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In the fields of microgripping and microassembly, the self-alignment motion of a solid
micro-object linked by a liquid meniscus to a substrate or a tool is an inexpensive way
to overcome the current limitations of the assembly processes at microscale by getting
rid of the positioning actuators. Original models providing a dynamical description of
the capillary self-alignment of an L × D × d chip are reported, as well as experimental
results as evidence of their validity. The first two models describe the liquid and the
solid physics in two dimensions. Both include nonlinearities and describe the coupling
between a laminar flow and a solid structure. The fluid–solid coupling is ensured by the
boundary conditions at their surface of contact and by the forces the liquid and the solid
apply on each other. Both models yield the shift, lift and tilt modes of deformation of the
liquid meniscus. Equations are first numerically solved by using a finite element method
(model 1). By approximating the menisci with spherical caps, a geometrical model is then
presented (model 2). Next, for small oscillations and thin liquid layers, the equations are
linearised. The solution to the semianalytical three degrees of freedom (3-DOF) modal
analysis is thus obtained (model 3). Finally, a semianalytical 1-DOF model is presented
and numerically solved by considering a one-dimensional motion for the solid object
(model 4). Solutions for models 1, 3 and 4 are computed and show good agreement with
the experimental measurements. Yet, the remaining deviations are investigated to identify
their origin.

Key words: microfluidics, contact lines, interfacial flows (free surface)

1. Introduction

Industrial processes dealing with micro-object manipulation mainly use vacuum
(suction) as a handling principle. However, at microscale (typically below 1 mm),
these processes reach some limitations. Physically, these limitations are primarily due
to adhesion forces interfering with vacuum (van der Waals, electrostatic, etc.) that are,
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910 A6-2 A. Chafaï and others

indeed, no more negligible at these scales (Lambert et al. 2013). And technically, the
reliability of the assembly is limited by the positioning precision of the actuators.

One way to overcome adhesion and positioning issues at the same time would be
to use capillary forces as a gripping principle. Previous research has evidenced that it
was possible to tune these forces and to take advantage of them in order to facilitate
microassembly and microgripping processes. A recent work by Iazzolino et al. (2020)
reviews the proofs of concept for capillary gripping tools or capillary self-assembly
processes. Without aiming to be exhaustive on the technical capillary handling and
assembly solutions, we may, however, give a few examples. Some of these capillary
grippers are based on water condensation and temperature variations (Uran, Safaric &
Bratina 2017), on laser evaporation and changes in the contact conformity (Iazzolino
et al. 2020), variation of wettability (Fantoni, Hansen & Santochi 2013), on liquid volume
control through 3-D printed and replicated microchannels (Dehaeck et al. 2019), or
finally based on electrowetting as introduced by Apoorva, Maccurdy & Lipson (2014) and
Vasudev et al. (2009). High-speed self-assembly lines using capillary forces are presented
by Knuesel & Jacobs (2010) and Park et al. (2015).

Capillary forces are generated by a liquid meniscus binding a substrate (e.g. a circuit
card or a gripper) and the object to assemble or to handle. One crucial phenomenon
occurring in this case is the self-alignment effect. It consists of a passive alignment motion
centring the component with respect to the substrate, and coming to a stop when the state
of minimum energy is reached in the system.

This paper focuses on the modelling of the capillary self-alignment process. Prior
models have aimed at describing the modes of deformation of menisci either in statics
or in dynamics. These six modes of deformation are presented in figure 1(a). Translational
movements along the horizontal axis are called shifts, while those along the vertical axes
are named lifts. Rotations around horizontal and vertical axes are called tilts and twists,
respectively.

Models of liquid flows between two planes have been reviewed by Engmann,
Servais & Burbidge (2005). Several boundary conditions for the fluid velocity are
considered (i.e. perfect and partial slip or no-slip boundary conditions). In the presented
models, deformations and stresses inside the liquid meniscus are mathematically
described.

Concerning static descriptions of the self-alignment, the twist motion has been studied
by Takei, Matsumoto & Shimoyama (2010) where the capillary torque is measured for
validation thanks to an experimental set-up using a magnetic field in which the specific
micro-object behaves like a compass. A quasi-static axisymmetric 2-D study is presented
by Mastrangeli et al. (2010), in which a finite element model based on the Surface Evolver
software (Brakke 1992) and one analytical energy minimisation model are presented. The
validation relies on a force measurement experiment where the bottom pad is mechanically
shifted and the top pad is linked to two parallel cantilevers acting as a spring. This way, this
system provides a specific kinematics, where the top pad is forced to move only by shifting,
and without tilting. Mastrangeli et al. (2010) highlight the self-alignment hysteresis for
large shifts. The shifts, tilts, lift and twist modes of deformations are further considered
for square pads (Berthier et al. 2010), while Berthier et al. (2013) focus on shifts for more
complex geometries. The stability of the tilt is studied in a different configuration by
Berthier et al. (2015) with hydrophilic bands to increase the stabilisation of the square
pads on the substrate. A model for capillary forces where a square pad is linked by a
droplet of glue has been developed by Lienemann et al. (2003). The Surface Evolver
software is used to get the geometry of the glue meniscus and coupled to ANSYS to get its
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FIGURE 1. Usual terminology used in capillary gripping and self-assembly fields. (a) Modes
of deformation of a liquid meniscus bounding two solid objects; (b) one-dimensional (1-D)
uncoupled model for the shift where the 1-D linear fluid velocity distribution is described as
vx = ẋz/h 1x ; (c) 1-D coupled model for the shift where vx = f (t, z) 1x ; (d) two-dimensional
(2-D) coupled model for shift, tilt, lift with a two degrees of freedom (2-DOF) fluid, vx and vz.

elastic properties. The model has been used to investigate the influence of surface defects
and self-assembly processes optimisation.

Papers studying self-alignment effects are also found in the specific literature of
packaging. There, the self-alignment motion of the chip is induced by the surface tension
of the solder joints. Goldmann (1993) introduces an equation linking the lift motion to
the force applied on the upper cylindrical pad. This axisymmetric model is valid for
deformations up to 10 % of the zero-loaded meniscus height. Patra & Lee (1991) present
a three-dimensional (3-D) quasi-static model for cylindrical pads, based on the surface
energy minimisation, and taking no tilt and twist motions into account. A 3-D volume of
fluid (VOF) modelling is investigated by Najib et al. (2017), where the authors focus on
the self-assembly of surface mounted components. As the fluid is here a solder paste, the
equations modelling the situation are coupled with the heat equation, and solved together
in Fluent. Validation of the transient state is not documented in detail but the steady state
shows a good agreement with experimental data.

First dynamical models have been developed by Meurisse & Querry (2006) and
van Veen (1999). The latter presents an analytical solution for independent lift and shift
motions. The lift motion derives from Newton’s equation, where the spring force is
obtained from the surface energy minimisation method. The friction force in the liquid
meniscus arises from the rheology literature and in particular Stefan’s adhesion equation,
which describes the normal viscous force acting between two disks being separated or
brought closer. For the shift motion, the height of the liquid meniscus is considered to be
constant. For the viscous friction force, the liquid velocity is modelled as in the steady
state fluid flow with a linear distribution. This situation corresponds to figure 1(b). The
axial and lateral motions of the micro-object are therefore the solution of second-order
linear ordinary differential equations. But because the period of the oscillations can be
smaller than the time required to reach the steady state, as shown by Lu & Bailey (2005),
it is necessary to couple the mechanical and fluid physics to describe the self-alignment
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910 A6-4 A. Chafaï and others

process in a more accurate way. A model considering such a velocity distribution (see
figure 1c) is introduced by Lu & Bailey (2005). In this model, Surface Evolver is used
to compute the force applied by the liquid on the object. The speed and displacement
of the latter are computed and used in order to get the flow velocity distribution for the
considered time step by solving coupled Newton and Navier–Stokes equations with the
software Physica. Kaneda et al. (2007) present a dynamical model for the tilt and lift
motions. This model predicts the oscillatory characteristics of the system and the shape
of the meniscus by solving Newton’s equations for viscous and capillary forces applied
on the solid structure. The shape of the meniscus is obtained thanks to geometrical and
volume conservation assumptions. This transient 2-D modelling of a 1-DOF circular pad
describes one out of two tilt motions. A 2-D model (see figure 1d) based on the VOF
method is studied by Lin et al. (2009). There, the chip is not totally wetted as the meniscus
is pinned because of hydrophobic areas on the chip and the substrate. Lambert et al. (2010)
report a semianalytical solution using the Chebyshev spectral method to solve his coupled
1-D system of equations describing the physics, therefore providing an analytical solution
for a 1-DOF shifting chip. For the lift degree of freedom, a model based on a Kelvin–Voigt
material (setting a spring, a mass and a damper in parallel) is presented by Valsamis
et al. (2013). The stiffness, damping coefficient and the mass are analytically expressed.
The model is simulated with COMSOL Multiphysics while harmonic response tests are
performed for the validation. This axisymmetric model describing the lift motion applies
to cylindrical chips. Table 1 gives an overview of these different dynamical models with
additional information.

In this paper, our different models, which all derive from one another with successive
simplifying assumptions, will first be introduced and the experimental validation set-up
will then be presented. Our models aim at describing the transient damped oscillatory
motion of self-alignment that would be encountered in the capillary microgripping or
microassembly fields.

Here, the arbitrary Lagrangian–Eulerian (ALE) method used to numerically solve the
general description of the coupled self-alignment effect (model 1) and the spherical caps
assumption for the 3-DOF modal analysis (models 2 and 3) are new and specific to this
paper. The semianalytical equations obtained in models 3 and 4 are original ways to solve
this coupled problem.

In these models, handled objects are submillimetre rectangular chips with sharp edges.
Considering a capillary gripping or self-assembly system, the liquid binding the chip to
its substrate would be pinned on these edges. Because of these context requirements, our
models must thereby give a transient description of the physics and take the geometrical
pinning of the meniscus and the rectangular shape of the chip into account.

Eventually, the results from modelling and experimental tests will be compared (in terms
of period of oscillation and damping constant) by changing the volume of the liquid layer.
These results are finally discussed.

2. Self-alignment models

Models presented in this paper all consider the motion of a rectangular chip linked by a
liquid meniscus to a rectangular substrate.

Figure 2 presents the configuration and the supplementary material defines the notations
used in the following 2-D models. There, points P and Q represent left- and right-hand
edges in the 1y direction. In three dimensions, the length of these edges would be D.
Angles φ +ΘP and ψ −ΘQ are defining the direction of the force acting on the triple

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.919


2-D
self-alignm

entm
odels

910
A

6-5

Authors Model details
Velocity components

in fluid Deform. modes Shape of objects Experiments

van Veen (1999) 1-D uncoupled. Analytical
solving.

1 Shift, lift Circular None

Lu & Bailey (2005) 1-D coupled. Surface Evolver
+ Physica solving.

1 Shift Circular None

Kaneda et al. (2007) Motion computed from the
viscous and surface tension
forces applied on a solid.

— Tilt Circular Motion tracking

Lin, Tseng & Kan
(2009)

2-D coupled. CFD-ACE+,
VOF model solving.

2 Shift, lift, tilt Rect. Motion tracking

Lambert et al. (2010) 1-D coupled. Spectral method
for solving.

1 Shift Circular Rect. 1-DOF force
measurement

Valsamis, Mastrangeli
& Lambert (2013)

Based on Kelvin–Voigt.
COMSOL, axisymmetric
solving.

— Lift Circular Harmonic response

Najib et al. (2017) 3-D coupled model with heat
transfer. Fluent, VOF model
solving.

3 Shift, lift, tilt, twist Rect. Top view observation
of shift motion

This paper 2-D coupled. Fully numerical
FEM with ALE method
model. COMSOL solving.

2 Shift, lift, tilt Rect. Motion tracking

This paper 2-D coupled. Geometrical
assumptions. Not solved.

2 Shift, lift, tilt Rect. None

This paper 2-D coupled. Linearised
equations. Semianalytical
3-DOF modal analysis.
Mathematica solving.

2 Shift, lift, tilt Rect. Motion tracking

This paper 1-D coupled. Semianalytical
1-DOF model. Mathematica
solving.

1 Shift Rect. Motion tracking

TABLE 1. Overview of the dynamical self-alignment models and their experimental validations. The terms ‘1-D uncoupled’, ‘1-D coupled’ and
‘2-D coupled’ refer to figure 1(b–d), respectively. The following abbreviations are used: rectangular (Rect.); finite element method (FEM).
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FIGURE 2. Illustration of 2-D self-alignment motion of a rectangular pad linked to a similarly
shaped substrate by a liquid meniscus. The grey dashed lines sketch the rest state of the system.
Here F TP and F TQ are the tension forces applied on the triple line interface, Pg is the ambient
pressure and point G is the centre of mass of the rectangular pad. Its coordinates along 1x and
1z are the shift and lift DOF. Here θ (the tilt) is the third degree of freedom of the pad. The
meniscus, respectively, forms the angles φ +ΘP and ψ −ΘQ at points P and Q with the vertical
axis. Angles ΘP and ΘQ expressed as functions of the DOF xG, zG and θ can be found in
appendix B. These two angles are positive when the solid shifts rightwards.

line during the motion. The height of the solid pad in motion at abscissa x and at time t
is given by H(x, t). The liquid meniscus is assumed to be pinned on the edges of the chip
and substrate (i.e. at points P, SP, Q and SQ). The shift, tilt and lift motions of the chip are
computed by solving these models, while the twist motion is not considered in this work.
Note that not all the notations are used in each model.

2.1. Fully numerical 2-D nonlinear model
The model presented in this section is the most general of the four models presented here
and allows nonlinearities for the coupled solid and fluid physics. The stresses are computed
in the solid pad domain. The equations used in this model are numerically solved in the
software COMSOL Multiphysics and rely on references COMSOL (2017) and COMSOL
(2018).

The model consists of a meshed solid domain (i.e. the pad) and a meshed fluid domain
(the liquid meniscus). The substrate is included in the model as a boundary and is not
meshed. Considering that Eulerian and Lagrangian descriptions (for the fluid and the solid
physics, respectively) are mixed in this model, the ALE method (Donea et al. 2017) is
used to combine these descriptions in the following developments. In both domains, the
Laplace equation ∇2umesh = 0 is solved to spread the deformation of the mesh. The mesh
displacement vector is given by umesh (m).

2.1.1. Physical description of the liquid meniscus
As sketched in figure 2, in this numerically solved model, we consider a liquid meniscus

pinned on the edges of a solid pad on one side, and of a substrate on the other side. The
liquid is considered incompressible. The viscous dissipation and inertial effects are likely
to be significant. Therefore, the velocity and pressure fields in the meniscus are obtained
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2-D self-alignment models 910 A6-7

by solving the isothermal Navier–Stokes equations for an incompressible fluid

ρ
∂v

∂t
+ ρ

((
v − ∂umesh

∂t

)
· ∇
)

v = ∇ · T + F , (2.1)

∇ · v = 0. (2.2)

The mesh velocity ∂umesh/∂t arises from the definition of time derivatives in the
coordinate system of the deformed mesh; v (m s−1) is the velocity vector; ρ (kg m−3) is the
density of the fluid; and F (N m−3) is the volume force vector. Taking gravity into account,
it yields F = ρg, with g = (0, 0,−g).

Here T = [−pI + τ ] (Pa) is the total stress tensor, which can be separated in two
parts: p (Pa) is the pressure; and τ = μ(∇v + (∇v)T) (Pa) is the viscous stress tensor
for incompressible fluids, with μ (Pa s) the dynamic viscosity; I is the identity tensor.

At the liquid–gas interface, where the mass flow and the surface tension gradient are
considered zero, the additional stress due to the curvature of the meniscus leads to the
boundary condition

ni · T = −Pgni + γ (∇s · ni)ni, (2.3)

where Pg (Pa) is the external gas pressure, γ (N m−1) is the surface tension coefficient, ni
the local normal to the liquid–gas interface pointing outward, and ∇s (m−1) is the surface
gradient operator, which is defined as

∇s = (I − ninT
i )∇. (2.4)

At this same interface, the mesh velocity is imposed by the kinematic relationship

∂umesh

∂t
· ni = v · ni. (2.5)

At the liquid–substrate interface, the fluid is constrained by a no-slip condition and the
nodes of the mesh are fixed. It reads as

v(x, z = 0, t) = 0 and umesh(x, z = 0, t) = 0. (2.6a,b)

The liquid is considered to be initially at rest,

v(x, z, t = 0) = 0. (2.7)

Also, the mesh displacement at time t = 0 is umesh(x, z, t = 0) = 0. It is free to deform
during the solving and will adjust to the motion of the pad through a constrained mesh
displacement and velocity continuity conditions (see § 2.1.3). The spatial discretisation of
the liquid domain is ensured by using quadratic elements for the velocity field and linear
elements for the pressure field.

2.1.2. Physical description of the solid pad
A brief presentation of the solid physics is made in this section. The full physical

description of the solid pad can be found in appendix A.
Aiming at modelling a planar capillary driven motion of the solid, the latter is chosen

to be described by a 2-D plane strain model, i.e. where the strain components εy , εxy and
εyz are forced to be zero. The solid domain is subjected to gravity, pressure from the fluid
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910 A6-8 A. Chafaï and others

phases, viscous shear stress from the liquid domain and capillary forces. These last three
coupling terms are presented in § 2.1.3.

As this model is meant to be as general as possible, and thus compatible with potentially
large strains, the total Lagrangian formulation is chosen. In this formulation, the equations
of solid mechanics are expressed in the initial (or reference) configuration. Therefore, any
given element of the solid is described by X = (X,Z), its initial position vector (i.e. in
the fixed reference frame). At time t, this element has moved to x(X , t). Its displacement
vector is thus defined as u(X , t) = x − X (m).

2.1.3. Solid and fluid physics coupling
The solid and fluid physics now need to be coupled in displacement, speed, stress and

mesh motion.
First, the initial guess for the pressure in the liquid meniscus is the combination of the

hydrostatic pressure, the external gas pressure Pg (Pa) and the compression of the meniscus
due to the weight of the solid object (modelled in § 2.1.2),

p(x, z, t = 0) = (h0 − z)gρ + d gρs0 + Pg, (2.8)

where d (m) is the height of the pad and h0 (m) is the initial height of the meniscus. As
defined earlier in § 2.1.2, ρs0 (kg m−3) is the initial density of the pad.

The following two coupling terms are related to the capillary force F C (N), which can
be written as F C = F T + F L , the sum of the Laplace force F L and the tension force F T .

The tension force F T is applied to the solid, and distributed on the physical intersection
of the solid, liquid and gas domains. In our 2-D models, this intersection (also known
as the triple line) is merged with the edges of the solid object on its underside, and is
represented by two points at each extremity of the solid in figure 2 (i.e. points P and Q).
The tension force is

F T = γDti, (2.9)

where ti is the local tangent vector to the meniscus at each node describing the position of
the triple line and D is the length of the triple line in the transverse direction. The edges
along 1x do not play any role in the definition of this restoring force.

The Laplace force arises from the pressure jump across the liquid–gas interface, and
results in an additional stress to be applied on the wetted surface of the solid object.
The driving terms of this stress, also driving the meniscus curvature, are the boundary
conditions (2.3) and (2.5). Note that the Laplace force, which could be seen has a force the
substrate would apply on the object through the contribution of the liquid meniscus acting
like a spring, can either be attractive or repulsive depending on the meniscus curvature.
In the same way, and as the meniscus’ tangent vectors on the triple line would always be
directed towards the substrate, the tension force is always attractive.

This coupling by the Laplace force is achieved simultaneously with the pressure and
shear stress continuity conditions. Together, they constitute the force exerted on the solid
by the liquid meniscus on the boundary located at z = H,

f = n · T , (2.10)

where n is the unit vector normal to the underside of the chip pointing outward of the
liquid. The total stress tensor T has been defined previously in § 2.1.1.
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2-D self-alignment models 910 A6-9

To project f in the reference frame, it needs to be rewritten thanks to the mesh elements
scale factors in the deformed and reference frames dv and dV , respectively, as follows:

F = f
dv
dV
. (2.11)

The solid acts on the fluid through a no-slip condition at the solid–liquid interface.
There, the velocity continuity condition reads as

v = ∂u
∂t

at z = H. (2.12)

Note that due to the choice of the ALE method, which does not handle topological
changes, the model would lose its physical meaning for shifts large enough to lead to
the dewetting of the solid surfaces. The rupture of the liquid meniscus is therefore also
incompatible with the model.

2.2. Semianalytical 3-DOF modal analysis
Starting from the most general 2-D model presented in § 2.1, we will now make some
assumptions leading to a simplified model. In particular, we here consider that the menisci
remain circular during the motion. The pad is assumed to be a rectangular rigid body, in
accordance with the elastocapillary length computed in appendix A. The forces, stresses
and momentum are applied to its centre of gravity located at (xG; zG).

In a similar manner to the foregoing model, the liquid meniscus velocity field v =
vx 1x + vz1z and the pressure p are modelled using the Navier–Stokes equations for
isothermal incompressible fluids. Equations (2.1) and (2.2) may be rewritten as

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p + μ∇2v + ρg, (2.13)

∇ · v = 0. (2.14)

The no-slip boundary conditions (2.6a,b) for the velocity of the liquid at the
liquid–substrate and (2.12) the pad–liquid interfaces are also rewritten according to our
current geometrical assumptions. At z = 0 and at z = H(x, t), where H is now a linear
function in x , it yields

v(x, z = 0, t) = 0, (2.15)

v(x, z = H, t) = ∂u
∂t
(x, z = H, t), (2.16)

where u is the displacement of the pad.

2.2.1. Rectangular and rigid body assumptions
As we now consider that the rectangular rigid body is tilted at an angle of θ with the

horizontal axis, (2.16) can be rewritten as

vx |z=H = ∂xG

∂t
− [H − zG]

∂θ

∂t
and vz|z=H = ∂zG

∂t
+ [x − xG]

∂θ

∂t
, (2.17a,b)

where xG, zG and θ are the three DOF (the shift, lift and tilt motions) of the rigid pad. Here
H can be written as a function of the coordinates of chip edges P(xP, zP) and Q(xQ, zQ)
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910 A6-10 A. Chafaï and others

(themselves depending on the DOF xG, zG and θ ) as follows:

H(x, t) = zP(t)+ zQ(t)− zP(t)
xQ(t)− xP(t)

[
x − xp(t)

]
. (2.18)

Note that ∂H/∂x = tan(θ), and that in the absence of phase change, the kinematic
equation relates the time-derivative of H to the liquid velocity as

∂H
∂t

= vz|z=H − vx |z=H
∂H
∂x
. (2.19)

By defining Q(x, t) the volumetric flux (per unit length in the 1y direction) by

Q(x, t) =
∫ H(x,t)

0
vx(x, z, t) dz, (2.20)

and by integrating equation (2.14) from z = 0 to z = H and using (2.19), we express the
local conservation of liquid volume using

∂H
∂t

+ ∂Q
∂x

= 0. (2.21)

The latter equation is valid everywhere but near to a liquid–gas interface. There, instead
of the full hydrodynamic boundary conditions at the deformable liquid–gas interface, a
simplified approach will be applied in view of the lubrication-type assumption to be used
later on.

2.2.2. Circular menisci assumptions
Specifically, we will assume the menisci to remain circular (see figures 2 and 3) and to

simply cause an excess capillary pressure with respect to the ambient, i.e. we write

p(−L/2, zP/2, t) = Pg + 2γ sin(φ)
/√

(xP + L/2)2 + z2
P , (2.22)

p(L/2, zQ/2, t) = Pg + 2γ sin(ψ)
/√

(xQ − L/2)2 + z2
Q , (2.23)

where φ and ψ are defining the circular shapes of the menisci, respectively, and the
left- and right-hand sides (see figure 2). A careful global consideration of liquid volume
conservation is needed as well. First, the total volume must remain constant and equal to
its value V0 in the rest state. This reads as

V0 =
∫ xQ

xP

H(x, t) dx +
(

xP + L
2

)
zP

2
−
(

xQ − L
2

)
zQ

2

+
[(

xP + L
2

)2

+ z2
P

]
Cap(φ)+

[(
xQ − L

2

)2

+ z2
Q

]
Cap(ψ), (2.24)

where Cap(α) = [α − sin(α) cos(α)]/4 sin2(α) is the area of a circular cap with angle α
and unit base. Second, cutting the domain in two parts at x = 0, it must be expressed that
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h0

P

φ

SP

–L/2 0xp

1z

1y
1x

φ

zp

RP

ΘP

ρP

G

FIGURE 3. Geometrical parameterisation for the calculation of the excess capillary pressure
with respect to the ambient on the left-hand side of the meniscus. A similar parameterisation is
adopted for the right-hand side, i.e. at point Q, using ψ instead of φ. As the solid shifts towards
the left, angles ΘP and ΘQ are negative.

the volumetric flux Q passing to the domain x > 0 must be equal to the time derivative of
liquid volume (actually, area) on this side, i.e.

Q(x = 0, t) = ∂

∂t

{∫ xQ

0
H(x, t) dx −

(
xQ − L

2

)
zQ

2
+
[(

xQ − L
2

)2

+ z2
Q

]
Cap(ψ)

}
.

(2.25)
Finally, besides equations governing the fluid motion, we will also need equations for

the motion of the chip. The latter is subjected to capillary forces acting on points P and Q,
where the meniscus, respectively, forms the angles φ +ΘP and ψ −ΘQ at points P and Q
with the vertical axis. Accordingly, these forces read as

F P = −γ [sin(φ +ΘP)1x + cos(φ +ΘP)1z], (2.26)

F Q = γ [sin(ψ −ΘQ)1x − cos(ψ −ΘQ)1z], (2.27)

where, the angles ΘP and ΘQ can be expressed as functions of the degrees of freedom
xG, zG and θ , as shown in appendix B. Angles ΘP and ΘQ are positive when the solid
shifts towards the right. In contrast, the angles φ and ψ are additional DOF for which
a sufficient number of constraints have now been written. In addition to these capillary
forces, other forces acting on the chip are gravity, ambient pressure on its top boundary
and viscous/pressure stresses exerted by the liquid. As defined in (2.10), the unit vector
normal to the underside of the chip pointing outward from the meniscus is n. It should,
however, be rewritten as n = − sin(θ)1x + cos(θ)1z according to our current geometrical
assumptions. The corresponding stress reads as

Sn = 1x

[(
p − 2μ

∂vx

∂x

)
sin(θ)+ μ

(
∂vx

∂z
+ ∂vz

∂x

)
cos(θ)

]

+ 1z

[
−μ

(
∂vx

∂z
+ ∂vz

∂x

)
sin(θ)−

(
p − 2μ

∂vz

∂z

)
cos(θ)

]
. (2.28)
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Defining position vectors RG = xG1x + zG1z, RP = xP1x + zP1z, RQ = xQ1x + zQ1z as
well as the x-dependent vector RH = x1x + H1z, Newton’s equation for the centre of mass
G becomes

m
d2RG

dt2
= −mg − PgLn + F P + F Q − (cos(θ))−1

∫ xQ

xP

Sn dx, (2.29)

where m is the chip mass per unit length in the 1y direction.
The angular momentum conservation reads as

IG
∂2θ

∂t2
= (RP − RG)× F P + (RQ − RG)× F Q − (cos(θ))−1

∫ xQ

xP

(RH − RG)× Sn dx,

(2.30)
where IG = mL2Λ is the moment of inertia of the chip, in which Λ = (1 + d2/L2)/12 is a
geometric factor, while the cross product must be understood as A × B = Ax Bz − AzBx .

2.2.3. Lubrication assumption and linearisation
The above problem is made dimensionless by scaling horizontal lengths by the chip

length L in the 1x direction and vertical lengths by the thickness of the liquid h0 when in
the rest state and time by ω−1 = √

mh0/2γ .
The smallest parameter underlying the lubrication assumption in the liquid is ε =

h0/L � 1. In addition, the deviation from the equilibrium position of the chip (to be
defined hereafter) is small and measured by another small parameter δ � 1, which will
be used to linearise the whole boundary value problem. Specifically, we write

xG(t) = δLx̃G(t̃), (2.31)

zG(t) = h0

(
1 + d̃

2
+ δz̃G(t̃)

)
, (2.32)

θ(t) = δθ̃(t̃), (2.33)

φ(t) = φ0 + δφ̃(t̃), (2.34)

ψ(t) = φ0 + δψ̃(t̃), (2.35)

where t̃ = ωt is the dimensionless time, d̃ = d/h0 is the scaled thickness of the chip, while
φ0 is the angle measuring the deformation of the menisci at equilibrium (to be calculated
later). As for liquid velocity components vx , vz and pressure P, we use the following
scalings:

vx(x, z, t) = δLωṽx(x̃, z̃, t̃), (2.36)

vz(x, z, t) = δεLωṽz(x̃, z̃, t̃), (2.37)

p(x, z, t) = Pg + P0 − ρgz + δμωε−2p̃(x̃, z̃, t̃), (2.38)

where Pg is the gas pressure and P0 is a yet-undetermined uniform pressure to be calculated
along with the equilibrium curvature of the meniscus. Note that the volumetric flux,
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defined by (2.20), is rescaled as

Q(x, t) = δLωh0Q̃(x̃, t̃), where Q̃ =
∫ H̃(x̃,t̃)

0
ṽx dz̃, (2.39)

in which H̃(x̃, t̃) = H(x, t)/h0 is the dimensionless counterpart of H and can be written as
a function of x̃G, z̃G and θ̃ .

After having substituted the above scalings into the governing equations and boundary
conditions stated in the previous subsections, the various powers of δ can be collected.

For the rest state (i.e. order δ0), when taking the limit δ → 0 of the boundary value
problem, the expression of the total volume conservation (2.24) reduces to

V0 = Lh0 + 2h2
0 Cap(φ0), (2.40)

which actually relates the volume of the bridge to its thickness h0. Note, however, that the
angle φ0 in this equation may depend on h0 itself, as it must be found from the projection
of the force balance (2.29) on the vertical, in which p = Pg + P0 = Pg + 2γ h−1

0 sin(φ0)
according to (2.38) and (2.22)–(2.23). This yields

mg
2γ

+ cos(φ0) = L
h0

sin(φ0) or
ρs

ρ

d
h0

Bo
2

+ ε cos(φ0)− sin(φ0) = 0, (2.41)

where ρs is the chip’s density, while Bo = ρgh2
0/γ is the Bond number, which is assumed

to be small coherently with the assumption of circular menisci. More precisely, we assume
that Bo d/h0 � ε, i.e. dL � �2

c . In this case, as ρs/ρ = O(1), there is a balance between
second and third terms in (2.41), i.e. between the capillary force exerted by the menisci
and the excess capillary pressure due to their curvature, with negligible influence of the
chip’s weight (first term). Thus, (2.41) is solved by φ0 � ε � 1, while the total volume is
very well approximated by V0 = Lh0. Note that in order to keep track of the physical origin
of terms in the equations, φ0 will not yet be substituted by ε everywhere in what follows,
though it will be assumed to be small.

Let us now develop order δ1, i.e. the fluctuation dynamics around the rest state. We will
proceed by expanding all equations and collecting terms proportional to δ, starting with
the hydrodynamic problem for the liquid velocity field. The Navier–Stokes and continuity
((2.13) and (2.14)) together with their boundary conditions ((2.15) and (2.16)) on the base
and on the chip, yield at the first order the following dimensionless equations:

Re
dṽx

dt̃
= ∂2ṽx

∂ z̃2
− ∂ p̃
∂ x̃
, (2.42)

∂ p̃
∂ z̃

= 0, (2.43)

∂ṽx

∂ x̃
+ ∂ṽz

∂ z̃
= 0, (2.44)

ṽx(z̃ = 0) = 0, (2.45)

ṽx(z̃ = 1) = dx̃G

dt̃
+ d̃ε

2
dθ̃
dt̃
, (2.46)

where 1x and 1z components of the Navier–Stokes equations have been separated and the
lubrication hypothesis has been applied in view of the assumption ε � 1, coherently with
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the scalings (2.36)–(2.38). We have also defined a Reynolds number as

Re = ρωh2
0

μ
. (2.47)

Now, expanding (2.18) up to first order, we get

H̃ = H
h0

= 1 + δ
(

z̃G + ε−1 x̃ θ̃
)
, (2.48)

from which (2.21) together with (2.39) leads, after integration on x̃ , to

Q̃ =
∫ 1

0
ṽx dz̃ = Q̃0(t̃)+ x̃Q̃1(t̃)+ x̃2

2
Q̃2(t̃), (2.49)

where we have defined

Q̃1 = −dz̃G

dt̃
and Q̃2 = −ε−1 dθ̃

dt̃
, (2.50a,b)

while Q̃0 is an integration constant. Accordingly, we decompose the velocity field ṽx as

ṽx = ṽx0
(
z̃, t̃
)+ x̃ ṽx1

(
z̃, t̃
)+ x̃2

2
ṽx2
(
z̃, t̃
)

(2.51)

and the pressure field p̃ as

p̃ = p̃0
(
t̃
)+ x̃ p̃1

(
t̃
)+ x̃2

2
p̃2(t̃)+ x̃3

6
p̃3
(
t̃
)
, (2.52)

which indeed has to be independent of z̃ according to (2.43). The hydrodynamic problem
can then be solved by the linear superposition of three types of flows:

Re
dṽx2

dt̃
= ∂2ṽx2

∂ z̃2
− p̃3,

ṽx2(z̃ = 0) = ṽx2(z̃ = 1) = 0,

Q̃2 =
∫ 1

0
ṽx2 dz̃ = −ε−1 dθ̃

dt̃
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.53)

Re
dṽx1

dt̃
= ∂2ṽx1

∂ z̃2
− p̃2,

ṽx1(z̃ = 0) = ṽx1(z̃ = 1) = 0,

Q̃1 =
∫ 1

0
ṽx1 dz̃ = −dz̃G

dt̃
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.54)

Re
dṽx0

dt̃
= ∂2ṽx0

∂ z̃2
− p̃1,

ṽx0(z̃ = 0) = 0, ṽx0(z̃ = 1) = dx̃G

dt̃
+ d̃ε

2
dθ̃
dt̃
,

Q̃0 =
∫ 1

0
ṽx0 dz̃.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.55)
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Note that the inertia is maintained in the unsteady terms. Given that we assume a small
aspect ratio ε = h0/L, together with small amplitudes of oscillations (which in particular
allows dropping nonlinearities in the Navier–Stokes equations), this turns out to be fully
coherent at the considered order. Regarding the order of magnitude of the Reynolds
number (ranging from 4.96 to 56.3 in the experiments), it appears that values as large
as Re ∼ 102 can be considered, as shown by the rather satisfactory comparison between
our semianalytical modal analysis and fully numerical simulations (see § 4).

These three flows have a clear physical interpretation: ṽx0 is a x-independent flow
associated with the horizontal translation (due to shift and tilt variations) of the chip,
ṽx1 is an extensional (‘squeezing’) flow induced by variations of the lift, and ṽx2 is a flow
due to the vertical component of the chip velocity when the tilt varies. Note that while the
first two problems, for ṽx2 and ṽx1, can be fully solved as a function of dθ̃/dt̃ and dz̃G/dt̃
(also leading to their corresponding pressure contributions p̃3 and p̃2, see hereafter), the
last one is associated with a yet-undetermined flux Q̃0(t̃), which has to be found from
the conservation of mass to the right of x̃ = 0, i.e. (2.25). Expanding the latter and using
(2.39) again, we get

Q̃0 = Q̃(x̃ = 0) = 1
2

dx̃G

dt̃
+ 1

2
dz̃G

dt̃
+ 1

8ε
dθ̃
dt̃

+ ε

6
dψ̃
dt̃
, (2.56)

where only highest-order terms in ε have been kept (remember in particular that φ0 = ε,
as seen when studying the rest state).

In addition to the chip’s DOF x̃G, z̃G and θ̃ for which equations will be obtained
hereafter, it thus remains to couple the dynamics of fluctuations of the menisci angles
φ̃ and ψ̃ to other fluctuations around the rest state. In fact, three equations are needed
for this purpose, as nothing determines yet the homogeneous pressure contribution p̃0 in
(2.52). These conditions correspond to the volume conservation (2.24) and to left and right
pressure conditions (2.22) and (2.23), which at the first order in δ, respectively, lead to

z̃G + ε
φ̃ + ψ̃

6
= 0, (2.57)

p̃(x̃ = 1/2)+ p̃(x̃ = −1/2) = 2p̃0 + p̃2

4
= 2ε2

Ca

(
φ̃ + ψ̃

)
, (2.58)

p̃(x̃ = 1/2)− p̃(x̃ = −1/2) = p̃1 + p̃3

24
= 2ε2

Ca

(
ψ̃ − φ̃ − θ̃

)
, (2.59)

again ignoring some higher-order contributions in ε (= φ0), and where we have defined
a capillary number,

Ca = μωh0

γ
, (2.60)

which is itself small in general, therefore possibly able to balance the smallness of ε2 in
(2.58) and (2.59).

It thus remains to expand the chip’s equations of motion ((2.29) and (2.30)) at order δ
in order to close the system of (2.53)–(2.59). Again, considering that φ0 = ε � 1, we get
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the following equations for shift, lift and tilt:

d2 x̃G

dt̃2
+ x̃G = ε

2
(ψ̃ − φ̃)− ε

(
1 + d̃

2

)
θ̃ − Ca

2ε

∫ 1/2

−1/2

∂ṽx

∂ z̃

∣∣∣∣
z̃=1

dx̃, (2.61)

d2z̃G

dt̃2
− ε

2
(ψ̃ + φ̃) = d2z̃G

dt̃2
+ 3z̃G = Ca

2ε3

∫ 1/2

−1/2
p̃ dx̃, (2.62)

Λ
d2θ̃

dt̃2
+ ε2

4
(2 + 3d̃ + d̃2)θ̃ = −ε

2
(1 + d̃)x̃G + ε2

4
(1 + d̃)(ψ̃ − φ̃)

+ Ca
2ε2

∫ 1/2

−1/2
p̃ x̃ dx̃, (2.63)

in the second of which we have used (2.57), and where we note that only the leading-order
contributions in ε are kept from the stress integrals along the underside of the chip,
coherently with the lubrication assumption. It is complex to simplify the equations further,
however, such that we keep other (apparently) small terms for the moment, and proceed to
the resolution of this strongly coupled O(δ) problem.

2.2.4. Modal analysis: dispersion equation for the fluctuations
Now, (2.51)–(2.63) constitute a linear homogeneous system which can be solved by a

superposition of normal modes

U = exp
(

iΩ̃ t̃
)

U0, (2.64)

where

U =
(
ṽx0 ṽx1 ṽx2 p̃0 p̃1 p̃2 p̃3 Q̃0 Q̃1 Q̃2 φ̃ ψ̃ x̃G z̃G θ̃

)
,

U0 =
(
ṽx00 ṽx10 ṽx20 p̃00 p̃10 p̃20 p̃30 Q̃00 Q̃10 Q̃20 φ̃0 ψ̃0 x̃G0 z̃G0 θ̃0

)
⎫⎪⎬
⎪⎭ (2.65)

and Ω̃ is the dimensionless complex pulsation, i.e. with Ω = ωΩ̃ .
Inserting these normal modes into the system (2.51)–(2.63) and solving for the

z-dependencies of ṽx00, ṽx10, ṽx20 (along with the corresponding fluxes) leads to an
algebraic homogeneous linear system which can be written as a matrix system M0 · U00 =
0, with U00 the vector of remaining unknowns,

U00 =
(

p̃00 p̃10 p̃20 p̃30 φ̃0 ψ̃0 x̃G0 z̃G0 θ̃0

)T
. (2.66)

The 9 × 9 matrix M0 is specified in appendix B. Non-trivial solutions exist only when
the determinant of M0 vanishes, which provides the (complex) dispersion relation allowing
the determination of the complex pulsation Ω̃ . This dispersion relation is too complex to
be reproduced here, but might possibly be simplified on the basis of small Ca and ε.

Finally, the oscillation and damping time constants (respectively, T and τ ) are obtained
as follows:

T = 2π

Re(ωΩ̃)
and τ = 1

Im(ωΩ̃)
. (2.67a,b)
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2.3. Semianalytical 1-DOF model

2.3.1. Pure shift and lubrication assumptions
A 1-D model will now be presented. It is applicable in the case of a floating rectangular

rigid object lying on a thin liquid layer of thickness h0 (lubrication assumption) and
horizontally shifting along 1x with small amplitudes with respect to the pad length L.
The tilt and lift motions do not come into play in the equations any more.

Let us come back to the dimensional Newton’s equation ruling the position of the pad,
which, in the particular case of this subsection, writes as

m
d2xG

dt2
= −μL

∂vx

∂z

∣∣∣∣
z=h0

− γαxG, (2.68)

where we keep the same nomenclature as presented in the supplementary material, and
where α accounts for the geometrical distortion of the liquid meniscus at the edges.
Here α arises from the minimisation of the surface energy for a straight meniscus:
α = 2

/√
x2

G + h2
0 (Lambert et al. 2013).

The first term in the right-hand side of the equation, corresponding to the viscous shear
force exerted by the liquid on the solid at z = h0, should be computed from the Stokes
equation

ρ
∂vx

∂t
= μ

∂2vx

∂z2
. (2.69)

The object is assumed to be at rest in a shifted position at t = 0, so that

xG(0) = xG0 and
dxG

dt
= 0, (2.70a,b)

where xG0 is the initial shift applied on the pad. Respectively, the initial condition for the
liquid being at rest at t = 0, and the no-slip conditions for the velocity field in the liquid
at the interface with the substrate and with the pad read as

vx(0, t) = 0 and vx(h0, t) = dxG

dt
and vx(z, 0) = 0. (2.71a–c)

2.3.2. Linearisation
In the case of a small initial shift xG0 compared with the liquid depth (i.e. small

horizontal displacements assumption, xG0 � h0) one can take α = 2/h0. Also, assuming
small displacements of the pad compared with its length, i.e. for xG0/L � 1, the
eigenmode analysis writes as

xG(t) = xG0 exp(iΩt) and vx(y, t) = vx0 exp(iΩt), (2.72a,b)

where vx0 denotes the velocity perturbation and Ω is the complex pulsation. Combining
(2.72a,b) and (2.68) with (2.71a–c) yields

mΩ2 − μL
xG0

∂vx0

∂z

∣∣∣∣
z=h0

− αγ = 0, (2.73)
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μ

ρ

∂2vx0

∂z2
− iΩvx0 = 0, (2.74)

vx0(0) = 0, (2.75)

vx0(h0) = iΩxG0. (2.76)

For the boundary conditions (2.75) and (2.76), the ordinary differential (2.74) has an
analytical solution of the form

vx0 = i xG0Ω

sinh
(
λz
h0

)
sinh(λ)

, with λ = h0

√
iρΩ
μ
. (2.77)

Using (2.77) in (2.73) finally gives

mΩ2 − iμLλΩ coth(λ)
h0

− αγ = 0. (2.78)

From the solution presenting a positive real part for the complex pulsation Ω , the
oscillation period and the damping time constant of the system are extracted as

T = 2π

Re(Ω)
and τ = 1

Im(Ω)
. (2.79a,b)

3. Material and methods

The objective of the experimental set-up is to characterise the free oscillations of
the meniscus in its symmetry plane. Therefore, the shift motion along 1x is measured.
Although the twist motion of the chip or the shift along the 1y axis are not modelled in
this paper, these motions are of interest and should be tracked as they have been found
to have an influence on the damping the system in the 1x direction. This point will be
developed in § 4.1.

Figure 4 shows the experimental set-up used for the validation of the models. The free
oscillations of the object are initiated by an SMAC LAL95 Series linear actuator able to
reach an acceleration of approximately 121 m s−2. Such acceleration allows a withdrawal of
the actuator without interfering with the first oscillations of the solid, estimated at 1 m s−2.
The SMAC actuator is not mounted on the anti-vibration table, as its high accelerations
would make it interfere with the system.

The spherical tip applying the initial shift on the chip is computer-aided designed
and 3-D printed using a Nanoscribe Photonics Professional GT device based on the
two-photon initiated polymerisation technology. This technology, which can reach a 200
nm resolution, enables printing a tip small enough to avoid any unwanted wetting of its
surface by the meniscus. The resolution of the printer is also largely sufficient to consider
that the tip is spherical, leading to its rotation invariance, and thereby increasing the
repeatability of the experimental process. In order to keep out-of-plane motions small, the
experimental routine consists of a prior check of the horizontal positioning of all parts,
ensuring that the spherical 3-D printed tip will not push upwards or downwards on the
chip. As the tip only pushes over a few dozens of micrometres, the remaining horizontality
defects are not likely to produce a significant variation in the height of the tip when pushing
on the chip.
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3-D printed tip

L × D × d mm3 coated glass

Liquid (DMSO : γ, µ, ρ)

1z

1x

1y

Anti-vibration table

SMAC

actuator

High-speed

camera

Light

Elastic self-alignment motion

SMAC motion

Beam splitter

FIGURE 4. Experimental set-up for the motion tracking of a patterned chip. The liquid meniscus
has been distorted by applying an initial shift on the coated chip thanks to the actuator. At time
t = 0, the actuator retracts faster than the chip subjected to the self-alignment effect.

The object used as a chip for the validation is a 18 mm × 18 mm × 0.15 mm glass
slide. The liquid is an organosulfur compound known as dimethyl sulfoxide (DMSO).
The volume of liquid is measured and deposited thanks to a micropipette. It has been
systematically varied in these tests, thus producing liquid layers ranging from 0.182 mm
to 0.919 mm in thickness. The micropipette has been calibrated for DMSO by weighting
the deposited volumes several times and averaging the results for each considered volume.
The volume of liquid being the only varied parameter, the deviation on these volumes has
been measured and is at most 1 μL , which is equivalent to a 3 μm deviation for the layer
thickness h0.

The compound DMSO has a very low evaporation rate, and prior tests have shown that
an average meniscus kept in the usual experimental environment (see figure 4) would only
lose approximately 6 μm in height over an hour. This is therefore an interesting liquid to
use, as the experimental routine requires long adjustments and consists of different steps
during which the meniscus shall remain the same. The surface tension of pure DMSO at
20 ◦C is 43.54 mN m−1 (Jasper 2004).

After the actuator has applied an initial rightward horizontal offset on the chip, paused,
and withdrawn leftward, the chip oscillates freely. A high-speed camera captures the
movements of the chip through a beam splitter.

To track the chip, a pattern has been randomly etched in a metallic coating obtained by
sputtering deposition. A pattern-tracking algorithm based on the Shi–Tomasi algorithm
(Shi & Tomasi 1994) is then used to get the position of many points at each time step, see
figure 5(b). The least squares method is applied to retrieve the movement of the chip as
a combination of a rotation in the horizontal plane (i.e. the twist) and the two shifts with
respect to the centre of mass G.

Note that there is no need to see the entire chip in order to find the displacement of
the centre of gravity G, and by doing so we can zoom in to increase the resolution. Any
zoomed view of the chip is sufficient to recover the full in-plane displacement of G and
the rotation of the pad, provided the location of G is determined in this image. Here, this
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5 mm

(b)(a)

2.5 mm

FIGURE 5. Two of the tracking routine steps. (a) Top view of a randomly etched glass chip. Its
centre of mass G is obtained by finding the edges. The red crosses show the resulting corner
coordinates. Here G is located at the centre of the green square. The position of the observed
region of the chip (blue box) is found by cross-correlation. The white circle represents the centre
of the observed region. The coordinates of the centre of mass are thereby known in the observed
region of the chip. (b) Observed region of the chip. Each one of the green points is a tracked
feature. The displacements of these points are used to retrieve the position of the centre of mass
by the least squares method.

was obtained by cross-correlation between the observed region of the chip and a picture
of the whole chip, see figure 5(a).

The results of a typical set of post-processed images are provided in figure 6(a,c,d).
Although it is difficult to quantify the final precision on the displacement measurements,
we can note from figure 6(c), that deviations from the theoretical fit appear to be less
than 1 micrometre. The in-plane displacement of the chip is then plotted, and a damped
sinusoidal signal is fitted in order to get a precise measurement of the period and damping
time constant.

This 2-D image processing routine relies on the assumption of small out-of-plane
deformations of the meniscus, i.e. the lift and tilt displacements remaining small. This
assumption is backed up by looking at the value of the normal residual resulting from the
least squares method. This value is directly related to the distortion of the tracked pattern
on the chip and remains very low with regards to the high number of tracked points.

A presentation of the set-up and the steps for the experimental validation can be found
in supplementary movie 1, available at https://doi.org/10.1017/jfm.2020.919.

4. Results and discussions

The experimental results for the shift along 1x are then compared with the solutions
of the fully numerical 2-D nonlinear model (see § 2.1), of the semianalytical 3-DOF
linearised modal analysis (§ 2.2.3, where the equation det(M0) = 0 is solved) and finally
to the solution of the semianalytical 1 DOF model (§ 2.3, where (2.78) is solved).

The physical parameters used in the model (i.e. chip mass and dimensions, liquid
surface tension, etc.) are experimentally measured and input into the models (see table 2).
Note that γ is slightly higher than its reference value. The compound DMSO is indeed
hygroscopic and therefore quickly absorbs water (Ellson et al. 2005). The DMSO is thus
often renewed and the surface tension is measured each time.
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Experimental data – Shift in 1x direction fitted by

fx(t) = 0.082 cos(2π/0.038t) exp(−t/0.070)

Experimental data–Shift in 1y direction fitted by

fy(t) = 0.002 cos(2π/0.039t) exp(−t/0.148)

FIGURE 6. Typical damped oscillations obtained with the experimental set-up for a 0.08 mm
initial shift in the 1x direction. Period T (s) and damping time constant τ (s) are specified in the
f (t) = xG0 cos((2π/T) t) exp(−t/τ) least squares fitting functions. (a) Shift motions in 1x and
1y directions; (b) COMSOL simulation corresponding to shift along 1x ; (c) focus on the shift
motion in the 1y direction, extracted from (a); (d) Twist motion.

Parameter Description Value Units

γ Surface tension (DMSO) 44.50 × 10−3 N m−1

μ Dynamic viscosity (DMSO) 1.996 × 10−3 Pa s
ρ Density (DMSO) 1100 kg m−3

L = D Side lengths of the pad 18.00 × 10−3 m
d Thickness of the pad 0.1500 × 10−3 m
M Mass of the pad 0.1192 × 10−3 kg

TABLE 2. Physical parameters input into the models for solving.

Figure 6(a) gives an example of experimental data to compare on figure 6(b) with the
corresponding solution of the fully numerical model (§ 2.1). Damping time constants and
periods are analysed to assess the quality of our models.
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FIGURE 7. (a) Increase in the damping time constant with the meniscus height. The damping
time constant τ is extracted from the damped sinusoidal oscillations fitting formula f (t) =
xG0 cos((2π/T)t) exp(−t/τ). Comparison between experimental results obtained with a square
chip and results from models. Bond numbers are given for each value of h0; (b) relative error
between experimental and theoretical results.

4.1. Damping time constant – on the influence of parasitic distortions of the meniscus
Figure 7 presents the experimental and numerical results in terms of the damping time
constant for different values of the meniscus height h0. The Bond number Bo = Δρgh0

2/γ
is given for each value of h0/L. The liquid layer height is approximated by h0 = VLiq/(LD),
where VLiq is the volume of DMSO. These results are additionally given in terms of relative
error with respect to the different models. Repeatability tests have been performed in the
middle of the range of the deposited volumes (i.e. the centre of the experimental design).
Over eight trials, the standard deviation on the damping time constant τ is found to be 1.6
ms.

The damping time constant is well described by both 2-D models. As expected by
considering larger diffusion lengths, increasing the volume increases the damping time
constant: it takes more time for the system to reach its equilibrium state.

By increasing the volume, the Bond number, measuring the balance between
gravitational and surface tensions forces, is increased as well. For high Bond numbers,
the damping behaviour predicted by the 1-D model is much less accurate than both solved
2-D models. The 1-D model leads to an underestimation of the damping time constant.

We expect the 5 % of relative errors to come from fitting errors, and the energy
dissipation in the unwanted deformation modes of the meniscus out of the 2-D space,
as stated by Arutinov et al. (2014), where damping couplings between bilateral shift and
twist motions have been studied. Indeed, as it may be seen in figure 6, by pushing on
the chip along 1x , parasitic shift along 1y and twist motions are generated. Even though
these unwanted displacements are minimised thanks to the precision of the set-up, they are
disrupting the assumed purely straight motion along 1x . However, for the smallest volumes
(see figure 7 at h0/L < 0.011 ), we observe a larger error. Indeed, by working with smaller
meniscus heights h0, the parasitic out-of-plane twist and shift amplitudes become more
significant with regard to the momentum diffusion length h0. The energy dissipates faster
than predicted with the 2-D models, leading to higher relative errors.

To push the analysis further, figure 8 shows measurements bringing to light the effect of
these parasitic deformation modes on the relative error. Here, the chip is pushed along 1x ,
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FIGURE 8. (a) Sketch showing the chip being pushed with a misalignment S (mm) along 1y

in order to excite non-negligible 3-D deformations of the meniscus; (b) evolution of the relative
error for a fixed volume of liquid (h0/L = 0.017) according to the misalignment between the
pushing tip and the centre of mass of the chip.

but an offset S (mm) along 1y is added, as shown in figure 8(a). This generates the parasitic
motions we were originally trying to avoid. By varying this offset S and by measuring the
relative error (%) according to the damping prediction of the models, we thereby show
the influence of 3-D deformation modes (shift and twist) on the damping of the system
along 1x . For the considered range of offsets, the maximal damping error is raised to 14 %
for the largest shift along 1y . With no offset along 1y , the relative error is found to be 3 %
(see figure 8b).

4.2. Period of oscillations – on the influence of corner effects
Figure 9 shows the experimental (see Exp. – square chip) and numerical results for the
oscillation periods. Here, repeatability tests show a standard deviation on T of 1 ms.
By increasing the meniscus height, we observe that the period increases as well. This
is correlated with the decreasing stiffness of the meniscus. Indeed, the mass–spring
analogy gives T = 2π

√
mD/k. The simplified linear stiffness expression for a rectangular

meniscus is formulated as k = 2Dh2
0γ /(x

2
G0

+ h2
0)

3/2 (Lambert et al. 2013), where the
stiffness is modelled by minimising the surface energy of a parallelipipedal meniscus.

The 2-D and 1-D models provide quite similar results in terms of period. Until h0/L ≈
0.034, the results cannot be distinguished for the three models. But as for the damping,
a (however slight) difference may be noticed for larger Bond numbers. There, the 1-D
solution deviates from experimental results.

We may also observe that the models underestimate reality by predicting periods
5.5 ms too low. To explain this, one should remember that, transferred to a 3-D space,
an equivalent of our 2-D modelled meniscus (see figure 2) would be obtained by sweeping
its 2-D geometry along 1y . Therefore, the representation of the meniscus, especially in
the corners of the chip, would not be accurate. Moreover, in the models, the wetting is
assumed to be perfect on the underside of the chip.

These two points amount to neglecting what actually happens in the corners. Indeed, as
shown in figure 10(a), where sketches closely following the experimental pictures of the
menisci are presented, one can see that the curvature changes from convex along the sides
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FIGURE 9. (a) Increase of the period with the meniscus height and comparison with the
models’ predictions; (b) relative error between experimental results and the models.
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FIGURE 10. Sketches closely following the experimental pictures of the meniscus shape in
different cut planes. The colour of the meniscus refers to the cut plane in which the liquid is
observed. (a) Meniscus shape for the square pads; (b) meniscus shape for the rounded pads;
(c) the cut planes in which the pictures have been taken. The AA′ cuts the chip parallel to its
sides, while BB′ cuts it diagonally. (a) Rectangular chip; (b) rounded chip; (c) cut planes.

of the chip, to strongly concave in the corners. The pictures have been taken in the AA′ and
BB′ focus planes presented in figure 10(c).

As this strong local curvature cannot be modelled in two dimensions, some chips have
been modified thanks to a metallography polishing machine. The surfaces do not show
any scratches or cracks under a microscope, which would affect the wetting. Manufactured
rounds measure 0.52 ± 0.13 mm in radius. With a 0.06 % smaller area, these new chips
may be considered as equivalent to the square ones, in terms of mass and wetted area.

When comparing figures 10(a) and 10(b) in the BB′ plane, one can observe that the
rounding operation leads to a better wetting and thus to a less varying curvature in the
rounded corners. This is much closer to the 2-D model, which would show no curvature
variation in the corners when transposed in 3-D.

The periods of the oscillations according to the meniscus height for the rounded chips
are presented in figure 9 (see Exp. – rounded chip) and put in comparison with the periods
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FIGURE 11. An example of normalised tilt motion induced by the oscillations in the case of a
pure initial shift for the fully numerical 2-D nonlinear and linear models. Here zP and zQ vary
due to the shift induced tilting of the pad. The 2-D linear model has been solved for T and τ , and
a normalised damped sinusoidal function has been plotted.

of the rectangular chips. To conclude, approximately half of the error is coming from the
strong curvature in the corners.

Note that the curvature does not significantly keep varying as we slightly increase the
radius of the fillets. In addition, bigger rounding of the corners would lead to greater
differences with the square chips in terms of mass and wetted surface, which would be
undesirable for the comparison.

4.3. Miscellaneous discussions
As the tilt could be assumed small in the considered experimental conditions (L/d = 120),
it has not been extensively studied. However, our 2-D nonlinear model shows that even for
a purely horizontal initial shift (no initial tilt), a rotation around 1y is induced because
of a momentum unbalance during the motion. Note that this coupling is also observed
with the 2-D linearised model, and is therefore not linked with nonlinearities. Figure 11
shows an example of a 2-D shift-induced tilt motion, for a pure initial shift displacement of
the chip. The amplitude has been normalised, however, one should note that the maximal
amplitude of the oscillations is found to be 4.1 × 10−3 degrees in the presented example (in
the middle of the studied volumes range). But by taking this into account, our 2-D models
are robust for situations implying larger tilts. This shift-induced tilt motion highlights the
coupling between shift and tilt.

From a more application-driven point of view, the damping time constant is much
more important than the period of oscillations. It is indeed interesting in an industrial
self-assembly context to know when the system has reached its rest state, i.e. when the
assembly can be considered as finalised. For instance, in order to optimise a high-speed
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self-assembly process using UV photoresist to bound the micro-object and the substrate,
this damping time constant would give the time at which the photoresist could be cured.

5. Conclusion and perspectives

To conclude, this paper presents four dynamical models for the capillary self-alignment
effect between two rectangular pads. Three of them take one shift and one tilt, as
well as the lift motion of the free pad into account. Two are solved: one is a fully
numerical 2-D nonlinear model, and the other one a semianalytical 3-DOF modal analysis.
The last one being 1-D, it only models one shift motion. The latter is obtained by
solving a semianalytical equation. Experimental validations have been performed with
a high-precision motion tracking set-up. These tests have shown that the models provide
a satisfactory description of the observations. Both period and damping descriptions are
largely acceptable as long as the motion can be considered as 2-D. When 3-D deformation
modes (such as twist or shift and tilt in the transverse direction) can no longer be
neglected, it results in higher relative errors for the damping. Indeed, because of coupling
between the modes of deformations, the meniscus dissipates its energy in a way that is
not taken into account by the models, leading to an overestimation of the damping time
constant. The period of oscillations is well described by the models, although it shows a
slight underestimation of the reality leading to a constant error of approximately 5.5 ms.
Approximately half of the error has been shown to come from the 2-D simplification of
the meniscus shape in the corners of the rectangular pads. To get to this result, square
pads with submillimetre-sized fillets have been manufactured and compared with the
rectangular sharp corner pads.

In addition to the useful information such models could provide to self-assembly
processes, it would be interesting to use this kind of model as a basis to build a tool
predicting the dewetting of the pads or even the loss of a microcomponent in the motion on
a conveyor. It would indeed have a practical application toward pick-and-place processes,
defining, therefore, the dynamical limit of the machines. Further works will also focus
on the generalisation of the self-alignment modelling in 3-D, by considering all the DOF
for both the free pad and the liquid. Such a model would remain valid for more complex
motions.

Supplementary material and movie

Supplementary material and movie are available at https://doi.org/10.1017/jfm.2020.
919.
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Appendix A

In this appendix, the physics of the 2-D plane strain solid domain, briefly introduced in
§ 2.1.2, is presented in detail. In the total Lagrangian formulation, the momentum balance
equation for the solid pad writes as

ρs0

∂2u
∂t2

= F v + ∇X · PT . (A 1)

Here, ∇X is the gradient operator in the fixed reference frame. The displacement vector of
an element of the pad is given as u(X , t) = x − X (m), where X = (X,Z) is the position
vector of the element of the solid in the reference frame, and x(X , t) the actual position of
this elements at time t (i.e. in the deformed frame).

Here ρs0 (kg m−3) is the initial density of the solid (i.e. in the reference frame), F v

(N m−3) represents the forces per unit of volume in the deformed configuration given with
respect to the reference configuration. The solid object being subjected to gravity, F v =
ρs0 g.

The first Piola–Kirchhoff stress tensor is P = FS, where S is the second Piola–Kirchhoff
stress tensor and F is the displacement gradient tensor defined by

F = ∂x
∂X

= I + ∂u
∂X

. (A 2)

As the deformations are not constrained to be linear for the solid (in the case large
deformations should be considered), Hooke’s law writes as a function of the second
Piola–Kirschoff stress and Green–Lagrange strain tensors

S = Sad + C : εel, with εel = ε − ε inel, (A 3)

where εel and ε inel are the elastic and inelastic strain tensor, respectively. Even though the
inelastic strain is taken into account in this model, it is expected to remain very low. The
Green–Lagrange strain tensor is ε = 1/2(F TF − I) and Sad represents initial and external
stresses. The ‘:’ operator is the double contraction operator and should be understood as
A : B = ∑

n

∑
m AnmBnm. The fourth-order elasticity tensor is C and is written as

C = E
(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0

0 0 0
1 − 2ν

2
0 0

0 0 0 0
1 − 2ν

2
0

0 0 0 0 0
1 − 2ν

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A 4)

where E and ν are Young’s modulus and the Poisson coefficient.
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Note that in our context of study, where rigid objects are studied, the deformations are
expected to be small. Roman & Bico (2010) define the elastocapillary length lec = √

Eh3/γ

beyond which a substrate of length L > lec, thickness h and Young’s modulus E would be
significantly deformed by capillary forces. In the experimental conditions described in § 3,
for which lec > 1.9 m, it can be expected that our solid can be considered as infinitely stiff
compared with the surface tension induced stress. But such a model could be used for
smaller Young’s moduli, corresponding to softer materials.

On the free boundary of the object, the normal vector of which is designated by n0, is
subjected to the external gas pressure. There, the boundary condition reads as

F A =
⎡
⎣ Pg

0
Pg

⎤
⎦ = P · n0, (A 5)

where F A is the boundary load vector and Pg the external gas pressure.
Finally, at time t = 0, the solid is at rest. Therefore, for the entire solid domain, the

initial displacement field and the velocity field read as

u(t = 0) = 0 and
∂u
∂t
(t = 0) = 0. (A 6a,b)

At the solid–liquid boundary, the mesh displacement is constrained to be equal to the
displacement field of the solid pad,

umesh = u at z = H. (A 7)

Appendix B

This appendix presents the expressions for ΘP and ΘQ as functions of xG, zG and θ , and
the expression for the matrix M0.

From figure 2, the expression for ΘP reads as

ΘP = arctan
(

xP + L/2
zP

)
, where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xP = xG +
(

−L
2

cos(θ)+ d
2

sin(θ)
)

zP = zG −
(

L
2

sin(θ)+ d
2

cos(θ)
) , (B 1)

and ΘQ reads as

ΘQ = arctan
(

xQ − L/2
zQ

)
, where

⎧⎪⎪⎨
⎪⎪⎩

xQ = xG + L
2

cos(θ)+ d
2

sin(θ)

zQ = zG + L
2

sin(θ)− d
2

cos(θ)
. (B 2)
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In the following expression, λ =
√

iReΩ̃ . The 9 × 9 matrix M0 used to rewrite the
algebraic homogeneous linear system in § 2.2 is now presented as follows:

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
i
(
λ− 2 tanh

(
λ

2

))
ReλΩ̃

0 0 0

0 0
i
(
λ− 2 tanh

(
λ

2

))
ReλΩ̃

0 0

0 0 0
i
(
λ− 2 tanh

(
λ

2

))
ReλΩ̃

0

0 0 0 0
1
6

0 1 0
1
24

2ε2

Ca

2 0
1
4

0 − 2ε2

Ca

0 −
iCaλ tanh

(
λ

2

)
2ReεΩ̃

0 −
iCaλ tanh

(
λ

2

)
48RεΩ̃

ε

2

− Ca
2ε3 0 − Ca

48ε3 0 − ε
2

0 − Ca
24ε2 0 − Ca

960ε2
1
4

(
d̃ + 1

)
ε2

− 1
6

iεΩ̃ −
iΩ̃
(
λ− 2 tanh

(
λ

2

))
2λ

− 1
2

(
iΩ̃
)

−
iΩ̃
(
λ− 4d̃ε2 tanh

(
λ

2

))
8ελ

0 0 iΩ̃ 0

0 0 0
iΩ̃
ε

1
6

0
1
ε

0

− 2ε2

Ca
0 0

2ε2

Ca

− 2ε2

Ca
0 0 0

− ε
2

−Ω̃2 + Caiλ coth(λ)Ω̃
2ε

+ 1 0
d̃ε
2

+ ε + 1
4

Caid̃λΩ̃ coth(λ)

− ε
2

0 −Ω̃2 0

− 1
4

(
d̃ + 1

)
ε2 1

2

(
d̃ + 1

)
ε 0

1
4

((
d̃2 + 3d̃ + 2

)
ε2 − 4ΛΩ̃2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B 3)
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