
Bull. Aust. Math. Soc. 101 (2020), 40–55
doi:10.1017/S0004972719000674

PERMUTATION POLYNOMIALS OF DEGREE 8 OVER
FINITE FIELDS OF ODD CHARACTERISTIC

XIANG FAN

(Received 14 April 2019; accepted 14 May 2019; first published online 9 July 2019)

Abstract

We give an algorithmic generalisation of Dickson’s method of classifying permutation polynomials (PPs)
of a given degree d over finite fields. Dickson’s idea is to formulate from Hermite’s criterion several
polynomial equations satisfied by the coefficients of an arbitrary PP of degree d. Previous classifications
of PPs of degree at most 6 were essentially deduced from manual analysis of these polynomial equations,
but this approach is no longer viable for d > 6. Our idea is to calculate some radicals of ideals generated
by the polynomials, implemented by a computer algebra system. Our algorithms running in SageMath
8.6 on a personal computer work very fast to determine all PPs of degree 8 over an arbitrary finite field
of odd order q > 8. Such PPs exist if and only if q ∈ {11, 13, 19, 23, 27, 29, 31} and are explicitly listed in
normalised form.

2010 Mathematics subject classification: primary 11T06; secondary 12Y05.
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1. Introduction

Denote by Fq the finite field of order q and write F∗q = Fq\{0}. An arbitrary map from
Fq to itself can be represented by a polynomial f in Fq[x]. We call f a permutation
polynomial (PP) over Fq if it represents a permutation of Fq.

Beginning with Hermite [11] and Dickson [4] in the nineteenth century, the study of
PPs over finite fields aroused growing interest, partly due to its valuable applications
in other areas of mathematics and engineering, such as cryptography, coding theory,
combinatorial designs and so on. For example, a special class of PPs called Dickson
polynomials (introduced in [4]) played a key role in the breakthrough construction by
Ding and Yuan [5] of a new family of skew Hadamard difference sets in combinatorics.

Although dozens of classes of PPs (with good appearance or properties) have been
found (see [12, 16] for recent surveys), the classification problems of PPs of prescribed
forms are still challenging. In his pioneering thesis [4] on PPs, Dickson discussed the
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[2] Permutation polynomials of degree 8 41

classification of all PPs of a given degree d over an arbitrary finite field Fq. Replacing
PPs by their reductions modulo xq − x if necessary, it is assumed that d < q. Results
obtained from Dickson’s classification cover:

• d 6 5 with any q and d = 6 with any odd q (Dickson [4], 1896–1897);
• d = 6 or 7 with any even q (Li, Chandler and Xiang [14], 2010);
• d = 7 with any odd q [7] and d = 8 with any even q [8].

The present paper classifies all PPs of degree 8 over an arbitrary Fq of odd order
q > 8. More importantly, we provide an algorithmic generalisation of Dickson’s
method of classifying PPs of a given degree d over finite fields. Dickson’s main
idea is to formulate from Hermite’s criterion several polynomial equations satisfied
by the coefficients of an arbitrary PP of degree d. Previously known classifications
of PPs of degree at most 6 were essentially deduced from manual analysis of these
polynomial equations. However, the polynomials needed for that purpose when d > 6
are too complicated to solve by hand. Our idea is to make them more solvable by
calculating some radicals of ideals generated by some of them, implemented on a
computer algebra system. Our algorithms running in SageMath 8.6 on a personal
computer work very fast to determine all PPs of degree 8 over finite fields of odd
order, as described below.

Theorem 1.1. PPs of degree 8 exist over Fq of odd order q > 8 if and only if

q ∈ {11, 13, 19, 23, 27, 29, 31}.

All PPs of degree 8 in normalised form over such Fq are explicitly listed in
Propositions 4.2–4.8.

All previous classifications of PPs of degree at most 7 can be recovered very
quickly by our approach, with calculations implemented on a personal computer. This
approach is different from that used in [7] classifying PPs of degree 7. Roughly
speaking, [7] uses only two simple equations provided by Hermite’s criterion and its
main algorithm is a brute-force search (though optimised by linear transformations),
but this cannot work in an acceptable time for degree 8 with q > 100. The approach
here will work for degrees a little larger than 8 on a more powerful computer. We have
already done some computations for degree 9.

The structure of this paper is as follows. Section 2 establishes Algorithm 1 for
explicit polynomial equations on coefficients of PPs of degree 8 by Hermite’s criterion.
Section 3 verifies the nonexistence of PPs of degree 8 over finite fields of odd order
q > 31, by calculations of some radicals of ideals generated by polynomials provided
by Algorithm 1. Section 4 explicitly lists all PPs of degree 8 in normalised form over
Fq of odd order q such that 8 < q 6 31, by a brute-force search.

2. Hermite’s criterion

The main tool for the classification is Hermite’s criterion for PPs over finite
fields. It was introduced by Dickson [4] as a generalisation of the prime field case
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in Hermite [11] and is sometimes called the Hermite–Dickson criterion. We state an
explicit version of it from [15], using the following notation:

• N = {n ∈ Z : n > 0};
• for n ∈ N and f ∈ Fq[x], the coefficient of xn in f (x) is [xn : f ] and the degree of

f is deg( f ) = max{n ∈ N : [xn : f ] , 0}, that is, f (x) =
∑deg( f )

n=0 [xn : f ] · xn for any
nonzero f ∈ Fq[x];

• for t ∈ R, let btc denote the largest integer 6 t.

Lemma 2.1 (Hermite’s criterion [15, Theorem 7.6]). Let f ∈ Fq[x]. A necessary and
sufficient condition for f to be a PP over Fq is that

bdeg( f m)/(q−1)c∑
w=1

[xw(q−1) : f m]

= 0 for 1 6 m 6 q − 2,
, 0 for m = q − 1.

Let us show how to calculate [xn : f m] explicitly with the help of multinomial
coefficients. Consider a polynomial f of degree d in Fq[x]. Suppose that gcd(d, q) = 1
(noting that we aim for d = 8 with an odd q). By linear transformations, we may
assume f to be in normalised form, that is, f (x) = xd +

∑d−2
i=1 aixi with all ai ∈ Fq. For

integers j, j1, j2, . . . , jd, define the associated multinomial coefficient

(
j

j1, j2, . . . , jd

)
:=


j!

j1! j2! · · · jd!
if j = j1 + j2 + · · · + jd and all j1, . . . , jd > 0,

0 otherwise.

By the multinomial theorem,

f (x)m =
∑

∑d−2
i=1 ji+ jd=m

(
m

j1, j2, . . . , jd−2, jd

)
·

d−2∏
i=1

a ji
i · x

∑d−2
i=1 i ji+d jd .

Therefore,

[xn : f (x)m] =
∑

∑d−2
i=1 ji+ jd=m∑d−2

i=1 i ji+d jd=n.

(
m

j1, j2, . . . , jd−2, jd

) d−2∏
i=1

a ji
i

=
∑

∑d−2
i=1 (d−i) ji=dm−n

(
m

j1, j2, . . . , jd−2,m −
∑d−2

i=1 ji

) d−2∏
i=1

a ji
i .

Define a multivariate polynomial HCd(q,m) in Fq[x1, x2, . . . , xd−2] by

HCd(q,m) :=
bdm/(q−1)c∑

w=1

∑
∑d−2

i=1 (d−i) ji=dm−w(q−1)

(
m

j1, j2, . . . , jd−2,m −
∑d−2

i=1 ji

) d−2∏
i=1

x ji
i .
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Then Hermite’s criterion asserts that f (x) = xd +
∑d−2

i=1 aixi (with all ai ∈ Fq) is a PP
over Fq if and only if

HCd(q,m)(a1, a2, . . . , ad−2)

= 0 for 1 6 m 6 q − 2,
, 0 for m = q − 1.

In particular, when q ≡ 1 (mod d), there is no PP of degree d over Fq because
HCd(q, (q − 1)/d) = 1. On the other hand, if q . 0, 1 (mod d), then HCd(q,m) = 0
when m 6 bq/dc = b(q − 1)/dc < (q − 1)/d.

When gcd(d, q) = 1, previous classifications of PPs of degree d 6 6 were essentially
deduced from manual analysis of the equations HCd(q,m)(a1, a2, . . . , ad−2) = 0 for
bq/dc + 1 6 m 6 bq/dc + d − 2, which nearly determine (a1, a2, . . . , ad−2) ∈ Fd−2

q when
q > d(d − 2). However, when d > 6, these polynomials HCd(q,m) are too long to
write down explicitly, let alone to solve by hand. Our main idea is to solve them by
calculating some radicals of ideals generated by some HCd(q,m), implemented on a
computer algebra system (CAS) running on a personal computer.

All algorithms of this paper run in SageMath [17] (version 8.6), a free open-source
CAS combining the power of many existing open-source packages, such as NumPy,
SciPy, Sympy, Maxima, R, GAP, Singular and many more, into a common Python-
based interface.

For d = 8, the multivariate polynomial HC8(q,m) in Fq[x1, x2, . . . , x6] is

HC8(q,m) :=
∑

7 j1+6 j2+5 j3+4 j4+3 j5+2 j6=8m−n
n∈{w(q−1): 16w6b8m/(q−1)c}

(
m

j1, j2, . . . , j6,m −
∑6

i=1 ji

) 6∏
i=1

x ji
i .

Algorithm 1 realises HC8(q,m) as a SageMath function HC8(q,m), outputting a
multivariate polynomial in Fq[x1, x2, . . . , x6].

3. Nonexistence for odd q > 31

In an address before the Mathematical Association of America in 1966, Carlitz
conjectured the existence of a constant Cn for each positive even integer n such that
no PP of degree n exists over Fq of odd order q > Cn. When gcd(n, q) = 1, this was
verified by Hayes [10] in the following stronger form.

Lemma 3.1 [10, Theorem 3.4]. Given a positive integer n, there is a constant Cn
(depending only on n) such that for any prime power q > Cn with gcd(n, q) = 1, a
PP of degree n exists over Fq only if gcd(n, q − 1) = 1.

Lemma 3.1 without the assumption gcd(n, q) = 1 is called the Carlitz–Wan
conjecture, now a theorem by [2, 9]. For Lemma 3.1 (and the Carlitz–Wan conjecture)
to hold, Cn can be taken as n4 by von zur Gathen [18], as n2(n − 2)2 by Chahal and
Ghorpade [1] and as⌊( (n − 2)(n − 3) +

√
(n − 2)2(n − 3)2 + 8n − 12

2

)2⌋
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Algorithm 1 To calculate HC8(q,m) in Fq[x1, x2, . . . , x6]

by [6]. In particular, when n = 8, the above expression is 925. The greatest prime
power below 925 is 919. So, C8 can be taken as 919.

We will refine the bound for C8 to 31 for the original version of the Carlitz
conjecture: no PP of degree 8 exists over Fq of odd order q > 31. The method is
to calculate some radicals of ideals generated by some HC8(q,m) as follows.

Consider a PP f ∈ Fq[x] of degree 8 over Fq of odd order q = 8t + s with 1 6 t ∈ Z
and s ∈ {3, 5, 7}, where s , 1 by Hermite’s criterion. Without loss of generality, let
f (x) = x8 +

∑6
i=1 aixi (in normalised form) with all ai ∈ Fq. Hermite’s criterion ensures

that (a1, a2, . . . , a6) ∈ F6
q is a vanishing point of each HC8(q,m) with 1 6 m 6 q − 2,

and thus of every polynomial in the radical of any ideal in Fq[x1, x2, . . . , x6] generated
by some of them. The radical

√
I of an ideal I in a ring R is

√
I := {g ∈ R : gm ∈ I for some positive integer m}.

In particular, for 1 6 k ∈ Z, we calculate the radical Rad8(q, k) of the ideal generated by
k polynomials HC8(q,m) with bq/8c + 1 6 m 6 bq/8c + k, by the SageMath function
Rad8(q, k) defined in Algorithm 2.

Algorithm 2 To calculate the radical Rad8(q, k)

def Rad8(q,k):

return Ideal([HC8(q,q//8+1+i) for i in range(k)]).radical()

SageMath uses Singular [3] to implement the calculation for radicals of ideals in
multivariate polynomial rings over fields, based on the algorithm of Kemper [13] in
positive characteristic.

https://doi.org/10.1017/S0004972719000674 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000674
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Below, we list the following Rad8(q, k) for the odd prime powers q . 1 (mod 8)
with 31 < q 6 919 as outputs of Algorithm 2 in SageMath 8.6, in the form
Ideal(g1,g2, . . . ,gs) denoting the ideal generated by g1,g2, . . . ,gs in Fq[x1, x2, . . . , x6].
By definition, every gi in the output vanishes at (a1, a2, . . . , a6) ∈ F6

q for any PP of the
form f (x) = x8 +

∑6
i=1 aixi over Fq. For each q, we choose a suitable k to manufacture

the gi good enough for our purpose. Our choice of k might not be minimal, but it
makes the running time of Rad8(q, k) for the same result as short as possible.

• Rad8(37, 8) = Ideal(1). So, no PP of degree 8 exists over F37.
• Rad8(43, 7) = Ideal(x6, x5, x4, x3,x2, x1). Since f (x) = x8 is clearly not a PP over
F43, no PP of degree 8 exists over F43.

• Rad8(47, 7) = Ideal(x6, x5, x4, x3,x2, x1). So, no PP of degree 8 exists over F47.
• Rad8(53, 7) = Ideal(1). So, no PP of degree 8 exists over F53.

The above calculations indicate that no PP of degree 8 exists over Fq of odd order q if
31 < q 6 53.

• For any prime power q ≡ 7 (mod 8) with 53 < q 6 919,

Rad8(q, 7) = Ideal(x6, x5, x3,x2, x1)

by the output of the following piece of SageMath code:

for q in range(54,920):

if q%8==7 and is_prime_power(q): print Rad8(q,7)

Then f (x) = x8 + a4x4. Now q = 8t + 7 with 1 6 t ∈ Z. For m = bq/4c + 1 =

2t + 2 < q − 1, by Hermite’s criterion,

0 = HC8(q,m)(0, 0, 0, a4, 0, 0) =
∑

4 j4=16t+16−n
n∈{w(8t+6): 16w6b(16t+16)/(8t+6)c}

(
m

j4,m − j4

)
a j4

4

=
∑

4 j4=16t+16−2(8t+6)

(
m

j4,m − j4

)
a j4

4 = ma4 ∈ Fq.

Note that gcd(m, q) = 1, as q = 4m − 1; thus, a4 = 0. Since f (x) = x8 is not a PP
over Fq, no PP of degree 8 exists over Fq if q ≡ 7 (mod 8) and 53 < q 6 919.

• For any prime q ≡ 3 (mod 8) with 53 < q 6 919,

Rad8(q, 7) = Ideal(x5, x3, x1, x4x6 − 10x2, x3
6 − 32x2).

• For any prime q ≡ 5 (mod 8) with 53 < q 6 919,

Rad8(q, 7) = Ideal(x5, x3, x1, x2
6 + α(q)x4, x4x6 − 10x2),

where α(q) ∈ Fq depends on q.
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• For any nonprime prime power q ≡ 3 or 5 (mod 8) with 53 < q 6 919, that is,
q = 53 or 35,

Rad8(53, 9) = Ideal(x5, x4, x3, x1, x3
6 − 2x2),

Rad8(35, 19) = Ideal(x5, x3, x1, x4x6 − x2, x3
6 + x2, x2x2

6 + x2x4, x2x2
4 + x2

2x6).

For any prime power q ≡ 3 or 5 (mod 8) with 53 < q 6 919, the above
calculations imply that a1 = a3 = a5 = 0 by Hermite’s criterion. We calculate
HC8(q,m)(0, x2, 0, x4, 0, x6) by the SageMath function HC8new(q,m) in Algorithm 3.

Algorithm 3 To calculate HC8(q,m)(0, x2, 0, x4, 0, x6)

Inspired by the case q ≡ 7 (mod 8), we try to run HC8new(q,m) with m = bq/4c + 1.
After some experiments, we fortunately see that the output of Algorithm 4 in SageMath
8.6, which prints Ideal(x6, x5, x4, x3,x2, x1) for every prime power q ≡ 3 or 5 (mod 8)
with 53 < q 6 919, verifies the nonexistence of PPs of degree 8 over Fq for these q.

Algorithm 4 Nonexistence of degree 8 PPs over Fq for q ≡ 3, 5 (mod 8), 53 < q 6 919

In conclusion, the above calculations for the odd prime powers q . 1 (mod 8) with
31 < q 6 919, together with Lemma 3.1 in which we can take C8 = 919 by [6], ensure
the following nonexistence result.

Theorem 3.2. No PP of degree 8 exists over any finite field Fq of odd order q > 31.
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4. Explicit results

This section aims for a complete list of all PPs of degree 8 in normalised form
over Fq of odd order q > 8. Since q . 1 (mod 8) by Hermite’s criterion and q 6 31 by
Theorem 3.2, we indeed have q ∈ {11, 13, 19, 23, 27, 29, 31}.

To make the resulting list as short as possible, we first investigate the linear relations
among polynomials of degree 8. Two polynomials f and g in Fq[x] are said to be
related by linear transformations (linearly related for short) if there exist s, t ∈ F∗q and
u, v ∈ Fq such that g(x) = s f (tx + u) + v. Note that linearly related f and g have the
same degree and f is a PP over Fq if and only if so is g.

Proposition 4.1. Let q be an odd prime power. Then each polynomial of degree 8 in
Fq[x] is linearly related to some f ∈ Fq[x] in normalised form, f (x) = x8 +

∑6
i=1 aixi

with all ai ∈ Fq. Moreover, for another g(x) = x8 +
∑6

i=1 bixi ∈ Fq[x] with all bi ∈ Fq, f
and g are linearly related if and only if f (x) = t8g(t−1x) for some t ∈ F∗q, that is,

(a6, a5, a4, a3, a2, a1) = (t2b6, t3b5, t4b4, t5b3, t6b2, t7b1).

Proof. Each polynomial h of degree 8 in Fq[x] can be written as h(x) =
∑8

i=1 cixi

with all ci ∈ Fq and c8 , 0. Then f (x) = c−1
8 h(x − 8−1c−1

8 c7) − c−1
8 h(−8−1c−1

8 c7) is in
normalised form and linearly related to h.

Suppose that f (x) = x8 +
∑6

i=1 aixi and g(x) = x8 +
∑6

i=1 bixi (with all ai, bi ∈ Fq) are
linearly related, say g(x) = s f (tx + u) + v with s, t ∈ F∗q and u, v ∈ Fq. Clearly, st8 = 1
and 8st7u = 0, considering the coefficients of x8 and x7, respectively. So, s = t−8 and
u = 0. Then g(x) = t−8 f (tx) + v, where v = g(0) − t−8 f (0) = 0. �

The following subsections carry out a brute-force search for (a1, a2, . . . , a6) ∈ F6
q

corresponding to a PP f (x) = x8 +
∑6

i=1 aixi over Fq in normalised form, on a case-by-
case basis for each odd prime power q . 1 (mod 8) with 8 < q 6 31. The candidates
are reduced up to linear transformations by Proposition 4.1. The search employs the
SageMath function isPP8(q, a6, a5, a4, a3, a2, a1) defined in Algorithm 5 to examine
whether f is a PP over Fq or not. By Wan [19], it suffices to test whether the value set
{ f (c) : c ∈ Fq} contains bq − (q − 1)/8c + 1 distinct values.

Algorithm 5 To examine whether f (x) = x8 +
∑6

i=1 aixi is a PP over Fq
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4.1. Case q = 31. The following piece of SageMath code prints polynomials with
at most two terms among the given generators of Rad8(31, 12).

for g in Rad8(31,12).gens():

if g.number_of_terms()<3: print g

The output prints x6, x5
2 − 1, x6

3 − 1, x15
4 − 1 and x30

1 − 1, all of which vanish at
(a1, a2, . . . , a6) ∈ F6

31. So, a6 = 0 , a1 and a5
2 = a6

3 = a15
4 = 1.

Note that f (x) is linearly related to

t8 f (t−1x) = x8 + t2a6x6 + t3a5x5 + t4a4x4 + t5a3x3 + t6a2x2 + t7a1x.

As q − 1 = 30 is coprime to 7, a1 = a7 for some a ∈ F∗31. Replacing f (x) by a−8 f (ax) if
necessary, we assume that a1 = 1 without loss of generality. So, Algorithm 6 lists PPs
of degree 8 in normalised form over F31, up to linear transformations.

Algorithm 6 To list PPs of degree 8 in normalised form over F31

The output of Algorithm 6 is (0, 19, 25, 6, 2, 1), which gives Proposition 4.2.

Proposition 4.2. All PPs of degree 8 in normalised form over F31 are exactly

x8 + 19t3x5 + 25t4x4 + 6t5x3 + 2t6x2 + t7x

with t running through F∗31.

4.2. Case q = 29. The following piece of SageMath code prints polynomials with
at most three terms among the given generators of Rad8(29, 7).

for g in Rad8(29,7).gens():

if g.number_of_terms()<4: print g

The output prints x2
6 − 9x4, x8

1 + 4x4
1 − 5, x15

2 − x2 and x29
3 − x3, all of which vanish

at (a1, a2, . . . , a6) ∈ F29. So, a4 = a2
6/9, a8

1 + 4a4
1 = 5 and a15

2 = a2.
As q − 1 = 28 is coprime to 3, without loss of generality we can assume that

a5 ∈ {0, 1} (by linear transformations if necessary). So, Algorithm 7 lists PPs of degree
8 in normalised form over F29, up to linear transformations.

The output of Algorithm 7 prints

(0, 0, 0, 0, 0, 4), (0, 0, 0, 0, 0, 10), (0, 0, 0, 0, 0, 19), (0, 0, 0, 0, 0, 25), (26, 1, 1, 4, 20, 1).

Note that {4t7 : t ∈ F∗29} = {4, 10, 19, 25}. This gives the following proposition.
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Algorithm 7 To list PPs of degree 8 in normalised form over F29

Proposition 4.3. All PPs of degree 8 in normalised form over F29 are exactly

x8 + 4t7x, x8 + 26t2x6 + t3x5 + t4x4 + 4t5x3 + 20t6x2 + t7x

with t running through F∗29.

4.3. Case q = 27. Note that (a1, a3) , (0, 0) by the output of the SageMath code.

K.<x1,x2,x3,x4,x5,x6> = PolynomialRing(GF(27))

Ideal([HC8(27,4+i) for i in range(10)]+[x1,x3]).radical()

The output is Ideal(1), which indicates that polynomials x1 and x3 cannot both vanish
at (a1, a2, . . . , a6) ∈ F27. By linear transformations if necessary, we can assume that
a1 ∈ {0, 1}, as q − 1 = 26 is coprime to 7. Further, when a1 = 0 (and thus a3 , 0),
we can assume that a3 = 1, as q − 1 = 26 is coprime to 5. Note that a2 = −a3

6 since
HC8(27, 4) = x3

6 + x2. So, Algorithm 8 lists PPs of degree 8 in normalised form over
F27 up to linear transformations and Proposition 4.4 is read off from its output.

Algorithm 8 To list PPs of degree 8 in normalised form over F27

Proposition 4.4. Let e be a root of the polynomial x3 + 2x + 1 in F27, which is a
generator of F∗27. All PPs of degree 8 in normalised form over F27 are exactly those of
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the form x8 +
∑6

i=1 t8−iaixi with t ∈ F∗27 and (a6, a5, a4, a3, a2, a1) listed as follows:

(1, 0, 2, 1, 2, 0), (1, 1, 2, 1, 2, 0),

(e2, 2e, 2e3, e10, 2e6, 1), (e6, 2e3, 2e9, e4, e5, 1), (2e5, 2e9, 2e, e12, 2e2, 1),

(e2, 2e4, e7, e6, 2e6, 1), (e6, 2e12, 2e8, 2e5, e5, 1), (2e5, 2e10, e11, e2, 2e2, 1),

(e4, 2e2, e7, e4, 2e12, 1), (e12, 2e6, 2e8, e12, 2e10, 1), (e10, e5, e11, e10, 2e4, 1),

(2e4, e10, 2e12, 2e11, e12, 1), (2e12, e4, 2e10, 2e7, e10, 1), (2e10, e12, 2e4, e8, e4, 1).

4.4. Case q = 23. The following piece of SageMath code prints polynomials with
at most four terms among the given generators of Rad8(23, 9).

for g in Rad8(23,9).gens():

if g.number_of_terms()<5: print g

The output prints x6, x4x2
5 − 11x2

3 + x2x4 + x1x5, x22
5 − 1, x22

4 − 1, x22
3 − 1 and x22

1 − 1,
all of which vanish at (a1, a2, . . . , a6) ∈ F23. So, a6 = 0 , a j for j ∈ {1, 3, 4, 5} and
a4a2

5 − 11a2
3 + a2a4 + a1a5 = 0.

As q − 1 = 22 is coprime to 3, without loss of generality we can assume that
a5 = 1 by linear transformations if necessary. So, Algorithm 9 lists PPs of degree
8 in normalised form over F23 up to linear transformations and Proposition 4.5 is read
off from its output.

Algorithm 9 To list PPs of degree 8 in normalised form over F23

Proposition 4.5. All PPs of degree 8 in normalised form over F23 are exactly those
of the form x8 + t3x5 + t4a4x4 + t5a3x3 + t6a2x2 + t7a1x with t ∈ F∗23 and (a4, a3, a2, a1)
listed as follows:

(11, 1, 12, 6), (11, 1, 21, 22), (15, 8, 16, 12), (15, 16, 13, 7),

(16, 8, 7, 1), (19, 5, 10, 20), (20, 12, 2, 6).

4.5. Case q = 19. Note that (a1, a3) , (0, 0) by the output of the SageMath code.

K.<x1,x2,x3,x4,x5,x6> = PolynomialRing(GF(19))

Ideal([HC8(19,3+i) for i in range(7)]+[x3,x1]).radical()
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Table 1. PPs x8 +
∑6

i=1 ai xi of degree 8 over F19 up to linear transformations.

(a3, a1) (a6, a5, a4, a2) (a3, a1) (a6, a5, a4, a2)
(1, 0) (0, 1, 3, 18), (8, 1, 7, 14), (15, 1, 1, 3) (10, 1) (6, 17, 3, 2), (17, 12, 6, 3)
(0, 1) (9, 9, 18, 17), (17, 16, 2, 8) (11, 1) (11, 2, 8, 16), (11, 9, 1, 17), (18, 0, 18, 11)
(1, 1) (4, 7, 17, 9), (8, 16, 10, 15), (15, 4, 9, 14) (12, 1) (9, 15, 12, 0)
(2, 1) (1, 8, 1, 16), (3, 6, 3, 13), (6, 18, 2, 17) (13, 1) (12, 6, 8, 13), (13, 17, 8, 12)
(3, 1) (12, 11, 10, 13) (14, 1) (10, 15, 14, 4), (12, 12, 4, 1), (17, 3, 9, 17),

(18, 12, 4, 10), (18, 17, 13, 16)
(4, 1) (2, 5, 8, 10), (10, 10, 11, 18) (15, 1) (0, 5, 4, 13), (8, 13, 8, 1)
(5, 1) (0, 4, 4, 3), (0, 9, 9, 14), (10, 0, 0, 15), (16, 1) (2, 11, 6, 17), (3, 17, 17, 18), (9, 18, 16, 0),

(14, 5, 15, 2) (11, 8, 9, 10)
(6, 1) (0, 14, 12, 13), (13, 16, 2, 11), (16, 7, 1, 4) (17, 1) (1, 8, 12, 13), (3, 8, 12, 7), (3, 16, 1, 14)
(7, 1) (0, 6, 12, 2), (3, 7, 16, 17) (18, 1) (8, 3, 18, 1), (11, 3, 5, 1), (18, 11, 0, 6)

The output is Ideal(1), which indicates that polynomials x1 and x3 cannot both vanish
at (a1, a2, . . . , a6) ∈ F19. By linear transformations if necessary, we can assume that
a1 ∈ {0,1}, as q − 1 = 18 is coprime to 7. Further, when a1 = 0 (and thus a3 , 0), we can
assume that a3 = 1, as q − 1 = 18 is coprime to 5. Note that a2 = −a3

6/3 − a2
5 − 2a4a6

since HC8(19, 3) = x3
6 + 3x2

5 + 6x4x6 + 3x2. So, Algorithm 10 lists PPs of degree 8 in
normalised form over F19 up to linear transformations. There are exactly 48 linearly
related classes of PPs of degree 8 over F19 as listed in Proposition 4.6, corresponding
to 48 output tuples of Algorithm 10.

Algorithm 10 To list PPs of degree 8 in normalised form over F19

Proposition 4.6. All PPs of degree 8 in normalised form over F19 are exactly those of
the form x8 +

∑6
i=1 t8−iaixi with t ∈ F∗19 and (a6, a5, a4, a3, a2, a1) listed in Table 1.

4.6. Case q = 13. Note that a4 = −a2
6/2 since HC8(13, 2) = x2

6 + 2x4. By linear
transformations if necessary, we can assume that a1 ∈ {0, 1}, as q − 1 = 12 is coprime
to 7. When a1 = 0, we can assume that a3 ∈ {0, 1}, as q − 1 = 12 is coprime to 5.
When a1 = a3 = 0, we can assume that a5 ∈ {0, 1, 2, 4}, as {1, 2, 4} is a complete set of
coset representatives of F∗13/{t

3 : t ∈ F∗13}. So, Algorithm 11 lists PPs of degree 8 in
normalised form over F13 up to linear transformations.

The output of Algorithm 11 prints 119 tuples (a6, a5, . . . , a1), among which three
tuples (4, 2, 5, 0, 4, 0), (10, 2, 2, 0, 4, 0) and (12, 2, 6, 0, 4, 0) give three linearly related
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Algorithm 11 To list PPs of degree 8 in normalised form over F13

Table 2. PPs x8 +
∑6

i=1 ai xi of degree 8 over F13 up to linear transformations.

(a3, a1) (a6, a5, a4, a2)
(0, 0) (0, 1, 0, 5), (0, 1, 0, 7), (0, 4, 0, 9), (4, 2, 5, 4)
(1, 0) (0, 7, 0, 12), (2, 0, 11, 12), (4, 8, 5, 2), (7, 7, 8, 9)
(0, 1) (2, 7, 11, 6), (3, 1, 2, 2), (3, 2, 2, 12), (4, 11, 5, 8), (7, 11, 8, 1), (10, 5, 2, 1), (10, 9, 2, 2), (12, 11, 6, 1)
(1, 1) (1, 9, 6, 4), (4, 2, 5, 10), (4, 3, 5, 7), (4, 4, 5, 12), (7, 5, 8, 5), (9, 5, 5, 10), (9, 8, 5, 7), (12, 10, 6, 3)
(2, 1) (0, 3, 0, 0), (1, 8, 6, 5), (1, 9, 6, 3), (2, 9, 11, 1), (5, 8, 7, 6), (6, 12, 8, 4), (7, 4, 8, 12), (8, 0, 7, 11)
(3, 1) (1, 3, 6, 10), (1, 4, 6, 12), (4, 5, 5, 5), (8, 1, 7, 12), (8, 5, 7, 7), (8, 5, 7, 12), (8, 6, 7, 2), (9, 12, 5, 7),

(12, 5, 6, 8)
(4, 1) (1, 10, 6, 6), (4, 4, 5, 5), (5, 6, 7, 9), (9, 2, 5, 6), (9, 10, 5, 12), (10, 10, 2, 9), (12, 1, 6, 7)
(5, 1) (0, 1, 0, 8), (3, 5, 2, 12), (4, 0, 5, 7), (5, 11, 7, 1), (6, 12, 8, 8), (10, 12, 2, 4)
(6, 1) (0, 10, 0, 12), (3, 0, 2, 9), (5, 2, 7, 10), (6, 7, 8, 3), (6, 10, 8, 6), (10, 0, 2, 11), (11, 11, 11, 2)
(7, 1) (0, 1, 0, 6), (1, 7, 6, 10), (1, 11, 6, 4), (4, 4, 5, 6), (10, 7, 2, 10), (11, 1, 11, 1), (11, 3, 11, 11), (11, 10, 11, 2),

(12, 10, 6, 6)
(8, 1) (0, 0, 0, 1), (1, 1, 6, 1), (4, 9, 5, 2), (7, 11, 8, 1), (8, 11, 7, 10), (9, 8, 5, 1), (9, 10, 5, 10), (12, 0, 6, 2)
(9, 1) (0, 2, 0, 2), (1, 11, 6, 5), (3, 9, 2, 2), (4, 9, 5, 6), (4, 12, 5, 0), (7, 1, 8, 2), (7, 2, 8, 5), (7, 12, 8, 0),

(11, 1, 11, 0), (12, 6, 6, 8), (12, 10, 6, 8)
(10, 1) (0, 3, 0, 3), (0, 10, 0, 1), (4, 5, 5, 5), (5, 1, 7, 10), (5, 12, 7, 9), (9, 4, 5, 5), (9, 5, 5, 11), (10, 5, 2, 9),

(10, 7, 2, 0), (10, 10, 2, 7), (12, 1, 6, 4)
(11, 1) (0, 3, 0, 7), (1, 12, 6, 12), (2, 4, 11, 10), (2, 6, 11, 0), (3, 0, 2, 12), (6, 8, 8, 3), (7, 7, 8, 12), (9, 0, 5, 6)
(12, 1) (3, 5, 2, 1), (4, 9, 5, 0), (5, 4, 7, 10), (6, 8, 8, 9), (6, 12, 8, 2), (7, 10, 8, 9), (8, 3, 7, 2), (9, 5, 5, 5),

(11, 9, 11, 10)

PPs of degree 8. Indeed, for t = 3 ∈ F∗13, we have t3 = 1, t−1 = 9 and

(10, 2, 2, 0, 4, 0) = (4t2, 2t3, 5t4, 0, 4t6, 0) = (12t−2, 2t−3, 6t−4, 0, 4t−6, 0).

No other linear transformation relations exist among the output tuples. Therefore,
there are exactly 117 linearly related classes of PPs of degree 8 over F13, as listed in
Proposition 4.7 read off from the output of Algorithm 11.

Proposition 4.7. All PPs of degree 8 in normalised form over F13 are exactly those of
the form x8 +

∑6
i=1 t8−iaixi with t ∈ F∗13 and (a6, a5, a4, a3, a2, a1) listed in Table 2.

4.7. Case q = 11. Note that a2 = −a2
5/2 − a4a6 since HC8(11,2) = x2

5 + 2x4x6 + 2x2.
We can assume that a1 ∈ {0, 1}, as q − 1 = 10 is coprime to 7. When a1 = 0, we
can assume that a5 ∈ {0, 1}, as q − 1 = 10 is coprime to 3. When a1 = a5 = 0, we
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Table 3. PPs x8 +
∑6

i=1 ai xi of degree 8 over F11 up to linear transformations.

(a5, a1) (a6, a4, a3, a2)
(0, 0) (0, 0, 2, 0), (0, 0, 4, 0), (2, 6, 2, 10), (2, 7, 3, 8)
(1, 0) (0, 2, 0, 5), (1, 1, 0, 4), (1, 4, 0, 1), (1, 4, 5, 1), (1, 9, 1, 7), (1, 10, 5, 6), (2, 1, 4, 3), (2, 4, 0, 8), (2, 5, 0, 6),

(3, 2, 3, 10), (4, 1, 0, 1), (4, 6, 4, 3), (4, 7, 0, 10), (4, 8, 3, 6), (4, 9, 9, 2), (4, 10, 9, 9), (5, 6, 5, 8), (6, 6, 5, 2),
(7, 7, 5, 0), (8, 0, 0, 5), (8, 2, 0, 0), (9, 3, 4, 0), (9, 5, 0, 4), (9, 5, 5, 4), (9, 7, 0, 8), (10, 0, 9, 5)

(0, 1) (0, 1, 3, 0), (0, 2, 9, 0), (0, 8, 5, 0), (2, 3, 5, 5), (3, 2, 3, 5), (3, 4, 1, 10), (3, 9, 4, 6), (3, 10, 1, 3), (4, 3, 9, 10),
(4, 8, 4, 1), (5, 10, 3, 5), (6, 2, 4, 10), (6, 4, 0, 9), (7, 5, 0, 9), (7, 6, 1, 2), (8, 5, 9, 4), (9, 3, 1, 6), (9, 10, 1, 9),
(10, 0, 1, 0), (10, 1, 4, 1), (10, 3, 3, 3), (10, 5, 1, 5), (10, 7, 4, 7)

(1, 1) (0, 4, 6, 5), (1, 9, 10, 7), (2, 0, 0, 5), (2, 10, 10, 7), (4, 3, 7, 4), (4, 5, 5, 7), (4, 6, 3, 3), (5, 2, 5, 6), (5, 8, 1, 9),
(6, 0, 3, 5), (6, 0, 6, 5), (6, 0, 7, 5), (8, 1, 3, 8), (8, 10, 7, 2), (9, 1, 3, 7), (9, 2, 3, 9), (9, 5, 0, 4), (9, 6, 7, 6),
(9, 9, 2, 1), (10, 0, 7, 5), (10, 3, 7, 8), (10, 7, 2, 1)

(2, 1) (0, 1, 5, 9), (0, 3, 5, 9), (1, 4, 2, 5), (1, 4, 9, 5), (1, 7, 6, 2), (1, 10, 2, 10), (2, 5, 5, 10), (4, 0, 7, 9), (4, 5, 4, 0),
(5, 2, 9, 10), (5, 10, 6, 3), (6, 0, 4, 9), (6, 1, 9, 3), (6, 8, 4, 5), (7, 0, 9, 9), (7, 1, 5, 2), (7, 3, 6, 10), (8, 2, 5, 4),
(8, 3, 4, 7), (8, 8, 4, 0), (9, 1, 9, 0), (9, 6, 6, 10), (9, 10, 9, 7), (10, 10, 5, 8)

(3, 1) (0, 4, 3, 1), (0, 5, 8, 1), (0, 7, 0, 1), (0, 8, 0, 1), (1, 4, 5, 8), (1, 8, 0, 4), (3, 8, 3, 10), (3, 8, 8, 10), (4, 2, 8, 4),
(4, 8, 5, 2), (5, 9, 6, 0), (6, 4, 4, 10), (7, 6, 6, 3), (7, 8, 3, 0), (8, 7, 6, 0), (9, 0, 4, 1), (9, 3, 10, 7), (9, 7, 2, 4),
(9, 7, 3, 4), (9, 10, 3, 10), (10, 2, 6, 3), (10, 8, 3, 9)

(4, 1) (0, 3, 0, 3), (1, 1, 10, 2), (1, 4, 10, 10), (2, 3, 8, 8), (2, 7, 9, 0), (3, 0, 5, 3), (3, 1, 7, 0), (3, 1, 9, 0), (3, 3, 9, 5),
(3, 5, 0, 10), (3, 5, 7, 10), (4, 1, 2, 10), (5, 5, 10, 0), (5, 10, 1, 8), (5, 10, 7, 8), (6, 3, 9, 7), (6, 7, 2, 5), (7, 2, 8, 0),
(7, 5, 10, 1), (7, 9, 0, 6), (8, 3, 10, 1), (8, 6, 8, 10), (8, 8, 7, 5), (9, 7, 10, 6), (9, 9, 1, 10), (10, 3, 5, 6)

(5, 1) (0, 9, 1, 4), (0, 10, 6, 4), (1, 2, 2, 2), (1, 3, 9, 1), (1, 5, 6, 10), (1, 7, 8, 8), (2, 2, 1, 0), (2, 5, 2, 5), (2, 9, 0, 8),
(3, 3, 4, 6), (3, 6, 7, 8), (4, 2, 6, 7), (4, 3, 1, 3), (4, 4, 7, 10), (5, 0, 8, 4), (5, 1, 6, 10), (5, 8, 8, 8), (5, 10, 0, 9),
(6, 4, 8, 2), (7, 3, 9, 5), (7, 10, 7, 0), (8, 2, 1, 10), (8, 2, 7, 10), (8, 3, 1, 2), (8, 5, 9, 8), (8, 6, 2, 0), (8, 8, 0, 6),
(8, 8, 7, 6), (9, 8, 4, 9), (10, 9, 1, 2)

(6, 1) (0, 7, 9, 4), (1, 6, 8, 9), (1, 9, 2, 6), (2, 1, 3, 2), (3, 7, 8, 5), (4, 6, 9, 2), (5, 10, 10, 9), (6, 0, 2, 4), (6, 7, 10, 6),
(7, 9, 3, 7), (9, 3, 9, 10), (9, 6, 1, 5), (9, 7, 9, 7), (10, 9, 1, 2)

(7, 1) (1, 0, 1, 3), (1, 0, 4, 3), (1, 0, 6, 3), (2, 7, 1, 0), (2, 9, 5, 7), (3, 9, 5, 9), (4, 0, 4, 3), (4, 6, 6, 1), (5, 2, 10, 4),
(5, 3, 1, 10), (5, 10, 7, 8), (7, 4, 4, 8), (8, 1, 10, 6), (8, 3, 7, 1), (8, 10, 10, 0), (9, 0, 7, 3), (9, 10, 10, 1), (10, 8, 10, 0)

(8, 1) (0, 10, 4, 1), (1, 9, 3, 3), (2, 2, 7, 8), (2, 10, 10, 3), (3, 2, 4, 6), (3, 4, 1, 0), (3, 4, 3, 0), (4, 1, 3, 8), (4, 4, 1, 7),
(4, 6, 8, 10), (5, 9, 4, 0), (6, 9, 10, 2), (7, 0, 8, 1), (7, 2, 8, 9), (8, 6, 4, 8), (8, 9, 8, 6), (9, 0, 8, 1), (10, 0, 7, 1)

(9, 1) (0, 0, 4, 9), (0, 6, 3, 9), (1, 0, 6, 9), (1, 8, 6, 1), (1, 8, 8, 1), (1, 10, 8, 10), (2, 1, 10, 7), (2, 4, 0, 1), (2, 5, 0, 10),
(3, 0, 0, 9), (3, 5, 3, 5), (3, 9, 10, 4), (4, 3, 10, 8), (4, 4, 4, 4), (4, 7, 6, 3), (4, 10, 4, 2), (5, 9, 4, 8), (6, 2, 9, 8),
(6, 5, 4, 1), (6, 6, 0, 6), (6, 10, 10, 4), (7, 1, 0, 2), (7, 10, 8, 5), (8, 1, 8, 1), (8, 6, 7, 5), (8, 8, 10, 0), (9, 3, 0, 4),
(9, 5, 9, 8), (9, 6, 6, 10), (10, 6, 8, 4), (10, 7, 8, 5), (10, 9, 4, 7)

(10, 1) (0, 1, 8, 5) (0, 5, 2, 5), (0, 6, 5, 5), (1, 0, 2, 5), (2, 4, 9, 8), (3, 5, 8, 1), (3, 6, 6, 9), (3, 8, 9, 3), (4, 2, 3, 8),
(5, 10, 5, 10) (7, 3, 8, 6), (7, 5, 9, 3), (8, 2, 8, 0), (8, 3, 5, 3), (8, 6, 9, 1), (9, 1, 3, 7), (9, 9, 6, 1), (10, 1, 6, 6)

can assume that a6 ∈ {0, 1, 2}, as {1, 2} is a complete set of coset representatives of
F∗11/{t

2 : t ∈ F∗11}. So, Algorithm 12 lists PPs of degree 8 in normalised form over F11

up to linear transformations.
The output of Algorithm 12 prints 281 tuples (a6, a5, . . . , a1). By Proposition 4.1

and our assumptions, linear transformation relations exist only among those with
a1 = a5 = 0, which are indeed the first eight tuples in the output, corresponding to four
distinct linearly related classes. No other linear transformation relations exist among
the output tuples. So, there are exactly 277 linearly related classes of PPs of degree 8
over F11, as listed in Proposition 4.8 read off from the output of Algorithm 12.

Proposition 4.8. All PPs of degree 8 in normalised form over F11 are exactly those of
the form x8 +

∑6
i=1 t8−iaixi with t ∈ F∗11 and (a6, a5, a4, a3, a2, a1) listed in Table 3.
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