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We consider a model for the evolution of damage in elastic materials originally proposed by Michel
Frémond. For the corresponding PDE system, we prove existence and uniqueness of a local in time
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contributions, we assume no occurrence of any type of regularising terms.
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1 Introduction

We consider a basic model for the evolution of damage in an elastic material subject to an exter-
nal load under the approach originally proposed by Frémond and coauthors in a number of papers
[13, 12, 14, 15] (see also the monographs [10, 11, 21] for a general presentation of related models
as well as a detailed mechanical background).

We will give here an overview of the model in its generality; we notice however from the
very beginning that, in order to reduce technical complications, a simplified formulation will be
addressed for the purpose of a mathematical analysis. Let us consider a smooth and bounded
domain �⊂R

3 occupied by the elastic medium over some given reference time interval (0, T).
The material is subject to an external load g leading to elastic deformations represented by means
of the displacement variable u. As a response to deformations, the material undertakes stresses
and strains, the latter representing a source of damage. At a microscopic level, this phenomenon
can be thought as a progressive failure of elastic bonds; as a consequence, the material loses
stiffness and microcracks tend to develop.

A description of the progression of damage at the microscopic level is however very difficult,
especially because the micro-breaks are very small compared to the scale of macroscopic dis-
placements. For this reason, in this type of continuum models, the damage is rather described by
means of a macroscopic variable z, i.e. an order parameter that represents the locally averaged
evolution of damage at any point x ∈� and t ∈ (0, T). For simplicity, z is normalised in such a
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way that, for z = 1, the material is completely integer, i.e. no damage has yet occurred, whereas
for z = 0, all the elastic bonds have been broken. We speak then of complete damage at that point,
meaning that the material has completely lost its elastic properties and a (macroscopic) fracture
has occurred. According to such an interpretation, the values of z below z = 0, as well as those
above z = 1 have no physical significance and should be somehow penalised in the mathematical
formulation of the model.

We will assume a quasi-static regime; namely, the damage process occurs at a much slower
scale compared to the elastic response, which can thus be represented by an elliptic equation of
the form

−(Cijkl(z)ε(u)kl),j = gi, in (0, T) ×�. (1.1)

Here, ε(u) = (∇u + (∇u)t)/2 is the strain tensor, g = (gi) represents the action of the (given)
external forces, and the elastic tensor C may be assumed to satisfy proper symmetry and ellip-
ticity conditions and to degenerate as z = 0 (the precise hypotheses will be presented below).
Here and below, we are assuming Einstein’s convention for summation over repeated indices. It
is worth noting that dynamical models for damage evolution are also significant and have been
studied mathematically in a number of contributions. We may quote, with no claim of complete-
ness, [6, 13, 16, 18, 19] (see also the references therein) for models including inertial and/or
viscosity effects.

Relation (1.1) is complemented with the following parabolic equation describing the evolution
of the damage variable z:

α(zt) + δ1zt − δ2�z + f ′(z) � w − 1

2
C

′
ijkl(z)ε(u)klε(u)ij, in (0, T) ×�. (1.2)

Here and below, zt represents the time derivative of the damage variable z. Moreover,
α= ∂I(−∞,0], i.e. the subdifferential of the indicator function of the interval (−∞, 0]. We refer
the reader to the monographs [2, 8] for the underlying background material from convex analysis.
Here, we just recall that α is a multivalued mapping; indeed, we have α(0) = [0, +∞), α(r) = {0}
for r< 0 and α(r) = ∅ for r> 0. This motivates the occurrence of the inclusion sign in (1.2). The
presence of α is aimed at enforcing the irreversibility (or unidirectionality) constraint on the
evolution of z. Namely, any solution must satisfy zt ≤ 0, which means that once some amount
of damage has been created, it cannot be repaired. Note that this fact implies in turn that, once
z0 ≤ 1, then z can never exceed 1 at any point in the evolution, implying that the unphysical
states z> 1 are automatically excluded. Irreversibility is a reasonable physical ansatz in many
real-world applications; on the other hand, it is worth observing that also reversible models
(i.e. such that the broken bonds may be at least partially restored) are significant and have been
extensively studied in the literature (see, e.g. [4] and the references quoted there). It is also worth
noticing that (1.2) subsumes a rate-dependent evolution of z; rate-independent damage models
are equally interesting and have been addressed in several works (see, e.g. [9, 20, 22, 23, 24, 25]
and the references therein).

The coefficients δ1, δ2 > 0 in (1.2) are related to the timescale of the damaging process (the
smaller δ1 the faster it occurs) and to the ‘thickness’ of the (diffuse) interface between damaged
and sound areas (which depends on the scale length of the micro-breaks and goes like δ1/2

2 ). The
positive constant w> 0 on the right-hand side has the significance of a threshold: let us explain
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this fact by assuming f ≡ 0, which, physically speaking, can be seen as the ‘model case’. In this
situation, if the forcing term C

′
ijkl(z)ε(u)klε(u)ij does not exceed 2w, the right-hand side of (1.2)

is positive, which basically indicates that no damage is being created. In the converse situation,
i.e. in presence of large deformation gradients, a source of damage occurs. In the case f �≡ 0, this
damaging effect can be thought to vary a little depending on the actual value of z; nevertheless
one expects that, in practice, f ′(z) is small compared to w. Hence, if we set ψ ′(r) = f ′(r) − w (as
we will do in the sequel), we expect in particular ψ ′ be strictly negative or, in other words, the
configuration potential ψ to be decreasing, meaning that, in some measure, the body tends to
oppose resistance to the damaging effects which, as said, will occur only if the strains are large.

In order to present our mathematical results, let us assume for simplicity g independent of
time and take homogeneous Dirichlet boundary conditions for u and no-flux (i.e. homogeneous
Neumann) boundary conditions for z. Moreover, let us assume (at least) the symmetry prop-
erty Cijkl =Cklij. Then, testing (1.1) by ut and (1.2) by zt and integrating over � permit us to
(formally) deduce the energy equality

d

dt
E(t) + δ1‖zt‖2

L2(�) = 0 (1.3)

with the energy functional

E(t) =
∫
�

(
1

2
Cijkl(z)ε(u)klε(u)ij − g · u + δ2

2
|∇z|2 + f (z) − wz

)
, (1.4)

where it is worth noting that the product between zt and α(zt) is a.e. equal to 0, in view of the
fact that α(zt) (or, to be precise, any element of such a set) may be different from 0 only when
zt = 0. The energy relation (1.3) is the basic source of the a prior estimates needed for attempting
a mathematical analysis of system (1.1)–(1.2).

On the other hand, there are several reasons why the information provided by the above rela-
tion is not sufficient in order to obtain a satisfactory mathematical result. An important point
stands of course in the fact that, even if the body is completely integer at the beginning (i.e.
z0 ≡ 1 in �), it is expected that after some time, due to progression of damage, z becomes 0 at
some point x ∈�. In such a situation, the elastic tensor C(z) degenerates and the energy E is
no longer coercive. Consequently, it becomes impossible to control the quadratic term in ε(u)
on the right-hand side of (1.2) and the model somehow loses significance. This is an intrinsic
feature of this system (and of related ones) and, actually, for such models of complete damage, it
seems natural to look for local in time solutions, namely those defined on a ‘small’ time interval
(0, T0) with possibly T0 < T , where degeneration does not occur. This type of local existence
result is what is proved in several related papers (see, e.g. [5, 13, 12]) and will also be the object
of the present note. Indeed, it seems that the description of complete damaging of the material,
i.e. of what happens after the onset of some macroscopic fracture, requires a different modelling
approach, see, e.g. [7, 17, 22].

There is, however, a second relevant difficulty; indeed, in order to prevent degeneration of z
at least in a short time interval (0, T0), one needs a quantitative estimate of the form

‖z‖L∞(0,T0;X (�)) ≤ c, (1.5)
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where T0 > 0 may depend on the prescribed data and X = X (�) is a Banach space such that
X ⊂ C0(�) with continuous embedding. This corresponds to a (local) control of z in the uniform
norm, in such a way that degeneration cannot occur at any point in the short time span. On the
other hand, if the energy has the expression (1.4), an estimate like (1.5) follows directly from
(1.3) only in space dimension one (this is, indeed, the spirit of the pioneering results proved
in [13, 12]), whereas, in the present three-dimensional setting, (1.5) may be obtained only by
performing higher regularity estimates. Here, however, two additional difficulties arise: (i) the
combined occurrence in (1.2) of the nonsmooth function α and of the quadratic gradient term
on the right-hand side, and (ii) the poor regularity of u provided by the elliptic equation (1.1)
characterised by a z-dependent (hence nonsmooth) diffusion coefficient. For these reasons, at
least up to our knowledge, local existence has been obtained so far only in presence of additional
smoothing terms. Actually, common regularisations considered in the literature are: viscoelastic
(rather than purely elastic) behaviour for u [3, 6, 16, 19], presence of inertial effects in (1.1)
[6, 16, 18, 19], and replacement of the Laplacian in (1.2) by a more regularising operator like the
fractional Laplacian (−�)s with suitable s> 1 [20] or the p-Laplacian −�p with suitable p> 2
[17, 18, 19].

In this work, we will consider the ‘original’ system (1.1)–(1.2) with no occurrence of any
regularising term. We will actually prove that an estimate of the form (1.5) can be obtained also
in such a setting, so filling the gap of a long-standing regularity problem. Our argument is based
on a more careful control of the L∞-, H1- and H2-norms of the difference between z(t) at t> 0
and the initial datum z0 in terms of the parameters of the system. As an outcome of our procedure,
we will be able to prove existence and uniqueness of strong solutions to the initial boundary value
problem for system (1.1)–(1.2) on a time span (0, T0), with T0 explicitly computable in terms of
the data, where z does not degenerate to 0 at any point.

In order to avoid unessential technicalities, proceeding in the spirit of [5, 6] we will actually
consider a simplified version of the model, where the displacement u is replaced by a scalar vari-
able u and some quantities and parameters are normalised. We point out that these simplifications
are not restrictive and are taken only for the sake of clarity. Indeed, our results could be easily
extended to the ‘original’ system (1.1)–(1.2) by applying some more or less standard tools (like,
e.g. Korn’s inequality) and doing a little more technical work.

The paper is organised as follows. In the next section, we provide a detailed presentation of
our assumptions and state our main result. The a priori estimates that are at the core of the proof
are given in the subsequent Section 3. A possible regularisation of the system compatible with
the a priori estimates is sketched in Section 4, where a number of additional comments are also
given. Some final consideration is then provided in the conclusive Section 5.

2 Main result

First of all, we introduce a simplified version of system (1.1)–(1.2). As said, we replace the
vector-valued displacement u by a scalar one u, and correspondingly assume that the elasticity
tensor C(z) is replaced by a scalar function c(z). Moreover, in order to take the simplest example
of a strictly positive function that degenerates at 0, we just choose c(z) = z. Actually, we expect
that other types of degeneration for c, like, e.g. the case c(z) ∼ zm, m> 0, considered in [24, 25],
may be addressed by using a procedure similar to ours. The technical details, however, may
be rather different, especially for what concerns the regularisation and truncation parts of the
argument given below.
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We also normalise the parameters δ1, δ2 to 1 and incorporate the positive constant w into the
function f ′ so introducing a new configuration potential ψ(r) = f (r) − wr. With these choices,
system (1.1)–(1.2) reduces to

− div(z∇u) = g, in (0, T) ×�, (2.1)

α(zt) + zt −�z +ψ ′(z) � −1

2
|∇u|2, in (0, T) ×�. (2.2)

The above equations are complemented with the boundary conditions (which are a rather
standard choice for this class of models)

u = ∂nz = 0, in (0, T) × 	, (2.3)

where 	 = ∂�, ∂n = n · ∇ and n denotes the outer unit normal vector to 	. System (2.1)–(2.2) is
stated over an assigned reference interval (0, T); however, as said, we will prove existence on a
possibly smaller interval (0, T0). Finally, we assume the initial condition

z|t=0 = z0, in �. (2.4)

In order to fix a concept of strong solution and formulate our related existence result, we need
to introduce some preparatory material. Letting � be a smooth bounded domain of R3, we set
H := L2(�), V := H1(�) and V0 := H1

0 (�). We will often write H in place of H × H × H (with
similar notation for other spaces), in case vector-valued functions are considered. We denote by
(·, ·) the standard scalar product of H and by ‖ · ‖ the associated Hilbert norm. Moreover, we
equip V and V0 with norms ‖ · ‖V = ‖ · ‖ + ‖∇ · ‖ and ‖ · ‖V0 = ‖∇ · ‖, respectively. Identifying
H with its dual space H ′ by means of the above scalar product, we obtain the chains of contin-
uous and dense embeddings V ⊂ H ⊂ V ′ and V0 ⊂ H ⊂ V ′

0. We may indicate by 〈·, ·〉 the duality
pairing between V ′ and V , or, more generally, between X ′ and X where X is a Banach space
continuously and densely embedded into H . Recalling that n stands for the outer unit normal
vector to 	, we also set

W := {
v ∈ H2(�) : ∂nv= 0 on 	

} ⊂ C0(�). (2.5)

Then, W is a closed subspace of H2(�). We equip W with the norm

‖v‖2
W := ‖v‖2 + ‖�v‖2, (2.6)

which (on W ) is equivalent to the usual H2-norm in view of well-known elliptic regularity results.

Next, we can fix our basic hypotheses on coefficients and data:

Assumption 2.1 (A1) ψ ∈ C2(R; R).

(A2) g ∈ Lp(�) for some p ≥ 3.

(A3) z0 ∈ W with z0 ≤ 1 at every point of �. Moreover, denoting by c� an embedding constant
of W into C0(�), i.e. a constant such that ‖v‖C0(�) ≤ c�‖v‖W for all v ∈ W, we assume that
ε= ε(z0) := c�‖1 − z0‖W ≤ 1/2.

It is worth commenting a bit about the above assumptions. First of all, since we will prove that
the z-component of the local solution takes values in (0, 1], the behaviour of ψ(r) for large r is
in fact irrelevant. On the other hand, it may be useful to assume that
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ψ(r) = r2 for every |r| ≥ 2, (2.7)

whence it also follows that

ψ(r) ≥ r2

2
− c for every r ∈R. (2.8)

Actually, such a free ‘extra-coercivity’ property will help us in the approximation and for writing
the a priori estimates in a simpler way.

We may also observe that (A3) implies

‖1 − z0‖C0(�) ≤ c�‖1 − z0‖W = ε. (2.9)

Since ε≤ 1/2, we have z0 ≥ 1 − ε≥ 1/2 a.e. in �, i.e. the initial amount of damage is less than
one half at (almost) any point. Of course, the ideal, and simplest, situation occurs when z0 ≡ 1,
i.e. the body is completely integer at the initial time. Note that the condition z0 ≤ 1 is used only
to respect the physical significance of the model. Of course, under such an assumption, any
hypothetical solution satisfies z ≤ 1 also for t> 0 due to the irreversibility constraint embedded
into equation (2.2).

We can now state the main result of this paper:

Theorem 2.2 Let Assumption 2.1 hold. Let δ ∈ (0, 1/12]. Then there exist a time T0 ∈ (0, T]
depending only onψ , g, ε and δ and at least a triple (u, z, ξ ) of functions defined over (0, T0) ×�

and satisfying the regularity properties

u ∈ C0([0, T0]; W 2,ρ(�) ∩ V0) for any ρ ∈ [1, p] ∩ [1, 6), (2.10)

z ∈ H1(0, T0; V ) ∩ Cw([0, T0]; W ), (2.11)

ξ ∈ L2(0, T0, H), (2.12)

c�‖1 − z(t)‖W ≤ 1 − 3δ, for all t ∈ [0, T0], (2.13)

where Cw([0, T0]; X ) stands for the space of weakly continuous functions defined on [0, T0] with
values in a Banach space X . Moreover, the triple (u, z, ξ ) satisfies the equations

− div(z∇u) = g, (2.14)

ξ + zt −�z +ψ ′(z) = −1

2
|∇u|2, (2.15)

ξ ∈ α(zt) (2.16)

almost everywhere in (0, T0) ×�, with the boundary conditions (2.3) and the initial condi-
tion (2.4) in the sense of traces. In addition, if p> 3 in (A2), then (u, z) is uniquely determined by
initial data z0 and continuously depends on z0. More precisely, for i = 1, 2, let (ui, zi) be solutions
on [0, T0] satisfying (2.10)–(2.16). Then

‖(z1 − z2)(t)‖V + ‖(u1 − u2)(t)‖V0 ≤ C‖(z1 − z2)(0)‖V

for every t ∈ [0, T0].
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Note that relation (2.13) entails in particular

‖1 − z(t)‖C0(�) ≤ c�‖1 − z(t)‖W ≤ 1 − 3δ. (2.17)

Hence, for any t ∈ [0, T0], we have z(t, x) ≥ 3δ > 0 for every x ∈�. In this sense, we are able to
compute a time before which complete damage cannot occur at any point. In such a time span,
the system remains nondegenerate and existence of strong solutions can be proved. Of course,
condition δ ≤ 1/12 combined with assumption (A3) implies

c�‖1 − z0‖C0(�) = ε≤ 1/2< 3/4 ≤ 1 − 3δ, (2.18)

namely there is a gap of at least 1/4 between 1 − ε and 3δ. Of course, the magnitude of such a
gap is somehow an arbitrary choice of ours; on the other hand, keeping it as a given value permits
us to write the estimates in a computationally simpler way.

3 Proofs

We start with introducing a truncated version of system (2.1)–(2.2) in the same spirit as in [5].
To this aim, for δ ∈ (0, 1/12] we consider a mapping Tδ ∈ C1,1(R; R) such that

Tδ(r) =
{

r if r ≥ 3δ,

2δ if r ≤ δ (3.1)

and Tδ is monotone and convex in the interval (δ, 3δ) and fulfills

|T ′
δ(r)| ≤ 1, |T ′′

δ (r)| ≤ cδ−1 for almost all r ∈R (3.2)

and for some c> 0. A possible explicit choice could be

Tδ(r) = 2δ + (4δ)−1(r − δ)2 for r ∈ (δ, 3δ), (3.3)

but other options may be equally allowed. Then, the truncated system may be stated as follows:

− div(Tδ(z)∇u) = g, in (0, T) ×�; (3.4)

α(zt) + zt −�z +ψ ′(z) � −T ′
δ(z)

2
|∇u|2, in (0, T) ×�, (3.5)

where, as before, the differential inclusion (3.5) may be interpreted as the equality

ξ + zt −�z +ψ ′(z) = −T ′
δ(z)

2
|∇u|2, (3.6)

for a suitable ξ satisfying (2.16) at almost every point of the parabolic cylinder.

We postpone to the next section a proof of the fact that a global in time solution (u, z) to (3.4)–
(3.5) plus the initial and boundary conditions exists in a suitable regularity class. In this part, we
just show that such a solution complies with a number of a priori estimates. The compatibility
of the estimates with the approximation will also be discussed later on. In this procedure, we
will denote by c a generic positive constant depending only on the assigned data of the problem,
including ε and the final time T . On the other hand, c will not be allowed to depend on δ (so
when δ appears in the computations, it will be kept explicit).
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Our purpose is to construct in a computable way a time interval (0, T0), with T0 > 0 possibly
smaller than T and depending on the given constants δ and ε, such that z(t, x) ≥ 3δ for a.e. (t, x) ∈
(0, T0) ×�. In this way, due to (3.1), (u, z) will turn out to solve the original system (2.1)–(2.2)
in that time span.

To start, we perform the analogue of the energy estimate described in the introduction. Testing
(3.4) by ut, (3.5) by zt, and performing standard manipulations (note in particular that the product
ξzt is a.e. equal to 0 since α(zt) may contain non-zero values only at zt = 0), we easily arrive at

d

dt
Eδ(t) + ‖zt‖2 = 0, (3.7)

with the truncated energy functional

Eδ(t) =
∫
�

(Tδ(z)

2
|∇u|2 − gu + 1

2
|∇z|2 +ψ(z)

)
. (3.8)

Note that the use of test functions and the integrations by parts performed to deduce this estimate
and the subsequent ones will be justified as far as one works with the regularised solutions (see
the next section for details). Now, as we integrate (3.7) over some time interval (0, t), we see that
Eδ(0) also depends on the ‘initial value’ u0 = u|t=0. However, in view of the quasi-static nature
of the system, u0 is not a datum, but has to be computed by evaluating (3.4) at the time t = 0.
Namely, u0 corresponds to the (unique) solution to the elliptic problem

− div(Tδ(z0)∇u0) = g, in �, (3.9)

complemented with the homogeneous Dirichlet boundary condition. In view of Assumption (A3)
and of the fact 3δ ≤ 1 − ε, we actually have Tδ(z0) = z0 ≥ 1/2. Hence, testing (3.9) by u0, we
obtain

1

2
‖∇u0‖2 ≤

∫
�

Tδ(z0)|∇u0|2 = (g, u0) ≤ ‖g‖‖u0‖ ≤ 1

4
‖∇u0‖2 + c, (3.10)

where Poincaré’s inequality has also been used. This fact implies in particular that

∣∣Eδ(0)
∣∣ =

∣∣∣∣
∫
�

(
Tδ(z0)

2
|∇u0|2 − gu0 + 1

2
|∇z0|2 +ψ(z0)

) ∣∣∣∣
=

∣∣∣∣
∫
�

(
−Tδ(z0)

2
|∇u0|2 + 1

2
|∇z0|2 +ψ(z0)

) ∣∣∣∣ ≤ c(1 + ‖z0‖2
V ), (3.11)

with c independent of δ. Hence, recalling that z0 ∈ V , z0 ≤ 1 almost everywhere
(cf. Assumption (A3)), we see in particular that our assumptions on the initial data imply the
finiteness of the energy at t = 0.

Integrating (3.7) over the generic time interval (0, t) (where the choice of the admissible ‘small’
time t> 0 will be made clear later on), we then infer that

Eδ(t) +
∫ t

0
‖zt‖2 = Eδ(0) ≤ c

(
1 + ‖z0‖2

V

)
. (3.12)

Now, using Poincaré’s inequality, we arrive at∣∣∣∣
∫
�

gu

∣∣∣∣ ≤ ‖g‖‖u‖ ≤ c‖g‖‖∇u‖ ≤ δ

2
‖∇u‖2 + c

δ
. (3.13)
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As a consequence of the above relations (2.8) and (3.1), we have

Eδ(t) ≥ δ

2
‖∇u(t)‖2 + 1

2
‖z(t)‖2

V − c

δ
. (3.14)

Combining (3.12) with (3.14), we then obtain the a priori estimates,

‖z‖L∞(0,t;V ) ≤ c
(
δ−1/2 + ‖z0‖V

)
, (3.15)

‖u‖L∞(0,t;V0) ≤ cδ−1/2
(
δ−1/2 + ‖z0‖V

)
, (3.16)

‖zt‖L2(0,t;H) ≤ c
(
δ−1/2 + ‖z0‖V

)
. (3.17)

Next, evaluating (3.4) at the generic time t and testing it by u, applying once more Poincaré’s
inequality, we obtain

‖∇u‖2 =
∫
�

|∇u|2 =
∫
�

Tδ(z)

Tδ(z)
|∇u|2 ≤

∥∥∥∥ 1

Tδ(z)

∥∥∥∥
L∞(�)

∫
�

Tδ(z)|∇u|2

=
∥∥∥∥ 1

Tδ(z)

∥∥∥∥
L∞(�)

(g, u) ≤ c

∥∥∥∥ 1

Tδ(z)

∥∥∥∥
L∞(�)

‖g‖‖∇u‖, (3.18)

whence

‖∇u‖ ≤ c

∥∥∥∥ 1

Tδ(z)

∥∥∥∥
L∞(�)

, (3.19)

with computable c> 0 also depending on g.
Now let us define, for r ∈R,

φδ(r) := 1

Tδ(1 − r)
, so that

1

Tδ(r)
= 1

Tδ(1 − (1 − r))
= φδ(1 − r). (3.20)

In other words, for r ∈R, the function φδ(r) is a regularisation of the function r �→ 1/(1 − r)+; in
particular, φδ(r) = (1 − r)−1 for r ≤ 1 − 3δ. Notice also that φδ is non-decreasing on R.

By the use of (3.20), (3.19) can be rewritten as

‖∇u‖ ≤ c‖φδ(1 − z)‖L∞(�) = cφδ
(‖1 − z‖L∞(�)

)
. (3.21)

Next, let us observe that (3.4) may be equivalently rewritten as

−Tδ(z)�u = g + T ′
δ(z)∇z · ∇u. (3.22)

We now compute the L2- and L3-norms of both sides of the above relation. Observing that Tδ(r) ≥
2δ with |T ′

δ(r)| ≤ 1 for every δ ∈ (0, 1/12] and r ∈R, and using elementary interpolation and
embedding inequalities along with (2.6), we first find that

2δ‖�u‖ ≤ ‖g‖ + ‖∇z‖L6(�)‖∇u‖L3(�)

= ‖g‖ + ‖∇(z − 1)‖L6(�)‖∇u‖L3(�)

≤ ‖g‖ + c‖z − 1‖W ‖∇u‖1/2‖�u‖1/2

≤ c + cδ−1/2
(‖z − 1‖ + ‖�z‖)‖∇u‖1/2δ1/2‖�u‖1/2

≤ c + cδ−1
(‖z − 1‖2 + ‖�z‖2

)‖∇u‖ + δ‖�u‖. (3.23)
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Analogously, combining the Gagliardo–Nirenberg inequality [26] with standard elliptic regular-
ity results of Lp-type, we infer that

‖∇v‖L6(�) ≤ c‖�v‖2/3
L3(�)

‖∇v‖1/3, (3.24)

which holds for every v ∈ V0 ∩ W 2,3(�). Using such a relation, we deduce that

2δ‖�u‖L3(�) ≤ ‖g‖L3(�) + ‖∇z‖L6(�)‖∇u‖L6(�)

= ‖g‖L3(�) + ‖∇(z − 1)‖L6(�)‖∇u‖1/3‖�u‖2/3
L3(�)

≤ c + cδ−2/3
(‖z − 1‖ + ‖�z‖)‖∇u‖1/3δ2/3‖�u‖2/3

L3(�)

≤ c + cδ−2
(‖z − 1‖3 + ‖�z‖3

)‖∇u‖ + δ‖�u‖L3(�). (3.25)

Hence, recalling also (3.21), (3.23) and (3.25) imply, respectively

‖�u‖ ≤ cδ−1 + cδ−2
(‖z − 1‖2 + ‖�z‖2

)
φδ

(‖1 − z‖L∞(�)
)
, (3.26)

‖�u‖L3(�) ≤ cδ−1 + cδ−3
(‖z − 1‖3 + ‖�z‖3

)
φδ

(‖1 − z‖L∞(�)
)
. (3.27)

As a next step, we test (3.5) by −�zt. Then, using the monotonicity of α and the no-flux boundary
conditions, we would expect that

(α(zt), −�zt) =
∫
�

α′(zt)|∇zt|2 ≥ 0. (3.28)

On the other hand, the above computation is formal. Indeed, α is a nonsmooth maximal monotone
graph (and α(zt) has to be interpreted as a selection ξ (cf. (2.16)). Nevertheless, the inequality
(ξ , −�zt) ≥ 0 is valid anyway, and it could be rigorously proved by proceeding, e.g. along the
lines of [28, Lemma 2.4] (see also Remark 4.1 below for a further justification of this procedure).
Hence, we deduce that

‖∇zt‖2 + 1

2

d

dt
‖�z‖2 ≤

∫
�

|ψ ′′(z)∇z · ∇zt| + 1

2

∫
�

∣∣∇(
T ′
δ(z)|∇u|2) · ∇zt

∣∣ =: I1 + I2 (3.29)

and we need to control the terms on the right-hand side. First of all, by (A1) and (2.7) we have
that ψ ′′ ∈ L∞(R), whence

I1 ≤ c‖∇z‖‖∇zt‖ ≤ 1

6
‖∇zt‖2 + c‖1 − z‖2

V . (3.30)

Next, recalling (3.2), we easily obtain

I2 ≤ cδ−1
∫
�

|∇u|2|∇z · ∇zt| + c

∫
�

|D2u||∇u||∇zt| =: I2,1 + I2,2. (3.31)
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Furthermore, using also (3.26), we infer that

I2,1 ≤ cδ−1‖∇u‖2
L6(�)‖∇z‖L6(�)‖∇zt‖

≤ cδ−1‖�u‖2
(‖z − 1‖ + ‖�z‖)‖∇zt‖

≤ 1

6
‖∇zt‖2 + cδ−2‖�u‖4

(‖z − 1‖2 + ‖�z‖2
)

≤ 1

6
‖∇zt‖2 + cδ−6

(‖z − 1‖2 + ‖�z‖2
)

+ cδ−10
(‖z − 1‖10 + ‖�z‖10

)
φ4
δ

(‖1 − z‖L∞(�)
)
. (3.32)

Similarly, using elliptic regularity along with (3.26) and (3.27) as well as Young’s inequality, we
obtain

I2,2 ≤ c‖D2u‖L3(�)‖∇u‖L6(�)‖∇zt‖
≤ 1

6
‖∇zt‖2 + c‖�u‖2

L3(�)‖�u‖2

≤ 1

6
‖∇zt‖2 + cδ−10

(‖z − 1‖10 + ‖�z‖10
)
φ4
δ

(‖1 − z‖L∞(�)
)

+ cδ−6
(‖z − 1‖4 + ‖�z‖4

)
φ2
δ

(‖1 − z‖L∞(�)
)

+ cδ−8
(‖z − 1‖6 + ‖�z‖6

)
φ2
δ

(‖1 − z‖L∞(�)
) + cδ−4

≤ 1

6
‖∇zt‖2 + cδ−10

(
1 + ‖z − 1‖10

W

) [
1 + φ4

δ

(‖1 − z‖L∞(�)
)]

(3.33)

for δ ∈ (0, 1/12]. Notice that this is actually the only point in the existence proof where we need
the control on the L3-norm of �u (and, in turn, the assumption g ∈ L3(�)).

Collecting (3.29)–(3.33) gives

‖∇zt‖2 + d

dt
‖�z‖2 ≤ c‖1 − z‖2

V + cδ−6‖z − 1‖2
W

+ cδ−10
(
1 + ‖z − 1‖10

W

) [
1 + φ4

δ

(‖1 − z‖L∞(�)
)]

. (3.34)

In order to deduce some useful information from the above relation, we observe the inequality

d

dt
‖1 − z‖2 ≤ 2|(1 − z, zt)| ≤ c‖1 − z‖4 + c‖zt‖4/3. (3.35)

Adding it to (3.34) and rearranging terms, with the aid of Young’s inequality, we arrive at

d

dt
‖1 − z‖2

W + ‖∇zt‖2 ≤ cδ−10
(
1 + ‖z − 1‖10

W

) [
1 + φ4

δ

(‖1 − z‖L∞(�)
)] + c‖zt‖4/3. (3.36)

Let us now multiply the above by c2
�, the embedding constant of H2(�) into C0(�) as introduced

before. Then, setting

y(t) := c2
�‖1 − z(t)‖2

W

(2.17)≥ ‖1 − z(t)‖2
L∞(�), (3.37)

and temporarily neglecting the non-negative term ‖∇zt‖2 on the left-hand side, we deduce the
differential inequality

y′(t) ≤ c1δ
−10

[
1 + y5(t)

] [
1 + φ4

δ (y1/2(t))
] + c2‖zt‖4/3,
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where it is worth noting that y0 := y(0) = ε2 ≤ 1/4 by assumption (A3) and c1, c2 are computable
positive constants independent of δ. Dividing both sides by [1 + y5(t)][1 + φ4

δ (y1/2(t))], which is
clearly larger than 1, we then obtain

d

dt
Bδ(y) := 1

[1 + y5(t)]
[
1 + φ4

δ (y1/2(t))
]y′ ≤ c1δ

−10 + c2‖zt‖4/3, (3.38)

where the function Bδ is defined by the left-hand side, namely we have set

Bδ(s) :=
∫ s

0

dr

(1 + r5)
[
1 + φ4

δ (r1/2)
] . (3.39)

Here, we note that the function Bδ , as far as δ is a fixed number in the given range (0, 1/12], is
well defined and strictly increasing on R. Now, it is clear that, for s ∈ [0, 1],

1

2

∫ s

0

dr

1 + φ4
δ (r1/2)

≤ Bδ(s) ≤
∫ s

0

dr

1 + φ4
δ (r1/2)

. (3.40)

Moreover, from (3.20), we observe that, for r1/2 ∈ [0, 1 − 3δ], or equivalently r ∈ [0, (1 − 3δ)2],

1

1 + φ4
δ (r1/2)

= (1 − r1/2)4

(1 − r1/2)4 + 1
, (3.41)

whence, we can notice that, as far as s lies in the range [0, (1 − 3δ)2], the expression of Bδ(s) is
independent of δ so that, for such s, we can simply write B(s) in place of Bδ(s). Notice also that,
at largest, δ = 1/12; hence (1 − 3δ)2 is always at least 9/16.

Integrating (3.38) in time and using (3.17) with Hölder’s inequality, we obtain

Bδ(y(t)) ≤ Bδ(y0) +
∫ t

0

(
c1δ

−10 + c2‖zt‖4/3
) ≤ Bδ(ε

2) + c1δ
−10t + c2t1/3

(
δ−1 + ‖z0‖2

V

)2/3

≤ Bδ(ε
2) + c3δ

−10t1/3, (3.42)

where the new constant c3 may also depend on z0 and T .
On the other hand, due to (2.18) along with the strict increase of Bδ , (3.42) can be rewritten as

y(t) ≤ B−1
δ

(
Bδ(ε

2) + c3δ
−10t1/3

) = B−1
δ

(
B(ε2) + c3δ

−10t1/3
)
, (3.43)

where we used that ε2 ≤ 1/4< 9/16 ≤ (1 − 3δ)2.
Now, since δ is assigned and c3 is a computable constant depending only on the given param-

eters of the system, using that Bδ is strictly monotone (hence such is its inverse B−1
δ ), we deduce

that there exists T0 ∈ (0, T] so small that, for every t ∈ [0, T0], there holds

B(ε2) + c3δ
−10t1/3 ≤ B((1 − 3δ)2) = Bδ((1 − 3δ)2). (3.44)

In other words, T0 can be defined as the largest time t ∈ (0, T] such that B(ε2) + c3δ
−10t1/3 ≤

B((1 − 3δ)2), that is,

T0 =
(

B((1 − 3δ)2) − B(ε2)

c3δ−10

)3

∧ T ∈ (0, T].
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As a consequence, in the range [0, T0] the expression of Bδ is independent of δ and (3.43)
reduces to

y(t) ≤ B−1
(
B(ε2) + c3δ

−10t1/3
) ≤ B−1

(
B((1 − 3δ)2)

)
, for all t ∈ [0, T0], (3.45)

which in turn implies

‖1 − z(t)‖C0(�) ≤ c�‖1 − z(t)‖W = y1/2(t) ≤ 1 − 3δ (3.46)

and consequently

z(t, x) ≥ 3δ for all t ∈ [0, T0], x ∈�. (3.47)

This entails in particular that, for every t ∈ [0, T0], there holds Tδ(z(t)) = z(t) a.e. in �, whence
(u, z) turns out to solve the original system (2.1)–(2.2).

We finally prove the regularity properties (2.10)–(2.12). First of all, we shall check (2.11);
the fact z ∈ Cw([0, T0]; W ) comes from (3.46), while z ∈ H1(0, T0; V ) follows from integration of
(3.36) over (0, T0).

Next, we prove (2.10) which is a bit more tricky. First of all, let (zi, ui) be two solutions for
(2.1), (2.2) on [0, T0] such that z1 ≥ 3δ. Then by subtraction, we have

− div [z1(∇u1 − ∇u2) + (z1 − z2)∇u2] = 0, in �.

Test it by u1 − u2. We see that∫
�

z1|∇(u1 − u2)|2 = −
∫
�

(z1 − z2)∇u2 · ∇(u1 − u2)

≤ ‖z1 − z2‖L4(�)‖∇u2‖L4(�)‖∇(u1 − u2)‖,

which entails

3δ‖∇(u1 − u2)‖ ≤ ‖z1 − z2‖L4(�)‖∇u2‖L4(�).

Hence, we may conclude in particular that

3δ‖∇u(t) − ∇u(s)‖ ≤ ‖z(t) − z(s)‖L4(�) sup
τ∈[0,T0]

‖u(τ )‖H2(�), for t, s ∈ [0, T0], (3.48)

and, therefore, t �→ u(t) turns out to be continuous on [0, T0] with values in V0. Furthermore,
(2.1) implies

−�u = g

z
+ ∇z

z
· ∇u in (0, T0) ×�. (3.49)

Note that t �→ 1/z(t) is continuous with values in L∞(�) on [0, T0] (indeed, H1(0, T0; V ) ∩
L∞(0, T0; W ) is embedded in C0([0, T0]; L∞(�)) and z is uniformly away from zero in (0, T0) ×
�). Since u(t) is also bounded in W 2,3(�) for any t ∈ [0, T0] and u ∈ C0([0, T0]; V0), the map
t �→ ∇u(t) is continuous on [0, T0] strongly in Lq(�) for any q ∈ [1, +∞). On the other hand,
thanks to an Aubin–Lions type embedding (see, e.g. [27]), we may observe that

L∞(0, T0; H1(�)) ∩ H1(0, T0; H) ↪→ C0([0, T0]; Lq(�)), for any q ∈ [1, 6).

Applying this to ∇z, we can verify that t �→ ∇z(t) is of class C0([0, T0]; Lq(�)) for q ∈ [1, 6).
Combining the above facts, we deduce that t �→ z−1(t)∇z(t) · ∇u(t) is continuous strongly in
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Lq(�) for any q ∈ [1, 6). Thus the (strong) continuity of t �→�u(t) in Lρ(�) for any ρ ∈
[1, p] ∩ [1, 6) on [0, T0] follows from (A2), (3.49) and the facts observed so far.

Concerning the continuous dependence of solutions on the initial data, let (ui, zi) for i = 1, 2
be two solutions on [0, T0] such that either z1 or z2 is not less than 3δ and assume (A2) holds for
p> 3. Then, setting Z = z1 − z2 and U = u1 − u2, by subtraction, we have

α(∂tz1) − α(∂tz2) + Zt −�Z +ψ ′(z1) −ψ ′(z2) � −1

2

(|∇u1|2 − |∇u2|2
)

.

Test both sides by Zt and employ the monotonicity of α. Moreover, note that ui ∈
L∞(0, T0; W 2,ρ(�)), i = 1, 2, where now ρ > 3, and the embedding W 1,ρ(�) ↪→ L∞(�). We then
obtain

1

2
‖Zt‖2 + 1

2

d

dt
‖∇Z‖2 ≤ ‖ψ ′(z1) −ψ ′(z2)‖2 + 1

4
‖∇(u1 + u2)‖2

L∞(�)‖∇U‖2 (3.50)

by using ∣∣∣∣
∫
�

(|∇u1|2 − |∇u2|2
)

Zt

∣∣∣∣ ≤ 1

2
‖Zt‖2 + 1

2
‖(∇u1 + ∇u2) · ∇U‖2

≤ 1

2
‖Zt‖2 + 1

2
‖∇u1 + ∇u2‖2

L∞(�) ‖∇U‖2.

Next, notice that

‖ψ ′(z1) −ψ ′(z2)‖ ≤ c‖Z‖
for some constant c> 0. Hence, (3.50) implies

1

2
‖Zt‖2 + 1

2

d

dt
‖∇Z‖2 ≤ c

(‖Z‖2 + ‖∇U‖2
)

,

which, along with (3.48), implies

1

2
‖Zt‖2 + 1

2

d

dt
‖∇Z‖2 ≤ c

(
‖Z‖2 + ‖Z‖2

L4(�)

)
≤ c‖Z‖2

V .

Summing the elementary inequality

1

2

d

dt
‖Z‖2 ≤ 1

4
‖Zt‖2 + ‖Z‖2 (3.51)

in order to recover the full V -norm on the left-hand side and subsequently using Gronwall’s
lemma, we conclude that

‖Z(t)‖2
V ≤ c‖Z(0)‖2

V for t ∈ [0, T0].

Moreover, (3.48) yields

‖U(t)‖2
V0

≤ C‖Z(t)‖2
V for t ∈ [0, T0].

The uniqueness follows immediately under the assumption Z(0) = 0, i.e. when the initial data are
the same.

Finally, (2.12) follows from (2.10)–(2.11) and a comparison of terms in (2.15). This concludes
the proof of Theorem 2.2 provided that we can exhibit a regularisation of the system for which:

https://doi.org/10.1017/S0956792521000024 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000024


Frémond’s model of complete damage in elastic solids 323

• we can prove existence of sufficiently smooth solutions on the time interval (0, T);
• we can show compatibility of the regularisation with the a priori estimates performed above.

This will be the purpose of the next section.

4 Approximation

We introduce here a regularisation of system (2.14)–(2.16) for which existence can be proved by
means of a fixed point argument. Namely, letting ε ∈ (0, 1) be a regularisation parameter intended
to go to 0 in the limit, we introduce the system

ε�2u − div(Tδ(z)∇u) = g, in (0, T) ×�, (4.1)

α(zt) + zt −�z +ψ ′(z) � −T ′
δ(z)

2
|∇u|2, in (0, T) ×�, (4.2)

(for brevity, here we avoid to introduce the notation ξ for the representative of α(zt), cf. (2.16)).
It is worth observing that, in this approximation, we do not need to smooth out the operator
α. Hence, the irreversibility constraint and the related property will hold also for solutions to
(4.1)–(4.2).

The above relations are complemented with the same initial and boundary condition consid-
ered before and with the additional boundary condition

�u = 0, on (0, T) × 	. (4.3)

It is worth noting from the very beginning that the system above is fully compatible with the local
a priori estimates performed in the previous section. Indeed, as we test (4.1) by ut we obtain an
additional (positive) term in the energy functional, namely we have

Eε,δ(t) =
∫
�

(ε
2
|�u|2 + Tδ(z)

2
|∇u|2 − gu + 1

2
|∇z|2 +ψ(z)

)
, (4.4)

and the new term is a source of additional a priori regularity. On the other hand, the elliptic
regularisation is also compatible with the procedure used to get the differential inequality (3.38).
Actually, the key estimates (3.23) and (3.25) can still be obtained similarly as before. Namely,
to get the analogue of (3.23) we now need to test (4.1) by −�u, whereas for (3.25), we test (4.1)
by −|�u|�u and notice that∫

�

−ε�2u(|�u|�u) = 2ε
∫
�

|�u||∇�u|2 ≥ 0, (4.5)

also in view of the additional boundary condition (4.3).
On the other hand, the new term provides additional compactness and it may help to solve

(4.1)–(4.2) by means of a fixed point argument. We now sketch a possible procedure (which, in
some sense, is inspired by the argument given in [5]), leaving the details to the reader.

(1) We take a prescribed function u instead of u in (4.2). More precisely, we choose

u ∈ L4(0, T ; W 2,3(�) ∩ V0). (4.6)

This in particular implies that

|∇u|2 ∈ L2(0, T ; V ) (4.7)
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as a direct check shows. The corresponding equation

α(zt) + zt −�z +ψ ′(z) � −T ′
δ(z)

2
|∇u|2 (4.8)

is a parabolic equation with the Lipschitz non-linearity T ′
δ(z) and the nonsmooth term α(zt).

For this type of equation the regularity theory is well-established. For instance, one can test it
by −�zt (see also Remark 4.1 below). Then, using the monotonicity of α, condition (4.6), the
Lipschitz continuity of T ′

δ , and Gronwall’s lemma, one may deduce the existence of at least one
solution z in the same regularity class of Theorem 2.2, namely

z ∈ H1(0, T ; V ) ∩ L∞(0, T ; W ). (4.9)

Moreover, such a solution is readily seen to be unique. To check this fact it suffices to take a
couple of solutions (with the same proposed u), compute correspondingly the difference of (4.8),
and test it by the difference of the zt’s. Then, exploiting the monotonicity of α one can easily
obtain a contraction estimate.

(2) We plug the function z obtained at the previous step into (4.1). This gives rise to a fourth-
order elliptic equation, whose leading term is linear, with the boundary conditions u =�u = 0
on (0, T) × 	. Hence, it has a unique weak solution u ∈ L∞(0, T ; H2(�) ∩ V0). Moreover, we can
also prove that

u ∈ L∞(0, T ; H4(�)). (4.10)

Indeed, rewrite (4.1) as

ε�2u − Tδ(z)�u = T ′
δ(z)∇z · ∇u + g in (0, T) ×�, (4.11)

which is complemented with the homogeneous Dirichlet boundary conditions and where the
right-hand side lies at least on L∞(0, T ; L2(�)). Hence, the L2-regularity theory for higher order
elliptic operators entails u(·, t) ∈ H4(�) for a.e. t ∈ (0, T). More precisely, we can set v = −�u
and apply the L2 elliptic regularity of second order type. Then we have

ess sup
t∈(0,T)

∫
�

∣∣∣∂2
ijv

∣∣∣2 ≤ C,

where ∂ij = ∂2/∂xi∂xj for i, j = 1, 2, 3. Here, we used u ∈ L∞(0, T ; V0) and (4.9) along with W ⊂
L∞(�). Using relation v = −�u and integrating by parts, the above can be rewritten as

ess sup
t∈(0,T)

∫
�

∣∣∣∂4
ijklu

∣∣∣2 ≤ C for i, j, k, l = 1, 2, 3,

which yields u ∈ L∞(0, T ; H4(�)).

(3) We finally consider the mapping u �→ u and we aim to apply the Schauder fixed point
theorem to this map in order to get existence of at least one local in time solution to the initial
boundary value problem for (4.1)–(4.2). The most delicate point is proving compactness, because
the system is quasi-stationary and we have no information on ut. On the other hand, by (4.9) and
the Aubin–Lions theorem, one can easily obtain that the mapping u �→ z is completely continuous
from the space (4.6) to the space

C0([0, T]; Hα(�)), for every α ∈ (3/2, 2), (4.12)
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which is continuously embedded into C0([0, T] ×�). Hence, one can repeat the argument in (2)
by taking the space (4.12) for z. No modification is required and one can see that the mapping
z �→ u is continuous from the space (4.12) to the space in (4.10). Note that the space in (4.10)
is continuously (though not compactly) embedded into the space in (4.6). Hence, u �→ u is com-
pletely continuous because it is the composition of a compact map and a continuous one. Thus,
to apply Schauder’s theorem it just remains to choose a proper ball B of the space in (4.6) and
prove that there exists a small time T1 ≤ T such that the image of B is contained in B. This fact
can be verified by a number of simple checkings. In particular, we may use the fact that

‖v‖L4(0,T1;W2,3(�)) ≤ c‖v‖L4(0,T1;H4(�)) ≤ cT1/4
1 ‖v‖L∞(0,T1;H4(�)) (4.13)

for any v ∈ L∞(0, T1; H4(�)) (cf. (4.10)). As a consequence, Schauder’s theorem provides exis-
tence of a solution to (4.1)–(4.2) with the initial and boundary conditions (including (4.3)) over
the time interval (0, T1). Note that, actually, T1 may be strictly smaller than T0. On the other hand,
performing the a priori estimates by keeping δ > 0 fixed at a first stage, we can easily see that the
resulting bounds are uniform over the interval (0, T). Hence, by standard extension arguments,
the solution to the regularised problem can be thought to be defined over the whole of (0, T).

Remark 4.1 One can see in particular that the additional regularity on u obtained in the frame-
work of the regularised problem is sufficient to justify the a priori estimates of the previous part.
Concerning z there is just a point that needs to be clarified a bit. Indeed, in the above part we
have used the test function −�zt in a parabolic equation having the following structure:

α(zt) + zt −�z � η, (4.14)

where one can easily check that

η= −ψ ′(z) − T ′
δ(z)

2
|∇u|2 ∈ L2(0, T ; V ). (4.15)

On the other hand, if α is not regularised, up to our knowledge no L2-regularity theory is
available for equation (4.14), i.e. the single summands on the left-hand side of (4.14) are
not expected to lie separately in L2, nor it does the test function −�zt, which is then not
directly admissible. To overcome this issue, one should, at the step (1), first consider a further
regularisation of (4.14), namely

αλ(zt) + zt −�z = η, (4.16)

where αλ is the Yosida approximation of α of order λ> 0 (cf. [2, 8]), and notice that (4.16)
is well-posed in L2. Then, one can first test (4.16) by −�zt (which is allowed thanks to better
regularity holding for λ> 0) and then take λ↘ 0 before proceeding with the fixed point
argument. Indeed, the obtained a priori bound is preserved in the limit λ↘ 0 by semicontinuity.
The details, based on standard convex analysis tools, are left to the reader (see also [1, Lemma
3.10 and Proof of Theorem 3.1] for a similar procedure).

Remark 4.2 It is worth observing that our choice of performing an elliptic regularisation of
(3.4) is also motivated by the fact that a parabolic regularisation (obtained for instance by
plugging a term εut or −ε�ut in place of our ε�2u) would not be fully compatible with the
estimates of the previous section. In particular, we need to estimate (cf. (3.18)) the L2-norm
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of ∇u at any fixed time t, and that argument does not seem to work due to the presence of an
additional term depending on ut.

5 Conclusion

We have considered a model for the evolution of damage in an elastic medium subject to an exter-
nal load. We have analysed the case of ‘complete’ damage, namely we have assumed that the
elastic tensor may degenerate after complete damage has occurred at some point, i.e. a macro-
scopic fracture has appeared. Correspondingly, we have provided a quantitative estimate of a
‘small’ time T0 > 0, depending on the problem data, such that elastic degeneration certainly does
not occur in the time interval [0, T0], provided the material is sound enough at the initial time.
We have also assumed irreversibility of the damage phenomenon; namely, microfractures, once
they are created, can never be repaired.

Models for ‘complete’ damage have been extensively studied in the recent scientific literature,
often in connection with other phenomena (e.g. thermal diffusion) or in more specific contexts
(e.g. delamination or contact with adhesion). Nevertheless, if one considers a quasi-static regime,
the basic structure of most damage or delamination models appears to be strongly related to
system (2.1)–(2.2); on the other hand, in the literature, such a system is often regularised (e.g.
by viscosity terms) either in the elastic equation, or in the damage evolution equation, or in both
these relations.

In the present work, we have been able to prove a local well-posedness result for system
(2.1)–(2.2), coupled with the initial and boundary condition, with no need for adding any smooth-
ing term. Our technique may open the way to applications to more complex models, whose
mathematical analysis may also become possible in a non-regularised setting.
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[16] GASIŃSKI, L. & OCHAL, A. (2015) Dynamic thermoviscoelastic problem with friction and damage.

Nonlinear Anal. Real World Appl. 21, 63–75.
[17] HEINEMANN, C. & KRAUS, C. (2015) Complete damage in linear elastic materials: modeling, weak

formulation and existence results. Calc. Var. Partial Differ. Equ. 54, 217–250.
[18] HEINEMANN, C. & KRAUS, C. (2015) Existence of weak solutions for a PDE system describing

phase separation and damage processes including inertial effects. Discrete Contin. Dyn. Syst. 35,
2565–2590.

[19] HEINEMANN, C. KRAUS, C. ROCCA, E. & ROSSI, R. (2017) A temperature-dependent phase-field
model for phase separation and damage. Arch. Ration. Mech. Anal. 225, 177–247.

[20] KNEES, D., ROSSI, R. & ZANINI, C. (2013) A vanishing viscosity approach to a rate-independent
damage model. Math. Models Methods Appl. Sci. 23, 565–616.

[21] LEMAITRE, J. (1992) A Course on Damage Mechanics, Springer-Verlag, Berlin.
[22] MIELKE, A. (2011) Complete-damage evolution based on energies and stresses. Discrete Contin. Dyn.

Syst. Ser. S 4, 423–439.
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