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In this paper we introduce the two possible formulations of the F-functional calculus
that are based on the Fueter–Sce mapping theorem in integral form and we introduce
the pseudo-F-resolvent equation. In the case of dimension 3 we prove the F-resolvent
equation and we study the analogue of the Riesz projectors associated with this
calculus. The case of dimension 3 is also useful to study the quaternionic version of
the F-functional calculus.

Keywords: Fueter–Sce mapping theorem in integral form; F-spectrum;
formulations of the F-functional calculus for n-tuples of operators;
projectors; quaternionic version of the F-functional calculus;
quaternionic F-resolvent equation

2010 Mathematics subject classification: Primary 47A10; 47A60

1. Introduction

Probably the most important functional calculus for linear operators acting on
a Banach space is the Riesz–Dunford functional calculus (see [26]). For the case
of n-tuples of operators we quote the paper by Anderson [9], who developed the
Weyl functional calculus, and the work of Taylor and Taylor [43–46], who defined
a functional calculus for n-tuples of operators using the theory of holomorphic
functions of several variables. Since then, the literature on this topic has been
developed in different directions using different notions of hyperholomorphicity.

In the past few years the theory of slice hyperholomorphic functions (see [11,12,
17, 19, 22]) has been the underlying function theory on which two new functional
calculuses have been developed for several operators and for quaternionic operators.
These calculuses are the S-functional calculus [4,7,12,13,16] and the F-functional
calculus [4, 14, 18]. The former is based on the Cauchy formula of the slice hyper-
holomorphic functions (see [11, 12]), and it applies to n-tuples of not necessarily
commuting operators and to quaternionic operators. When applied to quaternionic
operators, the S-functional calculus is also called quaternionic functional calculus.
For an overview on slice hyperholomorphic functions and for the S-functional cal-
culus see the monograph [21]. A continuous version of the S-functional calculus can
be found in [28].
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In the recent paper [7] it was shown that, in order to have a full description of the
S-functional calculus, we need both formulations of this calculus (more precisely,
both the formulation based on the right S-resolvent operator and the one based on
the left S-resolvent operator). This is necessary because the S-resolvent equation
involves both resolvent operators. This equation is a key tool with which to study
the Riesz projectors associated with the S-functional calculus.

The aim of this work is to introduce the formulations of the F-functional calculus
and to extend some of the results proved in [7] to the F-functional calculus. For
example, the Riesz-type projectors are based on the two formulations of the F-
functional calculus and on the F-resolvent equation. To define the two formulations
of the F-functional calculus we need the two integral versions of the Fueter–Sce
mapping theorem in integral form.

The Fueter–Sce mapping theorem is one of the deepest results in hypercomplex
analysis (see [27]). It gives a procedure to generate Cauchy–Fueter regular functions
starting from holomorphic functions of a complex variable. In the case of Clifford-
algebra-valued functions, see [10,15,25,30]. The proof of the analogue of the Fueter
mapping theorem is due to Sce [41] for n odd and to Qian [38] for the general
case. Fueter’s theorem has been generalized to the case in which a function f is
multiplied by a monogenic homogeneous polynomial of degree k (see [34,36,37,42])
and to the case in which the function f is defined on an open set U not necessarily
chosen in the upper complex plane (see [38–40]).

The problem of the inversion of the Fueter–Sce mapping theorem as been inves-
tigated in a series of papers (see [20,23,24]).

The F-functional calculus is based on the Fueter–Sce mapping theorem in integral
form. This is an integral transform obtained by applying suitable powers of the
Laplace operator to the Cauchy kernel of slice hyperholomorphic functions.

The case of left-slice monogenic functions was studied in [18], where the F-
functional calculus was introduced.

We observe that, to study the Riesz projectors, in the classical case, we need the
resolvent equation

(λI − A)−1(µI − A)−1 =
(λI − A)−1 − (µI − A)−1

µ − λ
, λ, µ ∈ C \ σ(A), (1.1)

where A is a complex operator on a complex Banach space.
In fact, to study the classical Riesz projectors, we use the fact that the product

of the resolvent operators (λI − A)−1(µI − A)−1 can be written in terms of the
difference (λI − A)−1 − (µI − A)−1 multiplied by the Cauchy kernel of holomorphic
functions. As a consequence of the holomorphicity, one can prove that

PΩ =
∫

∂Ω

(λI − A)−1 dλ,

where Ω contains part of the spectrum of A, is a projector, i.e. P 2
Ω = PΩ .

In the case of the S-functional calculus (and, in particular, its commutative ver-
sion, the SC-functional calculus) we can follow the same strategy but in this case
the SC-resolvent equation contains both the SC-resolvent operators, as has recently
been shown in [7].
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Precisely, we consider a paravector operator T = T0+e1T1+ · · ·+enTn, where Tj ,
j = 0, 1, . . . , n, are real bounded operators commuting among themselves, acting on
a real Banach space and ej , j = 1, . . . , n, are the units of the real Clifford algebra
Rn. The F-spectrum of T is defined as

σF (T ) = {s ∈ R
n+1 : s2I − s(T + T̄ ) + T T̄ is not invertible},

where we have set T̄ := T0 − e1T1 − · · · − enTn. The left SC-resolvent operator is
defined as

S−1
C,L(s, T ) := (sI − T̄ )(s2I − s(T + T̄ ) + T T̄ )−1, s �∈ σF (T ), (1.2)

and the right SC-resolvent operator is

S−1
C,R(s, T ) := (s2I − s(T + T̄ ) + T T̄ )−1(sI − T̄ ), s �∈ σF (T ). (1.3)

In this case, for s, p �∈ σF (T ), the SC-resolvent equation is

S−1
C,R(s, T )S−1

C,L(p, T ) = ((S−1
C,R(s, T ) − S−1

C,L(p, T ))p

− s̄(S−1
C,R(s, T ) − S−1

C,L(p, T )))(p2 − 2s0p + |s|2)−1, (1.4)

where p and s are paravectors, i.e. s = s0 + s1e1 + · · · + snen and |s|2 = s2
0 +

s2
1 + · · · + s2

n. This equation is the key tool for studying the Riesz projectors for
the S-functional calculus and, in particular, for its commutative version, the SC-
functional calculus. In the case of the F-functional calculus, let n be an odd number.
We define the left F-resolvent operator as

FL
n (s, T ) := γn(sI − T̄ )(s2I − s(T + T̄ ) + T T̄ )−(n+1)/2, s �∈ σF (T ), (1.5)

and the right F-resolvent operator as

FR
n (s, T ) := γn(s2I − s(T + T̄ ) + T T̄ )−(n+1)/2(sI − T̄ ), s �∈ σF (T ), (1.6)

where γn are suitable constants. In this case we cannot expect an F-resolvent
equation, as in the case of the Riesz–Dunford functional calculus or as in the case
of the SC-functional calculus, because the F-functional calculus in based on an
integral transform and not on a Cauchy formula.

Now we are able to show that, at least in the case when n = 3, there is an F-
resolvent equation, but in addition to the two F-resolvent operators it contains the
two SC-resolvent operators. Precisely, for s, p �∈ σF (T ),

FR
3 (s, T )S−1

C,L(p, T ) + S−1
C,R(s, T )FL

3 (p, T ) + γ−1
3 (sFR

3 (s, T )FL
3 (p, T )p

− sFR
3 (s, T )TFL

3 (p, T ) − FR
3 (s, T )TFL

3 (p, T )p + FR
3 (s, T )T 2FL

3 (p, T ))

= [(FR
3 (s, T ) − FL

3 (p, T ))p − s̄(FR
3 (s, T ) − FL

3 (p, T ))](p2 − 2s0p + |s|2)−1.

Even though it is more complicated than the SC-resolvent equation, this is the cor-
rect tool to study the analogue of the Riesz projectors for the F-functional calculus.
Moreover, the case when n = 3 allows the detailed study of the quaternionic version
of the F-functional calculus. We conclude by observing that important applications
of the quaternionic functional calculus and of its S-resolvent operators can be found
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in Schur analysis in the slice hyperholomorphic setting (see [2, 3, 5]; see also [1] for
the classical case). This is a very active field of research that started a few years
ago.

Outline of the paper. The remainder of the paper contains nine sections (two on
hypercomplex analysis, six on operator theory and a section for conclusions and
future directions of research) and an appendix. In § 2 we state the main results on
the theory of slice hyperholomorphic functions that are necessary for § 3, in which
we consider the two formulations of the Fueter–Sce mapping theorem in integral
form. These are the key tools for the formulation of the F-functional calculus for
bounded commuting operators studied in § 4. Section 5 contains some relations
between the two F-resolvent operators and the operators that are the candidates
to be the analogues of the Riesz projectors in this setting.

Section 6 contains the main results on the commutative version of the S-function-
al calculus, where we recall the SC-resolvent operators. These operators are involved
in the F-resolvent equation that is stated in § 7 for the case when n = 3 and is
of fundamental importance for studying the Riesz projectors for the F-functional
calculus.

In § 8 we formulate the quaternionic version of the F-functional calculus. The
results of this section are deduced from the case n = 3 studied previously and fully
describe the F-functional calculus in the quaternionic setting. Section 9 concludes
and gives future directions of research. Finally, Appendix A gives the details of the
technical proof of lemma 5.7.

2. Preliminaries on slice monogenic functions

In this section we recall some results on slice monogenic functions that will be useful
in the rest of the paper. We refer the reader to [21] for more details.

The setting in which we shall work is the real Clifford algebra Rn over n imaginary
units e1, . . . , en satisfying the relations eiej + ejei = −2δij . An element of the
Clifford algebra will be denoted by

∑
A⊂{1,...,n} eAxA with xA ∈ R, where e∅ = 1

and eA = ei1 · · · eir for A = {i1, . . . , ir} with i1 < · · · < ir. When n = 1, we have
that R1 is the algebra of complex numbers C (the only case in which the Clifford
algebra is commutative), while when n = 2 we obtain the division algebra of real
quaternions H. As is well known, for n > 2, the Clifford algebras Rn have zero
divisors.

In the Clifford algebra Rn, we can identify some specific elements with the vectors
in the Euclidean space R

n: an element (x1, x2, . . . , xn) ∈ R
n can be identified with

a so-called 1-vector in the Clifford algebra through the map (x1, x2, . . . , xn) �→ x =
x1e1 + · · · + xnen.

An element (x0, x1, . . . , xn) ∈ R
n+1 will be identified with the element

x = x0 + x = x0 +
n∑

j=1

xjej

called, in short, a paravector. The norm of x ∈ R
n+1 is defined as |x|2 = x2

0 +
x2

1 + · · · + x2
n. The real part x0 of x will also be denoted by Re(x). A function
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f : U ⊆ R
n+1 → Rn is seen as a function f(x) of x (and similarly for a function

f(x) of x ∈ U ⊂ R
n). We shall denote by S the sphere of unit 1-vectors in R

n, i.e.

S = {x = e1x1 + · · · + enxn : x2
1 + · · · + x2

n = 1}.

Definition 2.1. Let U ⊆ R
n+1 be an open set and let f : U → Rn be a real

differentiable function. Let I ∈ S and let fI be the restriction of f to the complex
plane CI and denote by u + Iv an element on CI . We say that f is a left-slice
monogenic (or s-monogenic) function if, for every I ∈ S, we have

1
2

(
∂

∂u
fI(u + Iv) + I

∂

∂v
fI(u + Iv)

)
= 0

on U ∩ CI . We shall denote by SM(U) (or by SML(U) when confusion may arise)
the set of left-slice monogenic functions on the open set U . We say that f is a
right-slice monogenic (or right s-monogenic) function if, for every I ∈ S, we have

1
2

(
∂

∂u
fI(u + Iv) +

∂

∂v
fI(u + Iv)I

)
= 0

on U ∩ CI . We shall denote by SMR(U) the set of right-slice monogenic functions
on the open set U .

Definition 2.2. Given an element x ∈ R
n+1, we define

[x] = {y ∈ R
n+1 : y = Re(x) + I|x|, I ∈ S}.

The set [x] is an (n − 1)-dimensional sphere in R
n+1. When x ∈ R, [x] contains

only x. In this case, the (n − 1)-dimensional sphere has radius equal to zero. The
domains on which slice hyperholomorphic functions have a Cauchy formula are the
so-called slice domains and axially symmetric domains.

Definition 2.3.

(i) Let U ⊆ R
n+1 be a domain. We say that U is a slice domain (or s-domain)

if U ∩ R is non-empty and if CI ∩ U is a domain in CI for all I ∈ S.

(ii) Let U ⊆ R
n+1. We say that U is axially symmetric if, for all u + Iv ∈ U , the

whole (n − 1)-sphere [u + Iv] is contained in U .

It is important to point out that a key tool in our theory is the Cauchy formula
for slice monogenic functions. If x = x0+e1x1+ · · ·+enxn, s = s0+e1s1+ · · ·+ensn

are paravectors in R
n+1, then we have the following facts. The following identity

follows by a direct computation as stated in [12, proposition 2.8].

Proposition 2.4. Suppose that x and s ∈ R
n+1 are such that x �∈ [s]. Then

−(x2 − 2xRe(s) + |s|2)−1(x − s̄) = (s − x̄)(s2 − 2 Re(x)s + |x|2)−1. (2.1)

This fact justifies the following definition.
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Definition 2.5. Let x, s ∈ R
n+1 such that x �∈ [s].

• We say that S−1
L (s, x) is written in form I if

S−1
L (s, x) := −(x2 − 2xRe(s) + |s|2)−1(x − s̄).

• We say that S−1
L (s, x) is written in form II if

S−1
L (s, x) := (s − x̄)(s2 − 2 Re(x)s + |x|2)−1.

The following identity follows by a direct computation as in proposition 2.4.

Proposition 2.6. Suppose that x and s ∈ R
n+1 are such that x �∈ [s]. The following

identity holds:

(s2 − 2 Re(x)s + |x|2)−1(s − x̄) = −(x − s̄)(x2 − 2 Re(s)x + |s|2)−1. (2.2)

This fact justifies the following definition.

Definition 2.7. Let x, s ∈ R
n+1 such that x �∈ [s].

• We say that S−1
R (s, x) is written in form I if

S−1
R (s, x) := −(x − s̄)(x2 − 2 Re(s)x + |s|2)−1.

• We say that S−1
R (s, x) is written in form II if

S−1
R (s, x) := (s2 − 2 Re(x)s + |x|2)−1(s − x̄).

Theorem 2.8 (the Cauchy formula). Let U ⊂ R
n+1 be an axially symmetric s-

domain. Suppose that ∂(U ∩ CI) is a finite union of continuously differentiable
Jordan curves for every I ∈ S. Set dsI = −dsI for I ∈ S. If f is a (left) slice
monogenic function on a set that contains Ū , then

f(x) =
1
2π

∫
∂(U∩CI)

S−1
L (s, x) dsIf(s) (2.3)

and the integral depends neither on U nor on the imaginary unit I ∈ S.
If f is a right-slice monogenic function on a set that contains Ū , then

f(x) =
1
2π

∫
∂(U∩CI)

f(s) dsIS
−1
R (s, x) (2.4)

and the integral depends neither on U nor on the imaginary unit I ∈ S.

The deepest property of slice monogenic functions on axially symmetric slice
domains is the representation formula (also called the structure formula; see [11]).
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Theorem 2.9 (representation formula). Let U ⊆ R
n+1 be an axially symmetric

s-domain.

• Let f ∈ SML(U). Then, for any vector x = u + Ixv ∈ U , we have

f(x) = 1
2 [1 − IxI]f(u + Iv) + 1

2 [1 + IxI]f(u − Iv) (2.5)

and

f(x) = 1
2 [f(u + Iv) + f(u − Iv)] + 1

2IxI[f(u − Iv) − f(u + Iv)]]. (2.6)

• Let f ∈ SMR(U). Then, for any vector x = u + Ixv ∈ U , we have

f(x) = 1
2 [1 − IIx]f(u + Iv) + 1

2 [1 + IIx]f(u − Iv) (2.7)

and

f(x) = 1
2 [f(u + Iv) + f(u − Iv)] + 1

2 [[f(u − Iv) − f(u + Iv)]IIx]. (2.8)

As we shall see in the following, the representation formula shows that it is
possible to apply the Fueter–Sce mapping theorem to slice monogenic functions to
obtain monogenic functions, i.e. functions in the kernel of the Dirac operator.

3. The Fueter–Sce mapping theorem in integral form

For completeness we recall the notion of monogenic functions.

Definition 3.1 (monogenic functions). Let U be an open set in R
n+1. A real dif-

ferentiable function f : U → Rn is left monogenic if

∂

∂x0
f(x) +

n∑
i=1

ei
∂

∂xi
f(x) = 0.

It is right monogenic if

∂

∂x0
f(x) +

n∑
i=1

∂

∂xi
f(x)ei = 0.

The representation formula shows that a slice monogenic function

f : U ⊂ R
n+1 → Rn

is of the form
f(x + Iy) = α(x, y) + Iβ(x, y),

where α and β are suitable Rn-valued functions satisfying the Cauchy–Riemann
system and I is a 1-vector in the Clifford algebra Rn such that I2 = −1. The
Fueter–Sce theorem states that, for n odd, if f(x + Iy) = α(x, y) + Iβ(x, y) is slice
monogenic, then the function

f̆(x0, |x|) = ∆(n−1)/2
(

α(x0, |x|) +
x

|x|β(x0, |x|)
)
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is monogenic, i.e. it is in the kernel of the Dirac operator. Here ∆ is the Laplace
operator in dimension n + 1. This means that, using the Cauchy formula of the
slice monogenic functions, we apply the operator ∆(n−1)/2 to the Cauchy kernels
to obtain an integral version of the Fueter–Sce mapping theorem.

The crucial point, as observed in [14], is that we can get an elegant formula only
when we apply the operator ∆(n−1)/2 to the Cauchy kernel in form II. This means
that when we define the F-functional calculus using this integral transform we are
restricted to the case of commuting operators.

Theorem 3.2. Let x, s ∈ R
n+1 be such that x �∈ [s] and let

∆ =
n∑

i=0

∂2

∂x2
i

be the Laplace operator in the variable x.

(a) Consider the left-slice monogenic Cauchy kernel S−1
L (s, x) written in form II,

i.e.
S−1

L (s, x) := (s − x̄)(s2 − 2 Re(x)s + |x|2)−1.

Then, for h � 1, we have

∆hS−1
L (s, x) = (−1)h

h∏
�=1

(2
)
h∏

�=1

(n−(2
−1))(s−x̄)(s2−2 Re[x]s+|x|2)−(h+1).

(3.1)

(b) Consider the right-slice monogenic Cauchy kernel S−1
R (s, x) written in form

II, i.e.
S−1

R (s, x) := (s2 − 2 Re(x)s + |x|2)−1(s − x̄).
Then, for h � 1, we have

∆hS−1
R (s, x) = (−1)h

h∏
�=1

(2
)
h∏

�=1

(n−(2
−1))(s2−2 Re[x]s+|x|2)−(h+1)(s−x̄).

(3.2)

Proof. We shall only consider the right-slice monogenic case, as the left-slice mono-
genic case has already been proved in [18]. We shall prove the formula by induction.
We have

∂2

∂x2
0
S−1

R (s, x) = 2(s2 − 2 Re(x)s + |x|2)−3(−2s + 2x0)2(s − x̄)

− 2(s2 − 2 Re(x)s + |x|2)−2(s − x̄)

+ 2(s2 − 2 Re(x)s + |x|2)−2(−2s + 2x0)

and, for i = 1, . . . , n,

∂2

∂x2
i

S−1
R (s, x) = 8x2

i (s
2 − 2 Re(x)s + |x|2)−3(s − x̄)

− 2(s2 − 2 Re(x)s + |x|2)−2(s − x̄)

− 4xi(s2 − 2 Re(x)s + |x|2)−2ei.
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Thus, we obtain

∆S−1
R (s, x) = 2(s2 − 2 Re(x)s + |x|2)−3(−2s + 2x0)2(s − x̄)

+ 2(s2 − 2 Re(x)s + |x|2)−2(−2s + 2x0)

+
n∑

i=1

8x2
i (s

2 − 2 Re(x)s + |x|2)−3(s − x̄)

−
n∑

i=1

4xi(s2 − 2 Re(x)s + |x|2)−2ei

− 2(n + 1)(s2 − 2 Re(x)s + |x|2)−2(s − x̄),

and since (s2 − 2 Re(x)s + |x|2)−1 and (−2s + 2x0) commute we have

∆SR(s, x)−1 =
(

2(−2s + 2x0)2 +
n∑

i=1

8x2
i

)
(s2 − 2 Re(x)s + |x|2)−3(s − x̄)

+ (s2 − 2 Re(x)s + |x|2)−2
(

2(−2s + 2x0) −
n∑

i=1

4xiei

)

− 2(n + 1)(s2 − 2 Re(x)s + |x|2)−2(s − x̄).

Finally, we obtain

∆S−1
R (s, x) = 8(s2 − 2 Re(x)s + |x|2)−2(s − x̄)

− 4(s2 − 2 Re(x)s + |x|2)−2(s − x̄)

− 2(n + 1)(s2 − 2 Re(x)s + |x|2)−2(s − x̄)

= −2(n − 1)(s2 − 2 Re(x)s + |x|2)−2(s − x̄),

which corresponds to (3.2) for h = 1.
Let us assume that (3.2) holds for some h ∈ N, and show that it holds for h + 1.

In order to avoid the constants, we consider the function

Gh(s, x) := (s2 − 2 Re(x)s + |x|2)−(h+1)(s − x̄). (3.3)

We have

∂2

∂x2
0
Gh = (h + 2)(h + 1)(s2 − 2 Re(x)s + |x|2)−(h+3)(−2s + 2x0)2(s − x̄)

− 2(h + 1)(s2 − 2 Re(x)s + |x|2)−(h+2)(s − x̄)

+ 2(h + 1)(s2 − 2 Re(x)s + |x|2)−(h+2)(−2s + 2x0)

and

∂2

∂x2
i

Gh(s, x) = 4(h + 2)(h + 1)(s2 − 2 Re(x)s + |x|2)−(h+3)x2
i (s − x̄)

− 2(h + 1)(s2 − 2 Re(x)s + |x|2)−(h+2)(s − x̄)

− 4(h + 1)(s2 − 2 Re(x)s + |x|2)−(h+2)xiei.
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Thus, we obtain

∆Gh(s, x) = −2(h + 1)(n − (2h + 1))(s2 − 2 Re(x)s + |x|2)−(h+2)(s − x̄),

and so, taking into account the fact that

∆S−1
R (s, x) = (−1)h

h∏
l=1

(2l)
h∏

l=1

(n − (2l − 1))Gh(s, x),

we obtain that (3.2) holds for h + 1. By induction we get the statement.

Proposition 3.3. Let x, s ∈ R
n+1 be such that x �∈ [s]. The function ∆hS−1

L (s, x)
is a right-slice monogenic function in the variable s for all h � 0. The function
∆hS−1

R (s, x) is a left-slice monogenic function in the variable s for all h � 0.

Proof. We shall only consider the right-slice monogenic case, as the left-slice mono-
genic case has already been proved in [18]. For h = 0 the statement is well known.
If h � 1, we set s = u + Iv for I ∈ S and we consider the function Gh introduced
in (3.3) to avoid the constants. We have

∂

∂u
Gh(u + vI, x) = (u2 − v2 + 2Iuv + 2 Re(x)(u + Iv) + |x|2)−(h+1)

− (h + 1)(u2 − v2 + 2Iuv + 2 Re(x)(u + Iv) + |x|2)−(h+2)

× (2u + 2Iv − 2 Re(x))(u + vI − x̄)

and

∂

∂v
Gh(u + vI, x) = (u2 − v2 + 2Iuv + 2 Re(x)(u + Iv) + |x|2)−(h+1)I

− (h + 1)(u2 − v2 + 2Iuv + 2 Re(x)(u + Iv) + |x|2)−(h+2)I

× (−2v + 2Iu − 2I Re(x))(u + vI − x̄).

As I and (u2−v2+2Iuv+2 Re(x)(u+Iv)+|x|2)−1 commute, it follows immediately
that

∂

∂u
Gh(u + Iv, x) + I

∂

∂v
Gh(u + Iv, x) = 0.

Therefore, ∆S−1
R (s, x) is left-slice monogenic in its first variable.

Proposition 3.4. Let n be an odd number and let x, s ∈ R
n+1 be such that x �∈ [s].

Then the function ∆(n−1)/2S−1
L (s, x) is a left monogenic function in the variable x,

and the function ∆(n−1)/2S−1
R (s, x) is a right monogenic function in the variable x.

Proof. We shall only consider the right-slice monogenic case, as the left-slice mono-
genic case has already been proved in [18]. Again we consider the function G(n−1)/2
as defined in (3.3) to avoid the constants. We have

∂

∂x0
G(n−1)/2 = −n + 1

2
(s2 − 2 Re(x)s + |x|2)−(n+1)/2−1(−2s + 2x0)(s − x̄)

− (s2 − 2 Re(x)s + |x|2)−(n+1)/2
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and

∂

∂xi
G(n−1)/2 = −n + 1

2
(s2 − 2 Re(x)s + |x|2)−(n+1)/2−1(2xi)(s − x̄)

+ (s2 − 2 Re(x)s + |x|2)−(n+1)/2ei

for i = 1, . . . , n. If we consider

∂rG(n−1)/2 :=
∂

∂x0
G(n−1)/2 +

n∑
i=1

(
∂

∂xi
G(n−1)/2

)
ei,

we get

∂rG(n−1)/2 = −n + 1
2

(s2 − 2 Re(x)s + |x|2)−(n+1)/2−1(−2s + 2x0)(s − x̄)

− (s2 − 2 Re(x)s + |x|2)−(n+1)/2

− n + 1
2

(s2 − 2 Re(x)s + |x|2)−(n+1)/2−1(s − x̄)
( n∑

i=1

2xiei

)

− n(s2 − 2 Re(x)s + |x|2)−(n+1)/2

= (n + 1)(s2 − 2 Re(x)s + |x|2)−(n+1)/2−1(s(s − x̄) − (s − x̄)x)

− (n + 1)(s2 − 2 Re(x)s + |x|2)−(n+1)/2

= 0

as s(s− x̄)− (s− x̄)x = s2 −2 Re(x)s+ |x|2. Therefore, G(n−1)/2(s, x) and S−1
R (s, x)

are right monogenic in x.

Definition 3.5 (the Fn-kernel). Let n be an odd number and let x, s ∈ R
n+1. We

define, for s �∈ [x], the FL
n -kernel as

FL
n (s, x) := ∆(n−1)/2S−1

L (s, x) = γn(s − x̄)(s2 − 2 Re(x)s + |x|2)−(n+1)/2,

and the FR
n -kernel as

FR
n (s, x) := ∆(n−1)/2S−1

R (s, x) = γn(s2 − 2 Re(x)s + |x|2)−(n+1)/2(s − x̄),

where
γn := (−1)(n−1)/22n−1[( 1

2 (n − 1))!]2. (3.4)

Remark 3.6. Observe that the constants γn are obtained from the identity

(−1)(n−1)/2
(n−1)/2∏

�=1

(2
)
(n−1)/2∏

�=1

(n − (2
 − 1)) = (−1)(n−1)/22n−1[( 1
2 (n − 1))!]2.

Theorem 3.7 (the Fueter–Sce mapping theorem in integral form).
Let n be an odd number. Set dsI = ds/I. Let W ⊂ R

n+1 be an open set. Let U be a
bounded axially symmetric s-domain such that Ū ⊂ W . Suppose that the boundary
of U ∩ CI consists of a finite number of rectifiable Jordan curves for any I ∈ S.
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(a) If x ∈ U and f ∈ SML(W ), then f̆(x) = ∆(n−1)/2f(x) is left monogenic and
it admits the integral representation

f̆(x) =
1
2π

∫
∂(U∩CI)

FL
n (s, x) dsIf(s). (3.5)

(b) If x ∈ U and f ∈ SMR(W ), then f̆(x) = ∆(n−1)/2f(x) is right monogenic
and it admits the integral representation

f̆(x) =
1
2π

∫
∂(U∩CI)

f(s) dsIFR
n (s, x). (3.6)

The integrals depend neither on U nor on the imaginary unit I ∈ S.

Proof. This follows from the Fueter–Sce mapping theorem, from the Cauchy for-
mulae and from proposition 3.4.

We point out that the Fueter–Sce mapping theorem in integral form can be
proved for more general open sets (more precisely, for open sets that are only axially
symmetric); see [18]. For the application to the F-functional calculus we can take
axially symmetric s-domains. This is why we work directly with slice monogenic
functions. In this case we consider just axially symmetric open sets. We have to
change the definition of slice monogenicity and consider holomorphic functions of
a paravector variable. Precisely, the definition has to be changed as follows. Let
U ⊆ R

n+1 be an axially symmetric open set and let U ⊆ R × R be such that
x = u + Iv ∈ U for all (u, v) ∈ U . We consider functions on U of the form

f(x) = α(u, v) + Iβ(u, v),

where α, β are Rn-valued differentiable functions such that

α(u, v) = α(u, −v), β(u, v) = β(u, −v) for all (u, v) ∈ U

and, moreover, α and β satisfy the Cauchy–Riemann system

∂uα − ∂vβ = 0, ∂vα + ∂uβ = 0.

On axially symmetric s-domains this class of functions coincides with the class of
slice monogenic functions.

4. The formulations of the F-functional calculus

In this section we recall some definitions and results to be used later. By V we
denote a real Banach space over R with norm ‖ · ‖. It is possible to endow V with
an operation of multiplication by elements of Rn that gives a two-sided module
over Rn. We denote by Vn the two-sided Banach module V ⊗ Rn. An element of
Vn is of the form

∑
A⊂{1,...,n} eAvA with vA ∈ V , where e∅ = 1 and eA = ei1 · · · eir

for A = {i1, . . . , ir} with i1 < · · · < ir. The multiplications (right and left) of an
element v ∈ Vn with a scalar a ∈ Rn are defined as

va =
∑
A

vA ⊗ (eAa) and av =
∑
A

vA ⊗ (aeA).
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For short, we shall write
∑

A vAeA instead of
∑

A vA ⊗ eA. Moreover, we define

‖v‖Vn =
∑
A

‖vA‖V .

Let B(V ) be the space of bounded R-homomorphisms of the Banach space V into
itself endowed with the natural norm denoted by ‖ · ‖B(V ).

If TA ∈ B(V ), we can define the operator T =
∑

A TAeA and its action on

v =
∑
B

vBeB

as
T (v) =

∑
A,B

TA(vB)eAeB .

The set of all such bounded operators is denoted by B(Vn). The norm is defined
by

‖T‖B(Vn) =
∑
A

‖TA‖B(V ).

In the following, we shall only consider operators of the form T = T0 +
∑n

j=1 ejTj ,
where Tj ∈ B(V ) for j = 0, 1, . . . , n, and we recall that the conjugate is defined by

T̄ = T0 −
n∑

j=1

ejTj .

The set of such operators in B(Vn) will be denoted by B0,1(Vn). In this section
we shall always consider n-tuples of bounded commuting operators, in paravector
form, and we shall denote the set of such operators as BC0,1(Vn). We recall some
results proved in [13,18].

Definition 4.1 (the F-spectrum and the F-resolvent sets). Let T ∈ BC0,1(Vn).
We define the F-spectrum σF (T ) of T as

σF (T ) = {s ∈ R
n+1 : s2I − s(T + T̄ ) + T T̄ is not invertible}.

The F-resolvent set ρF (T ) is defined by

ρF (T ) = R
n+1 \ σF (T ).

Here we state two important properties of the F-spectrum. The first is its axial
symmetry, and the second is that, for the case of bounded operators, the F-spectrum
is a compact and non-empty set.

Theorem 4.2 (structure of the F-spectrum). Let T ∈ BC0,1(Vn) and let

p = p0 + p1I ∈ [p0 + p1I] ⊂ R
n+1 \ R,

such that p ∈ σF (T ). Then all the elements of the (n − 1)-sphere [p0 + p1I] belong
to σF (T ).

Thus, the F-spectrum consists of real points and/or (n − 1)-spheres.
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Theorem 4.3 (compactness of the F-spectrum). Let T ∈ BC0,1(Vn). Then the F-
spectrum σF (T ) is a compact non-empty set. Moreover, σF (T ) is contained in {s ∈
R

n+1 : |s| � ‖T‖}.

The definition of the F-resolvent operator is suggested by the Fueter–Sce map-
ping theorem in integral form.

Definition 4.4 (F-resolvent operators). Let n be an odd number and let T ∈
BC0,1(Vn). For s ∈ ρF (T ) we define the left F-resolvent operator by

FL
n (s, T ) := γn(sI − T̄ )(s2I − s(T + T̄ ) + T T̄ )−(n+1)/2, (4.1)

and the right F-resolvent operator by

FR
n (s, T ) := γn(s2I − s(T + T̄ ) + T T̄ )−(n+1)/2(sI − T̄ ), (4.2)

where the constants γn are given by (3.4).

Now we have to say which are the functions that are defined on suitable open
sets that contain the F-spectrum. For this class of slice monogenic functions it is
possible to define the F-functional calculus for bounded operators.

Definition 4.5. Let T ∈ BC0,1(Vn) and let U ⊂ R
n+1 be an axially symmetric

s-domain.

(a) We say that U is admissible for T if it contains the F-spectrum σF (T ), and
if ∂(U ∩ CI) is the union of a finite number of rectifiable Jordan curves for
every I ∈ S.

(b) Let W be an open set in R
n+1. A function f ∈ SML(W ) (respectively,

f ∈ SMR(W )) is said to be locally left (respectively, right) slice monogenic
on σF (T ) if there exists an admissible domain U ⊂ R

n+1 such that Ū ⊂ W ,
on which f is left (respectively, right) slice monogenic.

(c) We shall denote by SML
σF (T ) (respectively, SMR

σF (T )) the set of locally left
(respectively, right) slice monogenic functions on σF (T ).

Finally, the following theorem is crucial for the well posedness of the F-functional
calculus.

Theorem 4.6. Let n be an odd number, let T ∈ BC0,1(Vn) and set dsI = ds/I.
Then the integrals

1
2π

∫
∂(U∩CI)

FL
n (s, T ) dsIf(s), f ∈ SML

σF (T ), (4.3)

and

1
2π

∫
∂(U∩CI)

f(s) dsIFR
n (s, T ), f ∈ SMR

σF (T ), (4.4)

depend neither on the imaginary unit I ∈ S nor on the set U .

https://doi.org/10.1017/S0308210515000645 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000645


Formulations of the F-functional calculus and some consequences 523

Proof. The case of left-slice monogenic functions has been treated in [18]. We only
consider the right-slice monogenic case. For every continuous linear functional φ ∈
V ′

n and v ∈ Vn, we define the function

gφ,v(s) := 〈φ,FR
n (s, T )v〉.

Since ∆(n−1)/2S−1
R (s, x) is left s-monogenic in s by proposition 3.3, the function

gφ,v is also left-slice monogenic on ρF (T ). Furthermore, as lims→∞ gφ,v(s) = 0, it
is also left-slice monogenic at ∞.

To prove that the integral (4.4) does not depend on the open set U , we consider
another open set U ′ as in definition 4.5 with σF (T ) ⊂ U ′ ⊂ U . As every gφ,v is
left-slice monogenic on U ′c ⊂ ρF (T ) and gφ,v(∞) = 0, we can apply the Cauchy
formula and obtain

gφ,v(x) =
1
2π

∫
∂(U ′∩CI)−

S−1
L (s, x) dsIgφ,v(s) = − 1

2π

∫
∂(U ′∩CI)

S−1
L (s, x) dsIgφ,v(s),

(4.5)
where ∂(U ′ ∩ C)− is the border of U ′ ∩ C oriented in a way that includes U ′c. As
S−1

R (s, x) = −S−1
L (x, s) and as f is right-slice monogenic on Ū , we get

〈
φ,

[
1
2π

∫
∂(U∩CI)

f(s) dsIFR
n (s, T )

]
v

〉

=
1
2π

∫
∂(U∩CI)

f(s) dsIgφ,v(s)

=
1
2π

∫
∂(U∩CI)

f(s) dsI

[
− 1

2π

∫
∂(U ′∩CI)−

S−1
L (t, s) dtIgφ,v(t)

]

=
1
2π

∫
∂(U ′∩CI)

[
1
2π

∫
∂(U∩CI)

f(s) dsIS
−1
R (s, t)

]
dtIgφ,v(t)

=
1
2π

∫
∂(U ′∩CI)

f(t) dtIgφ,v(t)

=
〈

φ,

[
1
2π

∫
∂(U ′∩CI)

f(s) dsIFR
n (s, T )

]
v

〉
.

This equality holds for every φ ∈ V ′
n and v ∈ Vn. Therefore, by the Hahn–Banach

theorem, it follows that

1
2π

∫
∂(U∩CI)

f(s) dsIFR
n (s, T ) =

1
2π

∫
∂(U ′∩CI)

f(s) dsIFR
n (s, T ).

Now let Ũ be an arbitrary set as in definition 4.5 that is not necessarily a subset of
U . Then we can find an admissible set U ′ with σF (T ) ⊂ U ′ ⊂ U ∩ Ũ and therefore
the integrals over all three sets must agree.

The proof of the independence of the imaginary unit I works analogously. Again
we consider an admissible open set U ′ with σF (T ) ⊂ U ′ ⊂ U . As (4.5) is indepen-
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dent of the imaginary unit, for an arbitrary J ∈ S we have

1
2π

∫
∂(U∩CI)

f(s) dsIgφ,v(s)

=
1
2π

∫
∂(U∩CI)

f(s) dsI

[
− 1

2π

∫
∂(U ′∩CJ )−

S−1
L (t, s) dtJgφ,v(t)

]

=
1
2π

∫
∂(U ′∩CJ )

[
1
2π

∫
∂(U∩CI)

f(s) dsIS
−1
R (s, t)

]
dtJgφ,v(t)

=
1
2π

∫
∂(U ′∩CJ )

f(t) dtJgφ,v(t).

As we already know that these integrals are independent of the set U , for every
φ ∈ V ′

n and v ∈ Vn we therefore have

1
2π

∫
∂(U∩CI)

f(s) dsIgφ,v(s) =
1
2π

∫
∂(U∩CJ )

f(t) dtJgφ,v(t),

and from the Hahn–Banach theorem it follows that the integral (4.4) does not
depend on the imaginary unit.

Definition 4.7 (F-functional calculus for bounded operators). Let n be an odd
number, let T ∈ BC0,1(Vn) and set dsI = ds/I. We define the F-functional calculus
as

f̆(T ) :=
1
2π

∫
∂(U∩CI)

FL
n (s, T ) dsIf(s), f ∈ SML

σF (T ), (4.6)

and

f̆(T ) :=
1
2π

∫
∂(U∩CI)

f(s) dsIFR
n (s, T ), f ∈ SMR

σF (T ), (4.7)

where U is admissible for T .

5. Some relations between the F-resolvent operators

With the position

Qs(T ) := (s2I − s(T + T̄ ) + T T̄ )−1, s ∈ ρF (T ),

we can write the left F-resolvent operator as

FL
n (s, T ) := γn(sI − T̄ )Qs(T )(n+1)/2, (5.1)

and the right F-resolvent operator as

FR
n (s, T ) := γnQs(T )(n+1)/2(sI − T̄ ). (5.2)

Theorem 5.1 (the left and right F-resolvent equations). Let n be an odd number
and let T ∈ BC0,1(Vn). Let s ∈ ρF (T ). Then the F-resolvent operators satisfy the
equations

FL
n (s, T )s − TFL

n (s, T ) = γnQs(T )(n−1)/2 (5.3)
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and

sFR
n (s, T ) − FR

n (s, T )T = γnQs(T )(n−1)/2. (5.4)

Proof. Relation (5.3) was proved in [4]. Relation (5.4) follows from

Fn(s, T )s = γn(sI − T̄ )sQs(T )(n+1)/2

and

TFn(s, T ) = γn(Ts − T T̄ )Qs(T )(n+1)/2.

Taking the difference, we obtain

Fn(s, T )s − TFn(s, T ) = γn(s2I − s(T + T̄ ) + T T̄ )Qs(T )(n+1)/2 = γnQs(T )(n+1)/2.

Theorem 5.2 (left and right generalized F-resolvent equations). Let n be an odd
number, T ∈ BC0,1(Vn) and set

ML
m(s, T ) := γn

m−1∑
i=0

T iQs(T )(n−1)/2sm−1−i

= γn(Qs(T )(n−1)/2sm−1 + TQs(T )(n−1)/2sm−2 + · · ·
+ Tm−2Qs(T )(n−1)/2s + Tm−1Qs(T )(n−1)/2)

and

MR
m(s, T ) := γn

m−1∑
i=0

sm−1−iQs(T )(n−1)/2T i

= γn(sm−1Qs(T )(n−1)/2 + sm−2Qs(T )(n−1)/2T + · · ·
+ sQs(T )(n−1)/2Tm−2 + Tm−1Qs(T )(n−1)/2).

Then, for m ∈ N0 and s ∈ ρF (T ), the following equations hold:

TmFL
n (s, T ) = FL

n (s, T )sm − ML
m(s, T ), (5.5)

FR
n (s, T )Tm = smFR

n (s, T ) − MR
m(s, T ). (5.6)

Proof. The proof works by induction. We shall only show (5.5), as the proof is
analogous for (5.6). For m = 0 the statement is trivial. For m = 1 it is the F-
resolvent equation (theorem 5.1). Assume that (5.5) holds for m− 1. Then we have

TmFL
n (s, T ) = T (FL

n (s, T )sm−1 − Mm−1(s, T ))

= TFL
n (s, T )sm−1 − TMm−1(s, T ). (5.7)

As

TMm−1(s, T ) = γnT

m−2∑
i=0

T iQs(T )(n−1)/2sm−2−i

= γn

m−1∑
i=1

T iQs(T )(n−1)/2sm−1−i,
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by substituting the resolvent equation (5.3) in (5.7), we obtain

TmFL
N (s, T )

= FL
n (s, T )sm − γnQs(T )(n−1)/2sm−1 − γn

m−1∑
i=1

T iQs(T )(n−1)/2sm−1−i

= FL
n (s, T )sm − γn

m−1∑
i=0

T iQs(T )(n−1)/2sm−1−i

= FL
n (s, T )sm − Mm(s, T ).

Theorem 5.3 (the pseudo-F-resolvent equation). Let n be an odd number and let
T ∈ BC0,1(Vn). Then, for p, s ∈ ρF (T ), the following equation holds:

FR
n (s, T )FL

n (p, T )

= [(FR
n (s, T )γnQ(n−1)/2

p (T ) − γnQ(n−1)/2
s (T )FL

n (p, T ))p

− s̄(FR
n (s, T )γnQ(n−1)/2

p (T ) − γnQ(n−1)/2
s (T )FL

n (p, T ))](p2 − 2s0p + |s|2)−1.

Proof. We prove the statement by showing that

FR
n (s, T )FL

n (p, T )(p2 − 2s0p + |s|2)
= (FR

n (s, T )γnQ(n−1)/2
p (T ) − γnQ(n−1)/2

s (T )FL
n (p, T ))p

− s̄(FR
n (s, T )γnQ(n−1)/2

p (T ) − γnQ(n−1)/2
s (T )FL

n (p, T )).

If we apply the generalized F-resolvent equations (5.5) and (5.6), we obtain

FR
n (s, T )FL

n (p, T )p2

= FR
n (s, T )[T 2FL

n (p, T ) + TγnQ(n−1)/2
p (T ) + γnQ(n−1)/2

p (T )p]

= FR
n (s, T )T 2FL

n (p, T ) + FR
n (s, T )TγnQ(n−1)/2

p (T ) + FR
n (s, T )γnQ(n−1)/2

p (T )p

= [s2FR
n (s, T ) − γnQ(n−1)/2

s (T )T − sγnQ(n−1)/2
s (T )]FL

n (p, T )

+ [sFR
n (s, T ) − γnQ(n−1)/2

s (T )]γnQ(n−1)/2
p (T ) + FR

n (s, T )γnQ(n−1)/2
p (T )p

= s2FR
n (s, T )FL

n (p, T ) − γnQ(n−1)/2
s (T )TFL

n (p, T ) − sγnQ(n−1)/2
s (T )FL

n (p, T )

+ sFR
n (s, T )γnQ(n−1)/2

p (T ) − γ2
nQ(n−1)/2

s (T )Q(n−1)/2
p (T )

+ FR
n (s, T )γnQ(n−1)/2

p (T )p.

In a similar way, by applying the F-resolvent equations (5.3) and (5.4), we obtain

FR
n (s, T )FL

n (p, T )2s0p = 2s0FR
n (s, T )[TFL

n (p, T ) + γnQ(n−1)/2
p (T )]

= 2s0[sFR
n (s, T ) − γnQ(n−1)/2

s (T )]FL
n (p, T )

+ 2s0FR
n (s, T )γnQ(n−1)/2

p (T )

= 2s0sFR
n (s, T )FL

n (p, T ) − 2s0γnQ(n−1)/2
s (T )FL

n (p, T )

+ 2s0FR
n (s, T )γnQ(n−1)/2

p (T ).
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Therefore, we have

FR
n (s, T )FL

n (p, T )(p2 − 2s0s + |s|2)
= (s2 − 2s0s + |s|2)FR

n (s, T )FL
n (p, T ) − γnQ(n−1)/2

s (T )TFL
n (p, T )

+ (2s0 − s)γnQ(n−1)/2
s (T )FL

n (p, T ) + (s − 2s0)FR
n (s, T )γnQ(n−1)/2

p (T )

− γ2
nQ(n−1)/2

s (T )Q(n−1)/2
p (T ) + FR

n (s, T )γnQ(n−1)/2
p (T )p.

As 2s0 − s = s̄ and s2 − 2s0s + |s|2 = 0, by applying the F-resolvent equation (5.3)
once again to γnQ(n−1)/2

s (T )TFL
n (p, T ), we get

FR
n (s, T )FL

n (p, T )(p2 − 2s0s + |s|2)
= −γnQ(n−1)/2

s (T )[FL
n (p, T )p − γnQ(n−1)/2

p (T )]

− s̄(FR
n (s, T )γnQ(n−1)/2

p (T ) − γnQ(n−1)/2
s (T )FL

n (p, T ))

− γ2
nQ(n−1)/2

s (T )Q(n−1)/2
p (T ) + FR

n (s, T )γnQ(n−1)/2
p (T )p

= [FR
n (s, T )γnQ(n−1)/2

p (T ) − γnQ(n−1)/2
s (T )FL

n (p, T )]p

− s̄[FR
n (s, T )γnQ(n−1)/2

p (T ) − γnQ(n−1)/2
s (T )FL

n (p, T )].

The pseudo-F-resolvent equation can be written in terms of the F-resolvent
operators by only using the left and the right F-resolvent equations.

Corollary 5.4 (the pseudo-F-resolvent equation, form II). Let n be an odd num-
ber and let T ∈ BC0,1(Vn). Then, for p, s ∈ ρF (T ), the following equation holds:

FR
n (s, T )FL

n (p, T )

= [(FR
n (s, T )(FL

n (p, T )p − TFL
n (p, T )) − (sFR

n (s, T ) − FR
n (s, T )T )FL

n (p, T ))p

− s̄(FR
n (s, T )(FL

n (p, T )p − TFL
n (p, T )) − (sFR

n (s, T ) − FR
n (s, T )T )FL

n (p, T ))]

× (p2 − 2s0p + |s|2)−1.

Proof. This is a direct consequence of theorems 5.3 and 5.1.

Remark 5.5. We conclude this section with an important property of the operators
P̆j , defined in (5.8): in dimension n = 3 they are the Riesz projectors associated
to a given paravector operator T with commuting components, as proved in § 7.
The case n > 3 is still under investigation, and it is related to the structure of the
F-resolvent equation in dimension n > 3.

We begin by recalling the definition of projectors and some of their basic prop-
erties.

Definition 5.6. Let V be a Banach module and let P : V → V be a linear operator.
If P 2 = P , we say that P is a projector.

For neatness, we state the proof of the following lemma in Appendix A.

Lemma 5.7. Let n be an odd number and let Pn−1,n = ∆(n−1)/2xn−1 be the mono-
genic polynomial defined on R

n+1. Then we have Pn−1,n ≡ γn.
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Lemma 5.7 motivates the definition of the operators P̆j .

Theorem 5.8. Let n be an odd number, T ∈ BC0,1(Vn) and f ∈ SML
σF (T ). Let

σF (T ) = σ1F ∪ σ2F , with dist(σ1F , σ2F ) > 0. Let U1 and U2 be two admissible
sets for T such that σ1F ⊂ U1 and σ2F ⊂ U2, with Ū1 ∩ Ū2 = ∅. For j = 1, 2, set

P̆j :=
γ−1

n

2π

∫
∂(Uj∩CI)

FL
n (s, T ) dsIs

n−1, (5.8)

T̆j :=
γ−1

n

2π

∫
∂(Uj∩CI)

FL
n (s, T ) dsIs

n − 1
2π

∫
∂(Uj∩CI)

Qs(T )(n−1)/2 dsIs
n−1. (5.9)

Then the following properties hold.

(1) T P̆j = P̆jT = Tj for j = 1, 2.

(2) For λ ∈ ρF (T ) we have

P̆jFL
n (λ, T )λ − T̆jFL

n (λ, T ) = P̆jγnQλ(T )(n−1)/2, j = 1, 2, (5.10)

λFR
n (λ, T )P̆j − FR

n (λ, T )T̆j = γnQλ(T )(n−1)/2P̆j , j = 1, 2. (5.11)

Proof. Note that the operators P̆j and T̆j can also be written using the right F-
resolvent operator. To prove (1), we apply the F-resolvent equation and get

T P̆j = T
γ−1

n

2π

∫
∂(Uj∩CI)

FL
n (s, T ) dsIs

n−1

=
γ−1

n

2π

∫
∂(Uj∩CI)

TFL
n (s, T ) dsIs

n−1

=
γ−1

n

2π

∫
∂(Uj∩CI)

(FL
n (s, T )s − γnQs(T )(n−1)/2) dsIs

n−1

=
γ−1

n

2π

∫
∂(Uj∩CI)

FL
n (s, T ) dsIs

n − 1
2π

∫
∂(Uj∩CI)

Qs(T )(n−1)/2 dsIs
n−1

= T̆j .

As s, dsI and Qs(T ) commute on CI , we also have

P̆jT =
γ−1

n

2π

∫
∂(Uj∩CI)

sn−1 dsIFR
n (s, T )T

=
γ−1

n

2π

∫
∂(Uj∩CI)

sn−1 dsI(sFR
n (s, T ) − γnQs(T )(n−1)/s)

=
γ−1

n

2π

∫
∂(Uj∩CI)

sn dsIFR
n (s, T ) − 1

2π

∫
∂(Uj∩CI)

sn−1 dsIQs(T )(n−1)/s

= T̆j .
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To prove (5.10), for λ ∈ ρF (T ) we apply the F-resolvent equation (5.3) and
obtain

P̆jFL
n (λ, T )λ = P̆j(TFL

n (λ, T ) − γnQλ(T )(n−1)/2)

= P̆jTFL
n (λ, T ) − P̆jγnQλ(T )(n−1)/2

= T̆jFL
n (λ, T ) − P̆jγnQλ(T )(n−1)/2.

The identity (5.11) can be proved analogously.

6. Preliminary results on the SC-functional calculus

As we mentioned in § 1, the F-resolvent equation for the F-functional calculus also
involves the SC-resolvent operators. In this section we recall some results on the
SC-functional calculus (for more details see [13]).

Definition 6.1 (the SC-resolvent operators). Let T ∈ BC0,1(Vn) and s ∈ ρF (T ).
We define the left SC-resolvent operator as

S−1
C,L(s, T ) := (sI − T̄ )(s2I − s(T + T̄ ) + T T̄ )−1, (6.1)

and the right SC-resolvent operator as

S−1
C,R(s, T ) := (s2I − s(T + T̄ ) + T T̄ )−1(sI − T̄ ). (6.2)

Theorem 6.2. Let T ∈ BC0,1(Vn) and s ∈ ρF (T ). Then S−1
C,L(s, T ) satisfies the left

SC-resolvent equation,

S−1
C,L(s, T )s − TS−1

C,L(s, T ) = I, (6.3)

and S−1
C,R(s, T ) satisfies the right SC-resolvent equation,

sS−1
C,R(s, T ) − S−1

C,R(s, T )T = I.

The following crucial results is proved in [7].

Theorem 6.3 (the SC-resolvent equation). Let T ∈ BC0,1(Vn) and s, p ∈ ρF (T ).
Then we have

S−1
C,R(s, T )S−1

C,L(p, T ) = ((S−1
C,R(s, T ) − S−1

C,L(p, T ))p

− s̄(S−1
C,R(s, T ) − S−1

C,L(p, T )))(p2 − 2s0p + |s|2)−1. (6.4)

Moreover, the resolvent equation can also be written as

S−1
C,R(s, T )S−1

C,L(p, T ) = (s2 − 2p0s + |p|2)−1(s(S−1
C,R(s, T ) − S−1

C,L(p, T ))

− (S−1
C,R(s, T ) − S−1

C,L(p, T ))p̄). (6.5)

Definition 6.4 (the SC-functional calculus). Let T ∈ BC0,1(Vn). Let U ⊂ R
n+1

be admissible for T and set dsI = ds/I for I ∈ S. We define

f(T ) =
1
2π

∫
∂(U∩CI)

S−1
C,L(s, T ) dsIf(s) for f ∈ SMσF (T ) (6.6)
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and

f(T ) =
1
2π

∫
∂(U∩CI)

f(s) dsIS
−1
C,R(s, T ) for f ∈ SMR

σF (T ). (6.7)

Finally, we need a technical lemma.

Definition 6.5. Let f : U → Rn be a slice monogenic function, where U is an open
set in R

n+1. We define

N (U) = {f ∈ SM(U) : f(U ∩ CI) ⊆ CI ∀I ∈ S}.

First, let us observe that functions in the subclass N (U) are both left- and right-
slice hyperholomorphic. When we take the power series expansion of this class
of functions at a point on the real line the coefficients of the expansion are real
numbers.

Now observe that, for functions in f ∈ N (U), we can define f(T ) using the left
and the right SC-functional calculus, as follows:

f(T ) =
1
2π

∫
∂(U∩CI)

S−1
C,L(s, T ) dsIf(s)

=
1
2π

∫
∂(U∩CI)

f(s) dsIS
−1
C,R(s, T ).

The following lemma is proved in [7].

Lemma 6.6. Let B ∈ B(Vn). Let G be an axially symmetric s-domain, and assume
that f ∈ N (G). Then, for p ∈ G, we have

1
2π

∫
∂(G∩CI)

f(s) dsI(s̄B − Bp)(p2 − 2s0p + |s|2)−1 = Bf(p).

7. Projectors for the dimension n = 3

The proof that the operators P̆j defined in (5.8) are projectors is based on a suitable
F-resolvent equation that establishes a link between the product, FR

n (s, T )FL
n (p, T ),

and the difference, FR
n (s, T ) − FL

n (p, T ). For the case n = 3 we are able to show
that such a relation exists and we can prove that the operators P̆j are projectors.

7.1. The F-resolvent equations for n = 3

We start with a preliminary lemma.

Lemma 7.1. Let T ∈ BC(V3). Then for p, s ∈ ρF (T ) the following equation holds:

FR
3 (s, T )S−1

C,L(p, T ) + S−1
C,R(s, T )FL

3 (p, T ) + γ3Qs(T )Qp(T )

= [(FR
3 (s, T ) − FL

3 (p, T ))p − s̄(FR
3 (s, T ) − FL

3 (p, T ))](p2 − 2s0p + |s|2)−1.

Proof. Let us consider the SC-resolvent equation. Multiplying it on the left by
γ3Qs(T ), we get

FR
3 (s, T )S−1

C,L(p, T ) = [(FR
3 (s, T ) − γ3Qs(T )S−1

L (p, T ))p

− s̄(FR
3 (s, T ) − γ3Qs(T )S−1

L (p, T ))](p2 − 2s0p + |s|2)−1.
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Now, multiplying the S-resolvent equation on the right by γ3Qp(T ), we get

S−1
C,R(s, T )FL

3 (p, T ) = [(S−1
C,R(s, T )γ3Qp(T ) − FL

3 (p, T ))p

− s̄(S−1
C,R(s, T )γ3Qp(T ) − FL

3 (p, T ))](p2 − 2s0p + |s|2)−1.

Now we add the two equations above to get

FR
3 (s, T )S−1

C,L(p, T ) + S−1
C,R(s, T )FL

3 (p, T )

= [(FR
3 (s, T ) − FL

3 (p, T ))p − s̄(FR
3 (s, T ) − FL

3 (p, T ))](p2 − 2s0p + |s|2)−1

+ [(S−1
C,R(s, T )γ3Qp(T ) − γ3Qs(T )S−1

C,L(p, T ))p

− s̄(S−1
C,R(s, T )γ3Qp(T ) − γ3Qs(T )S−1

C,L(p, T ))](p2 − 2s0p + |s|2)−1.

Finally, we verify that

[(S−1
C,R(s, T )γ3Qp(T ) − γ3Qs(T )S−1

C,L(p, T ))p

− s̄(S−1
C,R(s, T )γ3Qp(T ) − γ3Qs(T )S−1

C,L(p, T ))](p2 − 2s0p + |s|2)−1

= −γ3Qs(T )Qp(T ).

This follows from

(S−1
C,R(s, T )γ3Qp(T ) − γ3Qs(T )S−1

C,L(p, T ))p

− s̄(S−1
C,R(s, T )γ3Qp(T ) − γ3Qs(T )S−1

C,L(p, T ))

= γ3[(Qs(T )(sI − T̄ )Qp(T ) − Qs(T )(pI − T̄ )Qp(T ))p
− s̄(Qs(T )(sI − T̄ )Qp(T ) − Qs(T )(pI − T̄ )Qp(T ))]

= γ3[Qs(T )(s − p)Qp(T )p − s̄Qs(T )(s − p)Qp(T )]

= γ3[Qs(T )(sp − p2)Qp(T ) − Qs(T )(s̄s − s̄p)Qp(T )]

= γ3[Qs(T )(sp − p2)Qp(T ) − Qs(T )(s̄s − s̄p)Qp(T )]

= −γ3Qs(T )Qp(T )(p2 − 2s0p + |s|2).

Theorem 7.2 (the F-resolvent equation for n = 3). Let T ∈ BC(V3). Then, for
p, s ∈ ρF (T ), the following equation holds:

FR
3 (s, T )S−1

C,L(p, T ) + S−1
C,R(s, T )FL

3 (p, T ) + γ−1
3 (sFR

3 (s, T )FL
3 (p, T )p

− sFR
3 (s, T )TFL

3 (p, T ) − FR
3 (s, T )TFL

3 (p, T )p + FR
3 (s, T )T 2FL

3 (p, T ))

= [(FR
3 (s, T ) − FL

3 (p, T ))p − s̄(FR
3 (s, T ) − FL

3 (p, T ))](p2 − 2s0p + |s|2)−1.

Proof. We now replace the term Qs(T )Qp(T ) in the right and left F-resolvent
equations, respectively, for p, s ∈ ρF (T ), by

sFR
3 (s, T ) − FR

3 (s, T )T = γ3Qs(T ), (7.1)

FL
3 (p, T )p − TFL

3 (p, T ) = γ3Qp(T ).
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So we get

γ2
3Qs(T )Qp(T ) = (sFR

3 (s, T ) − FR
3 (s, T )T )(FL

3 (p, T )p − TFL
3 (p, T ))

= sFR
3 (s, T )FL

3 (p, T )p − sFR
3 (s, T )TFL

3 (p, T )

− FR
3 (s, T )TFL

3 (p, T )p + FR
3 (s, T )T 2FL

3 (p, T ).

Later we shall need the following lemma, which is based on the monogenic func-
tional calculus (for more details see the book [31], or the papers [32,33,35] in which
the calculus was introduced).

Lemma 7.3. Let T ∈ BC(V3). Suppose that G contains just some points of the F-
spectrum of T and assume that the closed smooth curve ∂(G ∩ CI) belongs to the
F-resolvent set of T , for every I ∈ S. Then

∫
∂(G∩CI)

dsI sFR
3 (s, T ) = 0 and

∫
∂(G∩CI)

FL
3 (p, T )p dpI = 0.

Proof. As ∆x ≡ 0, we have
∫

∂(G∩CI)
dsI sFR

3 (s, x) = 0 and
∫

∂(G∩CI)
FL

3 (p, x)p dpI = 0

for all x such that x /∈ [s] if s ∈ ∂(G∩CI) (respectively, for all x such that x /∈ [p] if
p ∈ ∂(G ∩ CI)). We consider the case of FL

3 (p, x); the other case can be treated in
a similar way. We now recall that FL

3 (p, x) is left monogenic in x for every p, such
that x /∈ [p]. Therefore, using the monogenic functional calculus (see [31]), we write

FL
3 (p, T ) =

∫
∂Ω

Gω(T )n(ω)FL
3 (p, ω) dµ(ω),

where the open set Ω contains the monogenic spectrum of T , Gω(T ) is the monogenic
resolvent operator, n(ω) is the unit normal vector to ∂Ω and dµ(ω) is the surface
element. Using the vector-valued Fubini theorem (see [26, theorem 9, p. 190]) we
have∫

∂(G∩CI)
FL

3 (p, T )p dpI =
∫

∂(G∩CI)

∫
∂Ω

(Gω(T )n(ω)FL
3 (p, ω) dµ(ω))p dpI

=
∫

∂Ω

Gω(T )n(ω)
( ∫

∂(G∩CI)
FL

3 (p, ω)p dpI

)
dµ(ω)

= 0,

which concludes the proof.

Theorem 7.4. Let T ∈ BC0,1(V3) and let σF (T ) = σF,1(T ) ∪ σF,2(T ) with

dist(σF,1(T ), σF,2(T )) > 0.
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Let G1, G2 ⊂ H be two admissible sets for T such that σF,1(T ) ⊂ G1 and Ḡ1 ⊂ G2
and such that dist(G2, σF,2(T )) > 0. Then the operator

P̆ :=
γ−1
3

2π

∫
∂(G1∩CI)

FL
3 (p, T ) dpIp

2 =
γ−1
3

2π

∫
∂(G2∩CI)

s2 dsIFR
3 (s, T )

is a projector, i.e. we have
P̆ 2 = P̆ .

Proof. If we multiply the F-resolvent equation in Theorem 7.2 by s on the left and
by p on the right, we get

sFR
3 (s, T )S−1

C,L(p, T )p + sS−1
C,R(s, T )FL

3 (p, T )p

+ γ−1
3 (s2FR

3 (s, T )FL
3 (p, T )p2 − s2FR

3 (s, T )TFL
3 (p, T )p

− sFR
3 (s, T )TFL

3 (p, T )p2 + sFR
3 (s, T )T 2FL

3 (p, T )p)

= s[(FR
3 (s, T ) − FL

3 (p, T ))p − s̄(FR
3 (s, T ) − FL

3 (p, T ))](p2 − 2s0p + |s|2)−1p.

If we multiply this equation by dsI on the left, integrate it over ∂(G2 ∩ CI) with
respect to dsI and then multiply it by dpI on the right and integrate over ∂(G1∩CI)
with respect to dpI , we obtain∫

∂(G2∩CI)
dsI sFR

3 (s, T )
∫

∂(G1∩CI)
S−1

C,L(p, T )p dpI

+
∫

∂(G2∩CI)
dsI sS−1

C,R(s, T )
∫

∂(G1∩CI)
FL

3 (p, T )p dpI

+ γ−1
3

( ∫
∂(G2∩CI)

dsI s2FR
3 (s, T )

∫
∂(G1∩CI)

FL
3 (p, T )p2 dpI

−
∫

∂(G2∩CI)
dsI s2FR

3 (s, T )T
∫

∂(G1∩CI)
FL

3 (p, T )p dpI

−
∫

∂(G2∩CI)
dsIsFR

3 (s, T )T
∫

∂(G1∩CI)
FL

3 (p, T )p2 dpI

+
∫

∂(G2∩CI)
dsI sFR

3 (s, T )T 2
∫

∂(G1∩CI)
FL

3 (p, T )p dpI

)

=
∫

∂(G2∩CI)
dsI

∫
∂(G1∩CI)

s[(FR
3 (s, T ) − FL

3 (p, T ))p − s̄(FR
3 (s, T ) − FL

3 (p, T ))]

× (p2 − 2s0p + |s|2)−1p dpI .

Using lemma 7.3 we have

γ−1
3

∫
∂(G2∩CI)

dsI s2FR
3 (s, T )

∫
∂(G1∩CI)

FL
3 (p, T )p2 dpI

=
∫

∂(G2∩CI)
dsI

∫
∂(G1∩CI)

s[(FR
3 (s, T ) − FL

3 (p, T ))p − s̄(FR
3 (s, T ) − FL

3 (p, T ))]

× (p2 − 2s0p + |s|2)−1 dpIp.
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This is equal to

(2π)2

γ−1
3

P̆ 2 =
∫

∂(G2∩CI)
dsI

×
∫

∂(G1∩CI)
s[(FR

3 (s, T ) − FL
3 (p, T ))p − s̄(FR

3 (s, T ) − FL
3 (p, T ))]

× (p2 − 2s0p + |s|2)−1 dpIp. (7.2)

Let us observe the integral on the right-hand side. As Ḡ1 ⊂ G2, for any s ∈
∂(G2 ∩ CI) the functions

p �→ p(p2 − 2s0p + |s|2)−1p and p �→ (p2 − 2s0p + |s|2)−1p

are slice monogenic on Ḡ1. Therefore, we have∫
∂(G1∩CI)

p(p2 − 2s0p + |s|2)−1 dpIp = 0

and ∫
∂(G1∩CI)

(p2 − 2s0p + |s|2)−1p dpI = 0,

and it follows that∫
∂(G2∩CI)

dsI

∫
∂(G1∩CI)

sFR
3 (s, T )p(p2 − 2s0p + |s|2)−1 dpIp = 0

and ∫
∂(G2∩CI)

dsI

∫
∂(G1∩CI)

ss̄FR
3 (s, T )(p2 − 2s0p + |s|2)−1 dpIp = 0.

Thus, (7.2) simplifies to

P̆ 2 =
γ−1
3

(2π)2

∫
∂(G2∩CI)

s dsI

×
∫

∂(G1∩CI)
[(s̄FL

3 (p, T ) − FL
3 (p, T )p)](p2 − 2s0p + |s|2)−1 dpIp,

and, by applying lemma 6.6, we finally obtain

P̆ 2 =
γ−1
3

2π

∫
∂(G1∩CI)

FL
3 (p, T )p dpIp = P̆ .

8. Formulations of the quaternionic F-functional calculus

We point out that, even though the F-resolvent equation is known only for n = 3,
this case is of particular importance because it also allows us to study the quater-
nionic version of the F-functional calculus. In this section we shall state the main
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results related to the quaternionic F-functional calculus, without details, since they
very similar to the Clifford setting for n = 3.

We denote by H the algebra of quaternions. The imaginary units in H are denoted
by i, j and k, respectively, and an element in H is of the form q = x0+ix1+jx2+kx3,
for x� ∈ R, 
 = 0, 1, 2, 3. The real part, the imaginary part and the modulus
of a quaternion are defined as Re(q) = x0, q = Im(q) = ix1 + jx2 + kx3, |q|2 =
x2

0+x2
1+x2

2+x2
3. The conjugate of the quaternion q is defined by q̄ = Re(q)−Im(q) =

x0−ix1−jx2−kx3 and it satisfies |q|2 = qq̄ = q̄q. Let us denote by S the unit sphere
of purely imaginary quaternions, i.e. S = {q = ix1+jx2+kx3 : x2

1+x2
2+x2

3 = 1}. The
Fueter mapping theorem consists in applying the Laplace operator in dimension 4
to functions of the form

f(q) = α(x0, |q|) + Iβ(x0, |q|),

where α and β are suitable functions satisfying the Cauchy–Riemann system and
q = x0 +q is a quaternion. Functions of this form are slice regular (see [21] for more
details).

Definition 8.1 (slice regular functions). Let U be an open set in H and consider
a real differentiable function f : U → H. Denote by fI the restriction of f to the
complex plane CI = R + IR.

• We say that f is (left) slice regular if, for every I ∈ S, on U ∩ CI we have

1
2

(
∂

∂x
+ I

∂

∂y

)
fI(x + Iy) = 0.

The set of left-slice-regular functions on the open set U is denoted by SRL(U).

• We say that f is right slice regular if, for every I ∈ S, on U ∩ CI we have

1
2

(
∂

∂x
fI(x + Iy) +

∂

∂y
fI(x + Iy)I

)
= 0.

The set of right-slice-regular functions on the open set U is denoted by
SRR(U).

Definition 8.2 (Fueter regular functions). Let U be an open set in H. A real dif-
ferentiable function f : U → H is left Cauchy–Fueter (for brevity ‘Fueter’) regular
if

∂

∂x0
f(q) + i

∂

∂x1
f(q) + j

∂

∂x2
f(q) + k

∂

∂x3
f(q) = 0, q ∈ U.

It is right Fueter regular if

∂

∂x0
f(q) +

∂

∂x1
f(q)i +

∂

∂x2
f(q)j +

∂

∂x3
f(q)k = 0, q ∈ U.

Definition 8.3 (the F-kernel). Let q, s ∈ H. We define, for s �∈ [q], the FL-kernel
as

FL(s, q) := −4(s − q̄)(s2 − 2 Re(q)s + |q|2)−2,
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and the FR-kernel as

FR(s, q) := −4(s2 − 2 Re(q)s + |q|2)−2(s − q̄).

With the above notation, the Fueter mapping theorem in integral form becomes
the following.

Theorem 8.4 (the Fueter mapping theorem in integral form).
Set dsI = ds/I. Let W ⊂ H be an open set and let U be a bounded axially symmetric
s-domain such that Ū ⊂ W . Suppose that the boundary of U ∩CI consists of a finite
number of rectifiable Jordan curves for any I ∈ S.

(a) If q ∈ U and f ∈ SRL(W ), then f̆(q) = ∆f(q) is left Fueter regular and it
admits the integral representation

f̆(q) =
1
2π

∫
∂(U∩CI)

FL(s, q) dsIf(s). (8.1)

(b) If q ∈ U and f ∈ SRL(W ), then f̆(q) = ∆f(q) is right Fueter regular and it
admits the integral representation

f̆(q) =
1
2π

∫
∂(U∩CI)

f(s) dsIFR(s, q). (8.2)

The integrals depend neither on U nor on the imaginary unit I ∈ S.

We now consider the formulations of the F-functional calculus in the quaternionic
setting for right linear quaternionic operators. The same formulation also holds for
left linear operators with a suitable interpretation of the symbols.

Definition 8.5. Let V be a right vector space on H. A map T : V → V is said to
be a right linear operator if

T (u + v) = T (u) + T (v), T (us) = T (u)s,

for all s ∈ H and all u, v ∈ V .

In the following, we shall consider only two-sided vector spaces V , otherwise
the set of right linear operators is not a (left or right) vector space. With this
assumption, the set End(V ) of right linear operators on V is both a left and a right
vector space on H with respect to the operations

(aT )(v) := aT (v), (Ta)(v) := T (av).

Definition 8.6. Let V be a bilateral quaternionic Banach space. We shall denote
by B(V ) the bilateral Banach space of all right linear bounded operators T : V → V .

We shall denote by BC(V ) the subclass of B(V ) that consists of those quaternionic
operators T that can be written as T = T0 + iT1 + jT2 + kT3, where the operators
T�, 
 = 0, 1, 2, 3, commute among themselves.

It is easy to verify that B(V ) is a Banach space endowed with its natural norm.
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Definition 8.7 (the F-spectrum and the F-resolvent sets). Let T ∈ BC(V ). We
define the F-spectrum σF (T ) of T as

σF (T ) = {s ∈ H : s2I − s(T + T̄ ) + T T̄ is not invertible}.

The S-resolvent set ρS(T ) is defined as

ρF (T ) = H \ σF (T ).

Theorem 8.8 (structure of the F-spectrum). Let T ∈ BC(V ) and let p = p0 +
p1I ∈ p0 + p1S ⊂ H \ R, such that p ∈ σF (T ). Then all the elements of the sphere
p0 + p1S belong to σF (T ).

Theorem 8.9 (compactness of the F-spectrum). Let T ∈ BC(V ). Then the F-
spectrum σF (T ) is a compact non-empty set.

Definition 8.10 (F-resolvent operators). Let T ∈ BC(V ). For s ∈ ρF (T ) we
define the left F-resolvent operator as

FL(s, T ) := −4(sI − T̄ )(s2I − s(T + T̄ ) + T T̄ )−2,

and the right F-resolvent operator as

FR(s, T ) := −4(s2I − s(T + T̄ ) + T T̄ )−2(sI − T̄ ).

The definition of the T -admissible set U and of the locally left- and right-slice-
regular functions on the F-spectrum σF (T ) can be obtained by rephrasing defini-
tion 4.5.

We shall denote by SRL
σF (T ) (respectively, SRR

σF (T )) the set of locally left (respec-
tively, right) slice regular functions on σF (T ).

Definition 8.11 (quaternionic F-functional calculus for bounded operators). Let
T ∈ BC(V ) and set dsI = ds/I. We define the formulations of the quaternionic F-
functional calculus as

f̆(T ) :=
1
2π

∫
∂(U∩CI)

FL(s, T ) dsIf(s), f ∈ SRL
σF (T ), (8.3)

and

f̆(T ) :=
1
2π

∫
∂(U∩CI)

f(s) dsIFR(s, T ), f ∈ SRR
σF (T ), (8.4)

where U is T -admissible.

Theorem 8.12 (the quaternionic F-resolvent equation). Let T ∈ BC(V ). Then,
for p, s ∈ ρF (T ), the following equation holds:

FR(s, T )S−1
C,L(p, T ) + S−1

C,R(s, T )FL(p, T ) + 1
4 (sFR(s, T )FL(p, T )p

− sFR(s, T )TFL(p, T ) − FR(s, T )TFL(p, T )p + FR(s, T )T 2FL(p, T ))

= [(FR(s, T ) − FL(p, T ))p − s̄(FR(s, T ) − FL(p, T ))](p2 − 2s0p + |s|2)−1,
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where the quaternionic SC-resolvent operators are defined as

S−1
C,L(s, T ) := (sI − T̄ )(s2I − s(T + T̄ ) + T T̄ )−1 (8.5)

and

S−1
C,R(s, T ) := (s2I − s(T + T̄ ) + T T̄ )−1(sI − T̄ ). (8.6)

As a consequence of the quaternionic F-resolvent equations, we can study the
Riesz projectors associated with the quaternionic F-functional calculus. As a con-
sequence of theorem 5.8 (in this quaternionic version) and of the quaternionic F-
resolvent equation we have the following.

Theorem 8.13. Let T ∈ BC(V ). Let

σF (T ) = σ1F (T ) ∪ σ2F (T ) with dist(σ1F (T ), σ2F (T )) > 0.

Let U1 and U2 be two T -admissible sets such that σ1F (T ) ⊂ U1 and σ2F (T ) ⊂ U2,
with Ū1 ∩ Ū2 = ∅. Set

P̆j :=
C

2π

∫
∂(Uj∩CI)

FL(s, T ) dsIs
2, j = 1, 2,

where C := ∆q2. Then, for j = 1, 2, the following properties hold:

(1) P̆ 2
j = P̆j,

(2) T P̆j = P̆jT .

9. Conclusions and future directions of research

The theory of slice hyperholomorphic functions is the main tool with which to study
quaternionic linear operators and n-tuples of linear operators. Its Cauchy formula
suggests the definition of the notion of the S-spectrum. In the quaternionic setting,
the S-spectrum, and the F-spectrum, which is its commutative version, turned
out to be the correct objects to use to study the quaternionic version of spectral
analysis. The foundations of this theory are now complete and we can summarize
the three main directions.

• The quaternionic version of the S-functional calculus, also called quaternionic
functional calculus: this is the quaternionic analogue of the Riesz–Dunford
functional calculus.

• The F-functional calculus for quaternionic linear operators: this is a mono-
genic functional calculus, in the spirit of the one introduced by Alan McIntosh
and his collaborators, but it is based on the theory of slice hyperholomorphic
functions.

• The spectral theorem for quaternionic normal operators on a quaternionic
Hilbert space based on the S-spectrum (see [6, 8, 29]): this is the analogue of
the classical spectral theorem for complex normal operators and it plays an
important role in the quaternionic formulation of quantum mechanics.

https://doi.org/10.1017/S0308210515000645 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000645


Formulations of the F-functional calculus and some consequences 539

Even though the foundation of quaternionic spectral analysis is understood there
are still many problems that have to be investigated from the operator theoretic
point of view. Moreover, there are also several problems that are still open regarding
the hypercomplex analysis setting that is behind the F-functional calculus and the
calculus itself.

The first problem is to show that the Fueter–Sce mapping theorem can be
extended to the case of even dimensions. In this case the classical Fueter–Sce map-
ping theorem has been studied by Tao Qian [38] using the Fourier transform. His
approach to extend the integral version of the Fueter–Sce mapping theorem to even
dimensions is under investigation. We point out that the even-dimensional case is
very different from the odd-dimensional one, because the fractional powers of the
Laplacian give rise to non-local operators.

If the Fueter–Sce mapping theorem in integral form can be proved for the even
dimensions, we have to extend the F-functional calculus to this case. Finally, we
observe that much effort has to be made to understand the structure of the F-
resolvent equation for n �= 3. These cases do not seem to be similar to the case
n = 3, which is also the quaternionic case.

Appendix A. Proof of lemma 5.7

For the proof, we need the following identity.

Proposition A.1. Let m � 0. Then the following identity holds:
j∑

k=0

(−1)k

(
m + k − 1

k

)(
m + j

m + k

)
= 1, j = 0, 1, 2, . . . . (A 1)

Proof. Let

Λ(j, k) := (−1)k

(
m + k − 1

k

)(
m + j

m + k

)
.

It is easy to check that the following recurrence relation is satisfied:

−m + j + 1
j + 2

Λ(j, k) +
m + j + 1

j + 2
Λ(j + 1, k) +

m + j + 1
j + 2

Λ(j, k + 1)

− m + 2j + 3
j + 2

Λ(j + 1, k + 1) + Λ(j + 2, k + 1) = 0

for all j, k ∈ Z. Note that Λ(j, k) = 0 if k < 0 or k > j. Thus, by taking the sum
over all k ∈ Z, we obtain

−m + j + 1
j + 2

j∑
k=0

Λ(j, k) +
m + j + 1

j + 2

j+1∑
k=0

Λ(j + 1, k) +
m + j + 1

j + 2

j−1∑
k=−1

Λ(j, k + 1)

− m + 2j + 3
j + 2

j∑
k=−1

Λ(j + 1, k + 1) +
j+1∑

k=−1

Λ(j + 2, k + 1) = 0.

If we define

S(j) :=
j∑

k=0

(−1)k

(
m + k − 1

k

)(
m + j

m + k

)
,
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this equation turns into

−m + j + 1
j + 2

S(j) +
m + j + 1

j + 2
S(j + 1) +

m + j + 1
j + 2

S(j)

− m + 2j + 3
j + 2

S(j + 1) + S(j + 2) = 0,

which simplifies to
−S(j + 1) + S(j + 2) = 0.

Thus, as S(0) = 1, by induction, we obtain (A 1).

Proof of lemma 5.7. Let x ∈ R
n+1, and let U ⊂ R

n+1 be a ball centred at 0 such
that x ∈ U . By (3.5), for any I ∈ S, we have

Pn−1,n(x) =
1
2π

∫
∂(U∩CI)

FL
n (s, x) dsIs

n−1

=
1
2π

∫
∂(U∩CI)

γn(s − x̄)(s2 − 2 Re(x)s + |x|2)−(n+1)/2 dsIs
n−1.

Let I = Ix and m = 1
2 (n − 1). Then s and x commute, and by applying the residue

theorem we obtain

Pn−1,n(x) =
−Iγn

2π

∫
∂(U∪CI)

1
(s − x)m+1

1
(s − x̄)m

s2m ds = γn(Resx(f) + Resx̄(f)),

where

f(s) :=
1

(s − x)m+1

1
(s − x̄)m

s2m.

It is easy to see that

∂k

∂sk
s2m =

(2m)!
(2m − k)!

s2m−k,

∂k

∂sk

1
(s − x̄)m

= (−1)k (m + k − 1)!
(m − 1)!

1
(s − x̄)m+k

,

∂k

∂sk

1
(s − x)m+1 = (−1)k (m + k)!

m!
1

(s − x)m+1+k
.

Thus, we obtain

Resx(f) =
1
m!

lim
s→x

∂m

∂sm
((s − x)m+1f(s)) =

1
m!

lim
s→x

∂m

∂sm

(
1

(s − x̄)m
s2m

)

=
1
m!

lim
s→x

m∑
k=0

(
m

k

)(
∂k

∂sk

1
(s − x̄)m

)(
∂m−k

∂sm−k
s2m

)

=
1
m!

lim
s→x

m∑
k=0

(
m

k

)
(−1)k (m + k − 1)!

(m − 1)!
1

(s − x̄)m+k

(2m)!
(m + k)!

sm+k
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=
m∑

k=0

(−1)k

(
2m

m − k

)(
m + k − 1

k

)
xm+k

(x − x̄)m+k

=
1

(x − x̄)2m

m∑
k=0

(−1)k

(
2m

m − k

)(
m + k − 1

k

)
xm+k(x − x̄)m−k.

But, as

(x − x̄)m−k =
∑
j=0

m − k

(
m − k

j

)
xj(−x̄)m−k−j ,

we have

Resx(f)

=
1

(x − x̄)2m

m∑
k=0

m−k∑
j=0

(−1)k

(
2m

m − k

)(
m + k − 1

k

)(
m − k

j

)
xm+k+j(−x̄)m−k−j

=
1

(x − x̄)2m

m∑
k=0

m∑
j=k

(−1)k

(
2m

m − k

)(
m + k − 1

k

)(
m − k

j − k

)
xm+j(−x̄)m−j

=
1

(x − x̄)2m

m∑
j=0

j∑
k=0

(−1)k

(
2m

m − k

)(
m + k − 1

k

)(
m − k

j − k

)
xm+j(−x̄)m−j .

For the coefficients, we obtain

j∑
k=0

(−1)k

(
2m

m − k

)(
m + k − 1

k

)(
m − k

j − k

)

=
j∑

k=0

(−1)k (2m)!
(m − k)!(m + k)!

(m + k − 1)!
k!(m − 1)!

(m − k)!
(j − k)!(m − j)!

=
(2m)!

(m − j)!(m + j)!

j∑
k=0

(−1)k (m + k − 1)!
k!(m − 1)!

(m + j)!
(j − k)!(m + k)!

=
(

2m

m + j

) j∑
k=0

(−1)k

(
m + k − 1

k

)(
m + j

m + k

)
=

(
2m

m + j

)
,

where the last equation follows from (A 1). Therefore, we finally get

Resx(f) =
1

(x − x̄)2m

m∑
j=0

(
2m

m + j

)
xm+j x̄m−j

=
1

(x − x̄)2m

2m∑
j=m

(
2m

j

)
xj x̄2m−j .
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Similarly, we have

Resx̄(f) =
1

(m − 1)!
lim
s→x̄

∂m−1

∂sm−1 ((s − x̄)mf(s))

=
1

(m − 1)!
lim
s→x̄

∂m−1

∂sm−1

(
1

(s − x)m+1 s2m

)

=
1

(m − 1)!
lim
s→x̄

m−1∑
k=0

(
m − 1

k

)(
∂k

∂sk

1
(s − x)m+1

)(
∂m−1−k

∂sm−1−k
s2m

)

and also

Resx̄(f)

=
1

(m − 1)!
lim
s→x̄

m−1∑
k=0

(
m − 1

k

)
(−1)k (m + k)!

m!
1

(s − x)m+1+k

(2m)!
(m + k + 1)!

sm+k+1

=
m−1∑
k=0

(−1)k

(
2m

m − k − 1

)(
m + k

k

)
x̄m+k+1

(x̄ − x)m+1+k

=
1

(x − x̄)2m

m−1∑
k=0

(−1)k

(
2m

m − k − 1

)(
m + k

k

)
(−x̄)m+k+1(x − x̄)m−k−1.

As we have

(x − x̄)m−k−1 =
m−k−1∑

j=0

(
m − k − 1

j

)
xj(−x̄)m−k−1−j ,

this equals

Resx̄(f)

=
1

(x − x̄)2m

m−1∑
k=0

m−k−1∑
j=0

(−1)k

(
2m

m − k − 1

)(
m + k

k

)(
m − k − 1

j

)
xj(−x̄)2m−j

=
1

(x − x̄)2m

m−1∑
j=0

m−j−1∑
k=0

(−1)k

(
2m

m − k − 1

)(
m + k

k

)(
m − k − 1

j

)
xj(−x̄)2m−j .

For the coefficients, we again obtain

m−j−1∑
k=0

(−1)k

(
2m

m − k − 1

)(
m + k

k

)(
m − k − 1

j

)

=
m−j−1∑

k=0

(−1)k (2m)!
(m − k − 1)!(m + k + 1)!

(m + k)!
k!m!

(m − k − 1)!
j!(m − k − j − 1)!
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=
2m!

j!(2m − j)!

m−j−1∑
k=0

(−1)k (2m − j)!
(m + k + 1)!(m − k − j − 1)!

(m + k)!
k!m!

=
(

2m

j

) m−j−1∑
k=0

(−1)k

(
2m − j

m + k + 1

)(
m + k

k

)
=

(
2m

j

)
,

where the last equation again follows from (A 1). Thus, we finally obtain

Resx̄(f) =
1

(x − x̄)2m

m−1∑
j=0

(
2m

j

)
xj(−x̄)2m−j .

Putting all this together, we get

Pn−1,n(x)
= γn(Resx(f) + Resx̄(f))

= γn

(
1

(x − x̄)2m

2m∑
j=m

(
2m

j

)
xj x̄2m−j +

1
(x − x̄)2m

m−1∑
j=0

(
2m

j

)
xj(−x̄)2m−j

)

=
γn

(x − x̄)2m

2m∑
j=0

(
2m

j

)
xj x̄2m−j =

γn

(x − x̄)2m
(x − x̄)2m = γn.
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