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Abstract

Soil organic matter (SOM) and its fractions play an important role in maintaining or improv-
ing soil quality and soil fertility. Therefore, the effects of a 34-year long-term fertilizer regime
on six functional SOM fractions under a double-cropping rice paddy field of southern China
were studied in the current paper. The field experiment included four different fertilizer treat-
ments: chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30%
organic manure and 70% chemical fertilizer (OM) and without fertilizer input as control
(CK). The results showed that coarse unprotected particulate organic matter (cPOM),
biochemically, physically–biochemically and chemically protected silt-sized fractions
(NH-dSilt, NH-μSilt and H-dSilt) were the main carbon (C) storage fractions under long-
term fertilization conditions, accounting for 16.7–26.5, 31.1–35.6, 16.2–17.3 and 7.5–8.2%
of the total soil organic carbon (SOC) content in paddy soil, respectively. Compared with con-
trol, OM treatment increased the SOC content in the cPOM, fine unprotected POM fraction,
pure physically protected fraction and physico-chemically protected fractions by 58.9, 106.7,
117.6 and 28.3%, respectively. The largest proportion of SOC to total SOC in the different
fractions was biochemically protected, followed by chemically and unprotected, and physically
protected were the smallest. These results suggested that a physical protection mechanism
plays an important role in stabilizing C of paddy soil. In summary, the results showed that
higher functional SOM fractions and physical protection mechanism play an important
role in SOM cycling in terms of C sequestration under the double-cropping rice paddy field.

Introduction

Soil organic matter (SOM) plays a vital role in maintaining soil quality and improving agricul-
tural productivity (Smith et al., 2013). Furthermore, agricultural soil has account for a large
proportion in global greenhouse gas emission, which is to mitigate global climate warming
through carbon (C) sequestration, decreasing carbon dioxide (CO2) content in the atmosphere
(Lal, 2004). A higher SOM content can improve soil quality and represent a substantial con-
tribution to reduction of C emission via C sequestration (Plaza-Bonilla et al., 2014). Therefore,
it is a beneficial way to maintain soil quality and improve soil productivity by increased SOM
content (Li et al., 2017; Tang et al., 2020).

In recent years, the effects of long-term fertilizer regime on soil organic carbon (SOC) con-
tent have been investigated by more and more researchers. In previous studies, results indi-
cated that application of long-term chemical fertilizer management has positive effects on
SOC content (Gong et al., 2009; Lou et al., 2011). However, Tang et al. (2020) showed that
SOC content with long-term organic manure or crop residue treatments was higher than
that of chemical fertilizer treatment. Ding et al. (2012) indicated that application of organic
manure treatments significantly enhanced SOC content as compared with chemical fertilizer
only and unfertilized treatments. A number of results in previous studies have shown that SOC
contents were increased under the application of crop residue or organic manure condition
(Wang et al., 2015; Blanchet et al., 2016; Tang et al., 2020; Xu et al., 2020; Zhao et al., 2020).

SOM is usually considered as being composed of several functional fractions, differing in
their intrinsic degradability and in factors controlling decomposition rate (Li et al., 2017;
Tian et al., 2017). In previous studies, results indicated that labile SOM fractions were charac-
terized by rapid turnover and it is usually considered as an important indicator of the effects of
field practice (von Lützow et al., 2007; He et al., 2015). Six et al. (2002) showed that labile SOM
fractions (biochemically protected, chemically protected, physically protected and unprotected
fractions) were separated according to the stabilization mechanism, and the unprotected frac-
tion was labile and an important nutrient source for crop growth. SOM was physically
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protected from decomposition by forming microaggregates,
chemically protected by mineral (silt and clay) particles and bio-
chemically protected by forming recalcitrant SOM compounds
(Six et al., 2002). The SOC content within the free particulate
organic matter (POM), occluded POM and organic matter
(OM) is increased with the combined application of crop residue
or organic manure with mineral fertilizer (Sleutel et al., 2006).
Tian et al. (2017) indicated that physical, chemical and biochem-
ical protection mechanisms play important roles in maintaining
high SOC content based on long-term application of organic
manure condition. However, there is still limited information
about how the SOM stabilization mechanism responds to soil C
sequestration with long-term fertilizer regime under the double-
cropping rice (Oryza sativa L.) paddy field system of southern
China.

Long-term fertilizer experiments have revealed that there is a
close relationship between soil C sequestration and C input
(Chung et al., 2008; Fan et al., 2014). Some studies have indicated
that there is a linear relationship between soil C sequestration and
C input under long-term fertilizer field experiment conditions
(Sun et al., 2013; Fan et al., 2014; Wang et al., 2015). However,
other studies have shown no obvious correlation between SOC
stock and C input based on long-term field experiments (Six
et al., 2002; Stewart et al., 2007). However, further analysis is
needed to investigate the response of differential functional
SOM fractions to C input under long-term fertilization
conditions.

Rice is one of the main crops in Asia, with the double-
cropping rice system (early rice and late rice) being the main
land use in southern of China (Yang et al., 2012). It is a beneficial
practice for maintaining or improving paddy soil quality and fer-
tility by the application of organic fertilizer and inorganic fertil-
izer (Blanchet et al., 2016; Tang et al., 2020). The different
fertilizer managements may have profound effects on soil physical
and chemical characteristics such as pH, soil bulk density, SOC
content (Tang et al., 2020), which in return affect functional
SOM fractions and C sequestration. Therefore, a 34-year long-
term field experiment with different fertilizer treatments was con-
ducted in a double-cropping rice system of southern China.
Hence, the objective of the current study was: (1) to investigate
the change of functional SOM fractions in paddy soil under dif-
ferent long-term fertilization conditions and (2) to quantify the
response of functional SOM fractions to C input with different
fertilizer practice in a double-cropping rice system.

Materials and methods

Sites and cropping system

The experiment was begun in 1986 and was located in
NingXiang County (28°07′N, 112°18′E) of Hunan Province,
China. Under a continental monsoon climate, the annual
mean precipitation is 1553 mm and potential evapotranspiration
of 1354 mm. The monthly mean temperature is 17.2°C. At the
beginning of the experiment, the surface soil characteristics
(0–20 cm) were as follows: SOC 29.4 g/kg, total N 2.0 g/kg, avail-
able N 144.1 mg/kg, total phosphorous (P) 0.59 g/kg, available P
12.87 mg/kg, total potassium (K) 20.6 g/kg and available K 33.0
mg/kg. There were three crops in a year, barley (Hordeum vul-
gare L.), early rice and late rice (O. sativa L.). Barley was
sown in the middle of November and harvested in early May
of the following year. Early rice was then transplanted and

harvested in the middle of July. The growing season of late
rice transplanted lasted from late July to the late October.
More detailed information about the experiment field was
described by Tang et al. (2018).

Experimental design

The experiment included four fertilizer treatments: chemical fer-
tilizer alone (MF), rice straw residue and chemical fertilizer (RF),
30% organic manure and 70% chemical fertilizer (OM) and with-
out fertilizer input as control (CK). A randomized block design
was adopted in the plots, with three replications of each treat-
ment. Each plot size was 66.7 m2 (10 × 6.67 m2). The experiment
ensured that same total amount of N, phosphorus pentoxide
(P2O5), potassium oxide (K2O) for RF, MF and OM treatments
during early rice and late rice growing season, respectively.
During the early rice and late rice growth periods, the total
amount of N, P2O5, K2O for MF, RF and OM treatments was
142.5, 54.0, 63.0 kg/ha and 157.5, 43.2, 81.0 kg/ha, respectively.
The kind of organic manure for OM treatment was decomposed
chicken manure. The C content of rice straw residue, and chicken
manure were 230.5 and 165.5 g/kg, respectively. Before barley
sowing or rice seedling transplanting, air-dried rice straw was
manually spread onto the soil surface and incorporated into the
soil at a cultivation depth of 20 cm. During the barley, early rice
and late rice growing periods, 60, 70 and 60% of N, respectively,
was applied at tillage before barley sowing or rice seedling trans-
planting, respectively, and the remaining N were applied at top
dressing stage (7–10 days after barley sowing or rice seedling
transplanting). All the P2O5 and K2O fertilizer were applied at till-
age before barley sowing or rice seedling transplanting. The barley
sowing rate was 250.0 kg/ha. One-month-old early rice and late
rice seedling were transplanted with a density of 150 000 plants/
ha in paddy field. Further detailed information about fertilizer
management and field arrangement was described by Tang
et al. (2018).

Soil sampling and sample preparation

Soil samples were collected from each plot on 25 August 2019, at
the tillering stage of late rice. Twenty soil samples from each plot
were taken adjacent to rice plants at a depth of 0–20 cm and
bulked to form composite soil samples. Thus, three composite
samples of soil from each fertilizer treatment were collected at
sampling time. Subsequently, the composite samples were air-
dried at room temperature and passed through a 2-mm sieve
for further analysis.

Soil chemical properties’ analysis

Soil chemical properties (pH, total N, total P, total K, available N,
available P, available K and SOC) were measured according to the
method described by Bao (2000) and Wu et al. (1990). Briefly, soil
pH was measured with a compound electrode (PE-10, Sartorious,
Germany) by using a soil to water rate of 1 : 2.5. Other soil chem-
ical properties were determined by using an elemental analyzer
(Carlo Erba 1110, CE Instruments) coupled to a Delta Plus iso-
tope ratio mass spectrometer (Finnigan MAT) via a Conflo III
(Thermo Fisher). The carbon (C) content of soil samples were
measured by using a Vario EL III Elemental Analyzer
(Elementar, Germany).
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Soil SOM fractionation analysis

Functional SOM fractions were separated by using a combined
physical, chemical and density fractionation method as described
by Stewart et al. (2008). In the first step, three size fractions were
obtained by using physical fractionation and partial dispersion.
They consisted of >250 μm coarse unprotected particulate organic
matter (cPOM), 53–250 μm microaggregate fraction (μagg), and
<53 μm easily dispersed silt and clay (dSilt and dClay). All the
obtained fractions were oven-dried at 60°C and weighed.

In the second step, the microaggregate fractions isolated in the
first step were further fractionated. Density flotation was used to
isolate the fine unprotected POM fraction (fPOM) with 1.85 g/
cm3 sodium polytungstate. After fPOM was removed, dispersion
was conducted for the heavy fraction to separate the >53 μm
microaggregate-protected POM fraction (iPOM) and the
microaggregate-derived silt- and clay-sized fractions (μSilt and
μClay).

The third step was acid hydrolysis of the silt- and clay-sized
fractions (dSilt, dClay, μSilt and μClay) isolated in the first two
steps, as described by Plante et al. (2006). The process of acid
hydrolysis included fluxing at 95°C for 16 h in 6 mol/l HCl after
which the suspensions were filtered and washed by using deio-
nized water. All residues were oven-dried at 60°C and weighed.
The portions obtained from this step were the non-hydrolysable
fractions (NH-dSilt, NH-dClay, NH-μSilt and NH-μClay).
Furthermore, the hydrolysable fractions (H-dSilt, H-dClay,
H-μSilt and H-μClay) were determined by the difference between
the whole fractions and the non-hydrolysable fractions.

According to the fractionation schemes that were based on the
assumed link between the isolated fractions and the protection
mechanism (Stewart et al., 2008): (i) the unprotected pool corres-
pond to cPOM and fPOM, (ii) the pure physically protected pool
was iPOM, (iii) the physico-biochemically protected pool consists
of non-hydrolysable silt and clay-sized fractions (NH-μSilt and
NH-μClay) derived from the microaggregates, (iv) the physico-
chemically protected pool consist of hydrolysable silt- and clay-
sized fractions (H-μSilt and H-μClay) derived from the microag-
gregates, (v) the chemically protected pool was the hydrolysable
portion of the silt- and clay-sized fractions (H-dSilt and
HdClay) and (vi) the biochemically protected pool consists of
the non-hydrolysable portion remaining in the silt- and clay-sized
fractions after acid hydrolysis (NH-dSilt and NH-dClay).

Grain yield of rice

Grain yields of rice with each plot were measured at mature stages
of early rice and late rice in 2019; three 1 m2 areas of each plot
were collected to calculate the dry weight of grain yield of rice.

Statistical analysis

The statistical analysis of each measurement item was conducted
using the SAS 9.3 software package (SAS, 2008). The data from
each measurement item with fertilizer treatment means were
compared using one-way analysis of variance following standard
procedures at the P < 0.05 probability level. The results were
expressed as means and standard errors.

The total SOC contents were used as a proxy for the C input to
assess the effect of increased C input on SOC accumulation of
functional SOM fractions among treatments as described by
Stewart et al. (2008). Linear and logarithmic models were applied
to evaluate the relationship between SOC content in various frac-
tions and total SOC content, and the best-fit model were selected
in terms of R2 value.

Results

Soil characteristics with different fertilizer treatments

The soil chemical properties were significantly changed by differ-
ent long-term fertilizer treatments (Table 1). The results showed
that total N, total P, available N, available P and available K con-
tents with RF and OM treatments were higher (P = 0.041) than
those of MF and CK treatments. The total N, total P, available
N, available P and available K contents with MF treatment were
higher (P = 0.039) than those of CK treatment. Compared with
CK treatment, the soil pH with OM treatment was increased.
But there was no significant difference (P = 0.065) in total K con-
tent among different fertilizer treatments.

Distribution of functional SOM fractions

Proportions of cPOM and fPOM fractions in paddy soil with RF
and OM treatments were higher (P = 0.042) than those of CK
treatment (Table 2). The proportion of fPOM in paddy soil
with MF treatment were higher (P = 0.039) than that of CK treat-
ment. The results indicated that proportion of iPOM in paddy soil
with OM treatment was higher (by 117.6%) than that of CK treat-
ment (P = 0.040). Compared with CK treatment, OM and RF
treatments increased the proportion of iPOM in paddy soil. In
paddy soil, the proportion of NH-μSilt and NH-μClay in paddy
soil were the highest with OM and RF treatments, whereas no sig-
nificant differences (P = 0.067) were detected in the proportion of
NH-μSilt or NH-μClay in paddy soil across the fertilizer treat-
ments. The proportions of H-μSilt and H-μClay in paddy soil
with OM treatment were higher (P = 0.042) than that of CK treat-
ment. The proportions of H-dSilt in paddy soil with MF, RF and
OM treatments were higher (P = 0.037) than that of CK

Table 1. Effects of different long-term fertilizer treatments on soil chemical characteristics in paddy field

Treatments pH
Total N
(g/kg)

Total P
(g/kg)

Total K
(g/kg)

Available N
(mg/kg)

Available P
(mg/kg)

Available K
(mg/kg)

MF 6.33 ± 0.18ab 2.03 ± 0.10b 0.85 ± 0.07c 19.0 ± 0.50a 151.5 ± 6.67c 7.65 ± 0.68c 30.6 ± 1.62b

RF 6.74 ± 0.18ab 2.27 ± 0.09a 1.05 ± 0.05b 19.2 ± 0.53a 186.4 ± 6.43b 9.52 ± 1.35b 35.5 ± 1.17a

OM 6.86 ± 0.19a 2.74 ± 0.07a 1.66 ± 0.08a 18.7 ± 0.51a 210.4 ± 5.85a 17.7 ± 2.85a 34.3 ± 1.24a

CK 6.24 ± 0.16b 1.88 ± 0.05c 0.52 ± 0.01d 18.2 ± 0.46a 124.3 ± 3.14d 3.73 ± 0.36d 27.6 ± 0.96c

MF, chemical fertilizer alone; RF, rice straw residue and chemical fertilizer; OM, 30% organic manure and 70% chemical fertilizer; CK, without fertilizer input as control.
Values were presented as mean ± standard error.
Different lowercase letters in the same column indicate significant differences at P < 0.05.
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treatment. However, the proportions of H-dClay, NH-dSilt and
NH-dClay in paddy soil with RF, OM treatments were lower
(by 7.0–14.0%) than that of CK treatment (P = 0.040).

SOC content in functional SOM fractions

The results showed that SOC contents in cPOM, fPOM and iPOM
in paddy soil with OM treatment were the highest (P = 0.039; Figs
1(a) and (b)). The SOC contents in cPOM in paddy soil with MF
and RF treatments were increased by 54.3 and 79.5%, compared
with CK treatment, respectively (Fig. 1(a)). The SOC contents
in fPOM in paddy soil with RF and OM treatments were
increased by 24.2 and 30.5%, compared with CK treatment,
respectively (Fig. 1(a)). The SOC contents in iPOM in paddy
soil with MF, RF and OM treatments were increased by 47.8,
89.4 and 143.4%, compared with CK treatment, respectively
(Fig. 1(b)).

Meanwhile, the results indicated that SOC contents in
physico-chemically, physico-biochemically, chemically and bio-
chemically protected fractions were smaller, compared with
SOC content in unprotected fractions (cPOM, fPOM and
iPOM) (Fig. 1). The SOC contents in physico-chemically pro-
tected and physically–biochemically fractions (H-μSilt, H-μClay,
NH-μSilt and NH-μClay) in paddy soil with RF and OM treat-
ments were higher (P = 0.040) than that of CK treatment (Figs
1(c) and (d)).

The results showed that RF and OM treatments increase the
SOC content in chemically and biochemically protected fractions
in paddy soil (Figs 1(c) and (d)). The SOC contents in H-dSilt
and H-dClay in paddy soil with RF and OM treatments were
higher (P = 0.037) than that of CK treatment, whereas there was
no significant differences (P = 0.064) in H-dSilt and H-dClay in
paddy soil among MF, RF, OM and CK treatments (Fig. 1(e)).
Meanwhile, the results indicated that SOC contents in NH-dSilt
and NH-dClay in paddy soil with CK treatment were higher (P
= 0.036) than that of RF and OM treatments (Fig. 1( f )).

SOC distribution ratio

Among the SOC content in unprotected, physically, physically–bio-
chemically, physically–chemically, chemically and biochemically
protected fractions, the largest proportion was ‘biochemically
protected’ with 24.7–33.4%, followed by ‘chemically protected’
(20.4–23.3%), ‘unprotected’ (18.3–22.7%), ‘physically–chemically
protected’ (9.1–11.2%) and ‘physically–biochemically protected’
(8.5–10.8%). The smallest proportion was ‘physically protected’
(7.3–10.3%).

Compared with CK treatment, the proportions of SOC in bio-
chemically protected and physically protected fractions to total
soil SOC content with RF and OM treatments were increased,
respectively (Fig. 2). The proportions of SOC in biochemically
protected in paddy soil with RF and OM treatments were
increased by 27.9 and 35.2%, compared with CK treatment,
respectively. The proportions of SOC in physically protected in
paddy soil with RF and OM treatments were increased by 23.3
and 41.1%, compared with CK treatment, respectively. However,
the results showed that the proportions of SOC in unprotected
and physically–chemically protected fractions to total soil SOC
content with MF, RF and OM treatments were lower (P = 0.040)
than that of CK treatment (Fig. 2).Ta
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The relationship between SOC content in functional SOM
fractions and total SOC content

Significantly linear relationship among SOC content in iPOM,
H-μSilt, NH-μSilt, NH-μClay, H-dSilt, H-dClay, NH-dSilt and
NH-dClay with total SOC content was observed in paddy soil
(Figs 3(a)–(c), (e) and ( f )). The results indicated that SOC content
in H-μClay, NH-μClay, NH-μSilt, NH-μClay, H-dSilt and H-dClay
showed a significantly logarithmic relationship with total SOC con-
tent (Figs 3(c)–(e)). The SOC contents in cPOM and NH-dClay
were declined with an increase in total SOC content, although it
was not statistically significant (Figs 3(a) and ( f )).

The SOC content was linearly related to total SOC in fPOM,
H-μSilt, NH-μClay, NH-μSilt, H-dSilt and H-dClay in paddy
soil (Figs 3(a) and (c)–(e)). No obvious increasing trend was
found in SOC content of cPOM, H-μClay, NH-μSilt and

NH-dSilt with increasing of total SOC content (Figs 3(a), (c),
(d) and ( f )). The SOC content in NH-dClay was declined with
an increase in total SOC content; it was statistically significant
(Fig. 3( f )).

Grain yield of rice

The grain yield of early rice and late rice was affected by different
long-term fertilizer treatments (Fig. 4). This results showed that
grain yields of early rice with RF and OM treatments were higher
(P = 0.039) than that of MF and CK treatments. Compared with
CK treatment, the grain yield of early rice with RF and OM treat-
ments was increased by 2978.2 and 3685.5 kg/ha, respectively.
Meanwhile, the results indicated that grain yield of late rice
with MF, RF and OM treatments was higher (P = 0.037) than
that of CK treatment. Compared with CK treatment, the grain

Fig. 1. SOC content in functional SOM fractions under long-term fertilizer treatment in double-cropping paddy soil. MF, chemical fertilizer alone; RF, rice straw
residue and chemical fertilizer; OM, 30% organic manure and 70% chemical fertilizer; CK, without fertilizer input as control. (a) Unprotected fraction; (b) physically
protected fraction; (c) physically–chemically protected fraction; (d ) physically–biochemically protected fraction; (e) chemically protected fraction and ( f ) biochem-
ically protected fraction. Different lowercase letters indicate significantly differences (P < 0.05) among different fertilizer treatments. Error bars represent standard
error of the mean (n = 3).
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yield of late rice with MF, RF and OM treatments was increased
by 3092.3, 3478.5 and 3212.1 kg/ha, respectively.

Discussion

Effects of long-term fertilization on soil chemical properties
and yield of rice

In the previous studies, these results showed that soil chemical
properties and yield of rice were obviously changed under different
fertilizer managements. Tang et al. (2020) reported that soil quality
and grain yield of rice were increased by the combined application
of OM with chemical fertilizer practice. Results of Sun et al. (2013)
indicated that it was a beneficial management to increase soil
chemical properties and yield of rice with OM management
based on long-term fertilization experiment. In the current study,
the results indicated that soil fertility was improved with the appli-
cation of organic manure and crop residue treatments compared
with chemical fertilizer alone and without fertilizer input treat-
ments (Table 1), consistent with the results of previous studies in
other similar paddy fields (Sun et al., 2013; Tian et al., 2017).
The main reason may be that crop residue or organic manure con-
tained a high proportion of nutrient material, therefore, the soil
nutrient contents and soil microbial activity in paddy field were
improved under long-term combined application of crop residue
or organic manure with chemical fertilizer condition. Meanwhile,
these results indicated that grain yields of early rice and late rice
with RF and OM treatments were higher than that of CK treatment
(Fig. 4), suggesting that soil physicochemical properties of paddy
field in rice production system were increased by the combined
application of organic manure or crop residue with mineral fertil-
izer, which were consistent with the previous studies in similar eco-
logical region of paddy field (Tang et al., 2020; Zhao et al., 2020).

Effects of long-term fertilization on functional SOM fractions

In the current study, the combined application of organic manure
and crop residue with chemical fertilizer treatments (RF and OM)

significantly increased not only the proportion of unprotected
cPOM and fPOM fractions but also their SOC content in a
double-cropping rice paddy soil (Table 2; Fig. 1(a)). Similar
results were also reported by Tian et al. (2017) in a similar eco-
logical region of China, who found that addition of manure and
crop residue increases SOC content in cPOM and fPOM, espe-
cially combined with inorganic fertilizer. The unprotected frac-
tions mainly consist of the crop-derived residue that were
partially decomposed, but also comprise seed and root residue
(Six et al., 2002). Therefore, the increase in unprotected fractions
(cPOM and fPOM) by the combined application of organic
manure and crop residue with chemical fertilizer might be the
result of the direct effect of manure and crop residue addition
(Tian et al., 2017). Besides the direct effect of manure and crop
residue addition, the addition of manure or crop residue com-
bined with inorganic fertilizer may result in better rice growth,
such as larger root biomass, root exudates (E et al., 2012) and
higher yield of rice (Tong et al., 2014), than that under without
fertilizer input conditions. Consequently, the increased input of
crop residue into paddy soil lead to a higher OM content as
well as higher SOC content in the unprotected fractions.

In the current study, the results showed that SOC content in
iPOM in paddy soil with OM and RF treatment were increased,
which were consistent with the results obtained in previous
study in the other similar paddy field (He et al., 2015; Tian
et al., 2017). As SOM was a major binding agent of soil aggregates
(Six et al., 2004), the input of manure and crop residue may pro-
vide the binding material for the formation of micro-aggregates,
which could enhance the stabilization of SOC which has become
physically protected in the newly formed micro-aggregates
(Tisdall and Oades, 1982). Therefore, in the current study, the
increase of SOC content in iPOM was might be attributed to
the increase of soil microaggregation with the application of
organic manure and crop residue (Tian et al., 2017), which
could be beneficial to slow down the turnover rate of SOM, and
contribute to C stabilization (Hai et al., 2010). In this study, the
results indicated that proportions of iPOM in paddy soil with
OM and RF treatments were increased 27.57 and 17.09% com-
pared with MF treatment (Table 2), and led to the highest SOC
content in iPOM in paddy soil (Fig. 1(b)). The SOC content
and proportion of iPOM with MF treatment were significantly
higher than those of CK treatment (Table 2; Fig. 2(b)), indicating
that balanced application of N, P and K fertilizer had a more posi-
tive effect on iPOM than that of without fertilizer input treatment
in paddy field. A large amount of available nutrients was con-
tained in the mineral fertilizer, which could benefit to rice growth
and soil microbial activity increases the decomposition in intra-
microaggregate POC (iPOC) (Liu et al., 2010). Meanwhile, MF
treatment might have a stronger stimulation effect on rice growth
than that of SOC decomposition, leading to a net accumulation of
crop residue into the paddy soil and increasing SOC in iPOC (He
et al., 2015). In previous studies, these results indicated that sta-
bilization of POM within microaggregate (i.e. iPOM in this
study) was one of the major protection mechanisms (Six et al.,
2002; Plaza-Bonilla et al., 2014). Therefore, the current findings
also proved that long-term application of balanced chemical fer-
tilizer, manure and crop residue with chemical fertilizer were cru-
cial for SOC sequestration.

The aggregate-associated physically fractions (H-μSilt, H-μClay,
NH-μSilt and NH-μClay) were usually considered as stable frac-
tions that occluded within microaggregate or associated with silt
and clay (Liu et al., 2010; Lou et al., 2011). Results of Stewart

Fig. 2. Effects of long-term fertilizer treatments on proportion of SOC in different
fractions to total soil SOC. (a) Unprotected fraction; (b) physically protected fraction;
(c) physically–biochemically protected fraction; (d ) physically–chemically protected
fraction; (e) chemically protected fraction and ( f ) biochemically protected fraction.
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et al. (2008) indicated that response of un-aggregated silt and clay
to C addition was faster than that of aggregate-mineral fractions. In
the current study, the results showed that SOC contents in the
physico-biochemically and physico-chemically protected fractions
in paddy soil were increased by the combined application of bal-
ance chemical fertilizer, manure and crop residue with chemical
fertilizer (Figs 2(c) and (d)), except for NH-dSilt and NH-dClay
in paddy soil. Similarly, a pronounced increase was observed in
H-dSilt and NH-dSilt with RF and OM treatments in paddy soil
(Figs 2(e) and ( f )). Comparable results were also found in other
similar paddy fields (Xu et al., 2020), indicating that
aggregate-associated chemically fractions and easily dispersed
chemically fractions responded differently to long-term fertilizer
practice and that different protection mechanisms might be respon-
sible for the different responses of these fractions.

The biochemically protected SOM fractions were a non-
hydrolysable fraction, protected against decomposition by a

biochemical stabilization mechanism, which was affected by
crop residue quality or OM decomposition (Six et al., 2002).
In the current study, the results indicated that SOC content of
NH-dSilt and NH-dClay in paddy soil with RF and OM treat-
ments were significantly lower than that of CK treatment
(Fig. 2( f )), which was in agreement with other similar eco-
logical regions of the world (Hassink, 1997). The reason may
be attributed to the reduced proportion of soil dry matter in
the biochemical SOM fraction in paddy soil. On the contrary,
fertilizer practice might accelerate the decomposition of bio-
chemically protected fractions in paddy soil, which were under
anoxic conditions. In the current study, the SOC in biochem-
ically and chemically protected silt-sized fractions were higher
than that of biochemically and chemically protected clay-sized
fractions, suggesting that silt and clay may have different adapt-
ability in response to hydrolysation (Kiem and Kogel-Knabner,
2003).

Fig. 3. Relationship between SOC content within functional SOM fractions and total SOC under long-term fertilizer treatment in paddy soil.
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Response of SOC content within functional SOM fractions to
total SOC content

The SOC content of unprotected fPOM increased with increasing
total SOC in paddy soil, suggesting that paddy soil has the potential
to sequester and stabilize more C in fPOM fraction under the pre-
sent experimental conditions. These results were in agreement with
those for other similar ecological regions reported by Stewart et al.
(2008), who found that fPOM fraction fitted the linear model best.
However, the current study revealed that SOC content in cPOM
declined with increases in total SOC in paddy soil, albeit not sig-
nificantly (Fig. 3(a)), suggesting a negative relationship between
SOC content in cPOM and total SOC. Six et al. (2002) suggested
that SOC in light fraction (cPOM in the current study) did not
increase with increased C input. The reason may be attributed to
the saturation behaviour of the unprotected fraction, which
depends on the balance between C input and specific decompos-
ition rate of the fraction, whereas the different saturation behaviour
of the unprotected fraction was affected by environmental factors
such as soil temperature, moisture and substrate biodegradability
(Stewart et al., 2008). Furthermore, SOC content in the cPOM frac-
tion is consumed by higher soil microbial activity under fertilizer
application (Blagodatskaya and Kuzyakov, 2008).

The SOC content in iPOM had a positive linear relationship
with the total SOC in paddy soil (Fig. 3(b)), which was inconsistent
with previous studies. Six et al. (2002) reported that SOC content of
iPOM fraction had a weak linear relationship with total SOC con-
tent, while Stewart et al. (2008) found a curvilinear relationship
between SOC content in iPOM fraction and total SOC content.
However, in the current study, there was an obvious increase in
SOC content in the iPOM fraction with increasing total SOC con-
tent in the paddy soil (Fig. 3(b)), suggesting a distinct management
practice and environment-specific SOM decomposition rate in
paddy soil. Moreover, SOM decomposition in paddy soil was obvi-
ously fast under the dry and wet alternate anaerobic conditions
(Sahrawat, 2004). Therefore, the higher SOC mineralization cap-
acity under these conditions may allow iPOM to approach a higher
level under long-term application of fertilization condition.

In the current study, the results showed that there was a posi-
tive linear relationship between SOC content in H-μSilt, H-dSilt,
H-dClay and total SOC content in paddy soil (Figs 3(c) and (e)),
suggesting that physico-chemical and chemical protection

mechanisms play an important role in stabilizing SOC in paddy
soil. This could accumulate more C through the physico-chemical
protection mechanism. Furthermore, the physico-chemical pro-
tection of SOC in paddy soil was increased under the existence
of free Fe-oxyhydrates (Zheng et al., 2012). Meanwhile, the
SOC content in H-μClay and NH-μSilt in paddy soil had little
increase with increasing of total SOC content (Figs 3(c) and
(d)). These results were agreement with previous studies in
other similar ecological regions. Stewart et al. (2008) found that
a linear model fitted physico-chemically and physico-
biochemically protected fractions, suggesting that C levels of
H-μClay and NH-μSilt fractions seem to be lower than that of
cPOM fraction, attributed to their slower C turnover rate
(Chung et al., 2008). In contrast, the SOC content in NH-dClay
in paddy soil decreased with an increase in total SOC content,
indicating that a priming effect might also occur in NH-dClay
(Fig. 3( f )). The SOC content in biochemically protected fractions
in paddy soil had no obvious further increase with an increase in
SOC content; this may be because biochemically protected frac-
tions were negatively affected by environmental factors, such as
soil temperature and moisture (Stewart et al., 2008). On the con-
trary, the biochemically protected fractions were consumed by
higher soil microbial activity under long-term application of fer-
tilization conditions (Blagodatskaya and Kuzyakov, 2008).
However, due to the inconsistent relationship between SOC con-
tent in different protection mechanisms and total SOC content in
paddy soil, further analysis is needed to investigate the functional
SOM fractions in rhizosphere soil under long-term fertilization
conditions. Meanwhile, further studies are necessary to investigate
the relationship between cumulative organic C input and SOC
fractions with different long-term fertilizer treatments.

Conclusions

Combined application of OM with mineral fertilizer practice was
shown to be a beneficial way to maintain or increase paddy soil
fertility and obtain higher grain yield of rice. The SOC content
in iPOM, H-μSilt, NH-μClay and H-dSilt in paddy soil with
OM treatment were increased (by 7.74–117.55%) over that of
CK treatment and showed a relatively high increase per unit of
total SOC content. Therefore, the current results suggested that
physical (physically, physically–biochemically and physically–
chemically) protection mechanisms play an important role in sta-
bilizing carbon in paddy soil. Physical protection mechanisms
within the microaggregate also play a vital role in sequestrating
carbon in paddy soil. In conclusion, the different responses of
functional SOM fractions to long-term fertilizer treatments indi-
cated different mechanisms for SOM cycling in terms of carbon
sequestration under fertilizer management conditions. However,
further studies are necessary to investigate the protection mechan-
ism and the carbon sequestration capacity related to long-term
fertilizer practice under different agroaggregate conditions.
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