tissue culture studies for clonal propagation

have not been reported in Metasequoia and Fitzroya.

Storage of germplasm under sub-zero and ultra-low
temperatures

Storage of germplasm (seeds, dormant buds, meristems,

embryos, cells, pollen and DNA) under sub-zero tem-

peratures (0 to 2808C) and cryopreservation (21968C)

offers opportunities for conservation of germplasm

(Table 1) in forest trees (Sakai, 1986; Ahuja, 1989, 1994;

Engelmann, 2004; Suszka et al., 2005). Seeds of redwoods

have been stored at low temperatures for various lengths

of time. Sequoia seeds containing 6–10% moisture in air-

tight sealed bottles stored at 58C for 3 years retained 14%

viability, but seed viability dropped to 0% after 16 years

of storage (Schubert, 1952). Sequoia seeds stored at 22

to 248C retained viability for 1 year but lost viability

rapidly after removal from cold storage (Metcalf, 1924).

On the other hand, after storage at 2168C for 7 years,

Sequoia seeds retained 12–15% viability (Boe, 1974).

Sequoiadendron seeds, which had an 18% germination

capacity, dropped their viability to 8% after storage at

58C for 14 years (Schubert, 1952). Dry seeds of Metase-

quoia have been satisfactorily stored in airtight bottles

at 2–48C (Johnson, 1974).

Seeds, buds, meristems and cells have been success-

fully cryopreserved in a number of forest tree species

(Stanwood, 1985; Ahuja, 1986, 1989, 1999; Bonner,

1990; Ryynänen, 1996). In addition, conservation of

DNA at 220 to 2808C in genebanks offers prospects
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for the application of genomics to germplasm conserva-

tion (Adams, 1997; Rice et al., 2006). Cryopreservation

of germplasm has not been researched in the redwoods

so far, but this avenue offers new options for storage of

germplasm of the redwoods for future exploitation.

Future of redwoods

The redwoods are threatened in their native endemic

locations in the face of climate change, and, therefore,

the conservation of their germplasm is essential.

Although these redwoods are protected in the national

parks, reserves and in privately owned forests in their

habitats, we have to consider their conservation in view

of global warming and climate change. It would be

desirable to conserve them (1) in situ on the model con-

servation sites (Noss et al., 2000) that have comparable

environmental conditions to their endemic climate

regions (Table 1) and (2) in ex situ locations, similar to

endemic conditions and also different environments to

challenge their genotypes, and by other biotechnological

ex situ strategies for conservation of their germplasm

in genebanks.

Although there is an uncertainty about the actual

amount of global warming, recent estimates predict an

increase in global mean temperature, as a result of

human activity, by 2.4–6.48C (IPCC, 2007), and signifi-

cant changes in the rainfall cycles (Trenberth et al.,

2003) by the end of the current century. Global climate

change is impacting species distributions and function-

ing and their terrestrial ecosystems (Parmesan, 2006;

Thuiller et al., 2008). There is substantial evidence to

suggest that the species ranges are shifting (Parmesan

and Yohe, 2003; Root et al., 2005; McKenney et al.,

2007; Kelly and Goulden, 2008), and some species

are facing extinction risks, whereas others have

become extinct (Thomas et al., 2004; Schwartz et al.,

2006). Different models have been used to predict

plant migration patterns to potentially suitable habitats

under the future climate change scenarios. Many

North American tree species will likely shift their

ranges at a rate of 10–100 km/100 years to keep pace

with the predicted climate changes in this century

(Davis and Zabinski, 1992; Iverson and Prasad, 2002;

Iverson et al., 2004, 2005). In a recent study, Iverson

et al. (2008) have examined the potential response of

134 tree species in the USA under different climate

change scenario in this century. Depending on the cli-

mate change scenario, they predicted that more than a

quarter of the species could shift their ranges more

than 400 km northwards, and in the hottest climate

change scenario, most of the species would advance

up to 800 km northwards (Iverson et al., 2008).

However, the use of molecular markers as indicators

of potential migration capacity based on two North

American tree species (Fagus grandifolia and Acer

rubrum) under rapid climate change scenario has pro-

vided lower estimates of less than 10 km/century, which

seem to be consistent with their life history and disper-

sal capacity (McLachlan et al., 2005). It would appear

that the potential migration rates of forest tree species

in the face of rapid climate change, based on different

models and methodologies, have resulted in widely

different estimates of range shift (Pearson, 2006).

Based on the dispersal capacity, we speculate that if

the climate changes slowly raising the global tempera-

ture by 1–28C and the southern areas in the northern

hemisphere start becoming hot and dry, the tree

species from such climatic zones may have to move

only a few km north to colonize areas that are suitable

habitats for their survival. The reverse would be the

case in species in the southern hemisphere, where

the ranges would move further south. However, if the

earth warms 2–68C in this century, the climate niches

of the tree species may have to move, depending

upon the species, 10–100 km or even more in this cen-

tury. Tree species whose seeds are dispersed by birds

may be able to colonize new areas in that range. But,

species whose seeds are dispersed by wind (unless

strong winds) may not be able to spread more than a

few hundred metres from their stands. Though red-

woods have winged seeds, their dispersal is usually

very close to their plantations. Therefore, rapid climate

change would pose a challenging problem for coloniza-

tion of the redwoods into new habitats. And then there

are human-created impediments (industry and new

settlements) that would become barriers to dispersal

and migration. What will be the fate of redwoods in

a rapid future climate change scenario? Although the

extinction of endemic redwoods seems unlikely in

the foreseeable future because of human conservation

intervention (parks and reserves), they are still vulner-

able to climate change in their native ranges.

A recent study has shown that there is a 33% reduction

in the summer fog in the coast redwood (Sequoia) region

along the California coast during the past century, and

this climate change may impact recruitment of new

coast redwood trees in the forest ( Johnstone and

Dawson, 2010). Anticipated changes in temperature and

precipitation cycles in the ‘climate envelops’ of other red-

woods (Sequoiadendron, Metasequoia and Fitzroya) may

also affect their growth and survival. If the retraction of

Sequoia in its southern range and expansion in the north-

ern range is any indication of the threat from climate

change or other causes to the species (Sawyer et al.,

2000), then a similar phenomenon might be happening

to the other three redwoods in their native ranges.
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That would imply that Sequoiadendron and Metasequoia

may also be contracting in the southern ranges and

expanding northwards, while Fitzroya may be retracting

in the northern range and expanding southwards. Since

California has varied terrains, anticipated migration of

endemics, depending on the magnitude of emissions,

may be more complex and, as a result, species may

migrate in different (altitude and latitude) directions,

thus disrupting the present endemic floras (Loarie et al.,

2008). And Sequoiadendron, which is already vulnerable

endemic in California, may have an unpredictable fate in

the face of climate change. The redwoods ranges have

temperate temperatures (10–298C zones) and mild win-

ters (Table 1), but the redwoods are sensitive to frost.

Therefore, development/isolation of frost-tolerant geno-

types in redwoods may offer excellent opportunities for

future ex situ reserves in colder climates.

Faced with a threat of climate change, it might be

useful to deploy an intimate mixture of seeds from

widely divergent populations from different environ-

ments (Ledig and Kitzmiller, 1992) as a resource for

seed orchards and planting material for potential future

climatic conditions. In addition, conservation planning

in a changing climate calls for strategies that locate, con-

figures and maintains areas that are managed to promote

biodiversity and ecosystem stability (Hannah et al., 2007;

Pressey et al., 2007; Thuiller et al., 2008). In the face of

uncertainty regarding climate change, it would be pru-

dent to pursue flexible approaches that include adaptive

strategies (actions that promote and maintain genetic

diversity) and mitigation approaches (actions that seques-

ter carbon and reduce overall greenhouse gas emissions)

for forests of the future (Millar et al., 2007). In any event,

it is imperative that germplasm conservation of redwoods

must proceed unabatedly, with more emphasis on ex situ

strategies to ‘Save the Redwoods’.
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