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An analytical model for asymmetric Mach
reflection configuration in steady flows
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An analytical model is presented for the configuration of Mach reflection (MR) due
to the interaction of two-dimensional steady supersonic flow over asymmetric wedges.
The present asymmetric MR model is an extension of an earlier model for the
symmetric MR configuration. The overall Mach reflection (oMR) in the asymmetric
wedge configuration is analysed as a combination of upper and lower half-domains
of symmetric reflection configurations. Suitable assumptions are made to close the
combined set of equations. The subsonic pocket downstream of the Mach stem is
taken to be oriented along an average inclination, based on the streamline deflections
by the Mach stem at the triple points. This assumption is found to give satisfactory
results for all types of oMR configurations. The oMR configuration is predicted for all
types of reflections such as direct Mach reflection (DiMR), stationary Mach reflection
(StMR) and inverse Mach reflection (InMR). The reflection configuration and Mach
stem shape given by the model for various sets of wedge angles, especially those
giving rise to InMR, have been predicted and validated with the available numerical
and experimental data. The von Neumann criterion for oMR is accurately predicted
by this model. The asymmetric Mach stem profile is well captured. The variation of
Mach stem height with wedge angle is also analysed and it is found that simplification
of an asymmetric MR to a symmetric MR leads to over-prediction of the Mach stem
height and hence the extent of the subsonic region.

Key words: compressible flows, gas dynamics, shock waves

1. Introduction
Shock reflection phenomena can be seen in many practical engineering applications

involving supersonic flows. Shock reflections are broadly classified as regular
reflections (RR) and irregular reflections (IR). In steady flows, IR occurs most
commonly as Mach reflection (MR). Figure 1(a,b) shows the schematics of RR and
MR respectively. It is known from classical shock reflection theory (Ben-Dor 2007)
that an RR occurs when the reflected shock wave (r) is capable of producing an
equal flow deflection in the opposite direction to that produced by the incident shock
wave (i). On the other hand, if the reflected shock wave is not able to produce an
equal deflection to that produced by the incident shock wave, an MR is formed. It is
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FIGURE 1. (Colour online) (a) Regular reflection for θw < θ
D
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D
w (M0); (b) Mach

reflection for θD
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D
w (M0); where subscript w denotes wedge and superscript D

denotes detachment criterion.

seen that the shock configurations of RR and MR are very different from each other
and consequently, the transition RR↔MR brings forth significant changes in the flow
field.

It was widely accepted that there are two limiting criteria for RR↔MR transition
in steady flows, namely the von Neumann and the detachment criteria (Von-Neumann
1943, 1945; Henderson & Lozzi 1975; Hornung, Oertel & Sandeman 1979). The
von Neumann criterion suggests that the RR↔MR transition occurs when the static
pressures downstream of the reflected shock and the Mach stem match at the triple
point. The detachment criterion proposes that RR↔MR transition happens when the
required turning angle for the flow downstream of the incident shock to become
parallel to the reflecting surface, exceeds the maximum turning angle possible for
that flow Mach number. Above the wedge angle corresponding to the detachment
criterion, only MR structure exists, and below the wedge angle corresponding to von
Neumann criterion, only RR structure exists.

It has been found from all the previous studies that the wedge-angle-variation-
induced transition of RR→MR is abrupt, in the sense that the Mach stem (followed
by a region of subsonic flow) appears suddenly. On the other hand, the MR→RR
transition is smooth, with the Mach stem height gradually reducing to zero. In other
words, the reduction of the Mach stem size to zero presents itself as a corollary to
the MR→RR transition criterion, where the von Neumann condition is satisfied. This
led the researchers to the prediction of the height of the Mach stem and the overall
MR configuration through geometric considerations, to identify the von Neumann
criterion for transition. Efforts towards determining the Mach reflection configurations
started with Azevedo (1989). He analytically modelled a symmetric MR, as shown
in figure 2. In this work, it was assumed that the leading characteristic from the
expansion fan (emanating from the trailing edge of the wedge and transmitted by the
reflected shock) interacts with the slip line at the sonic throat. This point is shown
as F in figure 2. The slip line is taken to be straight until this point.

Li & Ben-Dor (1997) improved this symmetric model by considering additional flow
features such as the interaction of the reflected shock with the expansion fan from the
trailing edge of the wedge, the entropy layer emanating from this interaction and the
reflection of the expansion fan from the slip line. In this model, the slip line starts
curving from point F onward and becomes parallel to the symmetry plane at a point
where the central characteristic of the expansion fan interacts with the slip line and
also the sonic throat occurs. They employed a second-order curve to model the curved
entities like the Mach stem and segments of the slip line and the reflected shock.
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FIGURE 2. (Colour online) Model for Mach reflection configuration (Azevedo 1989).
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FIGURE 3. (Colour online) Types of asymmetric reflection: (a) oRR (overall regular
reflection); (b) oMR (overall Mach reflection); subscript u stands for upper domain and l
stands for lower domain.

Mouton (2007), Hornung & Mouton (2008) and Mouton & Hornung (2008) suggested
another model for symmetric MR, where they considered only the geometrical features
of the flow problem and omitted the curvature of the discontinuities (Mach stem, slip
line). Further minute details of the MR configuration were considered in more recent
models by Gao & Wu (2010) and Bai & Wu (2017) to predict the MR configuration.
Both these models incorporated the presence of secondary waves emanating from the
slip line into the non-uniform supersonic flow and consequent interactions therewith,
leading to an inflection in the slip-line curve at point F. Bai & Wu (2017) additionally
found a discontinuity in the slope of the slip line.

For most practical cases of engineering interest such as supersonic inlet flows,
nozzle flows and hypersonic flows, the type of MR is asymmetric rather than
symmetric. Two types of configuration are generally observed in asymmetric
reflections – overall regular reflection (oRR) and overall Mach reflection (oMR)
(Li, Chpoun & Ben-Dor 1999; Ben-Dor 2007). The schematics are given in figure 3.
The subscripts u and l indicate upper and lower regions, respectively.

Mouton (2007) defined an equivalence angle to estimate the Mach stem height for
asymmetric MR from their symmetric MR model. Recently, Roy & Rajesh (2017)
presented an analytical model for asymmetric MR based on the Li & Ben-Dor (1997)
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FIGURE 4. (Colour online) Types of overall Mach reflection (based on upper wedge
angle): (a) DiMR (direct Mach reflection); (b) StMR (stationary Mach reflection); (c)
InMR (inverse Mach reflection).

model. Tao et al. (2017) proposed a model for asymmetric MR, based on the Gao
& Wu (2010) symmetric MR model. They claimed that the locations of the triple
points are a function of the angles of the two slip lines, which they based on the
experimental visualisations of oMR (Tao, Fan & Zhao 2015) for some particular
conditions. The model takes into consideration the secondary waves on the slip lines
as in the case of Gao & Wu (2010) and the predictions are shown to be in reasonable
agreement with previous experimental and numerical data. However, the estimation
of Mach stem height for various oMR configurations (figure 4) in the asymmetric
wedge-angle–Mach-number domain was never attempted in their work.

Figure 4 shows various configurations of oMR in the wedge-angle–Mach-number
domain, along with the corresponding shock polars based on the inclinations of the
slip line (Li et al. 1999; Ben-Dor 2007). As can be seen from the figure, the InMR
configuration is very different from the other oMR configurations. For example, it is
not possible to have two InMRs in an oMR as that would result in diverging slip
lines and hence render the flow non-physical. InMR is a discrete manifestation only
in asymmetric reflection in steady flows.

Various configurations of asymmetric reflection can be better understood with
the help of the (θwu, θwl)-plane, as given in figure 5(a) for an incoming Mach
number M0 of 4.96 (Li et al. 1999). The figure shows the plots of detachment
(θD

w ) and von Neumann (θN
w ) criteria, and the domains of various shock reflections

that are theoretically possible for a given set of wedge angles. The region enclosed
between the curves demarcates the dual-solution domain, whereby both oRR and
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FIGURE 5. (Colour online) (a) The dual-solution domain in the (θwu, θwl)-plane for M0 =

4.96 (Li et al. 1999); (b,c) shock polars for a set of cases of detachment and von
Neumann criteria, respectively.

oMR solutions are possible. Shock polars for arbitrary wedge angles for the two
criteria, which are marked in figure 5(a), are shown in figure 5(b,c).

Analytical predictions of InMR configurations have not been addressed by previous
work on asymmetric MR by Tao et al. (2017), and it is not clear whether their
model can correctly predict them. The present work is hence an attempt to develop
an analytical model to predict the oMR configurations for all types of steady Mach
reflections in asymmetric wedge flows. The present analytical model is based on the Li
& Ben-Dor (1997) model for the simple reason that the model takes into consideration
most of the physical phenomena in the shock reflection region. For example, in the
Li & Ben-Dor (1997) model, the triple point solution, the subsonic region, the
reflected shock–expansion-fan interaction and the reflection of the expansion fan
from the slip line (although there is no appreciable effect (Henderson 1989)) were
considered. Moreover, certain flow features such as the Mach stem, reflected shock
configuration and slip-line curvatures were approximated using second-order curves.
In the following section, the Li & Ben-Dor (1997) model is discussed, followed
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FIGURE 6. (Colour online) Asymmetric MR model (Roy & Rajesh 2017); highlighted
symmetric MR model (Li & Ben-Dor 1997).

by some salient features of the Roy & Rajesh (2017) model, which is extended in
the present work. Next, the formulation for the present model is given in detail,
and finally, the results obtained by this model are presented and analysed. It is
expected that the present work will be a useful addition to the more recent interest
in asymmetric Mach reflection configurations in steady flows.

2. Base models
The symmetric MR model by Li & Ben-Dor (1997) was an improvement over the

ones given by Azevedo (1989) and Azevedo & Liu (1993). The upper part of figure 6
(highlighted in the dashed box) is the schematic of the symmetric MR configuration
employed by Li & Ben-Dor (1997). The lower part is added for completeness and the
whole schematic represents the model proposed by Roy & Rajesh (2017), and serves
as the base model for the present work.

In the Li & Ben-Dor (1997) model, regions of reflection phenomena are systemati-
cally solved for unknown parameters. The governing equations for the flow field are
combined and rewritten so as to express the flow properties downstream of a shock
as functions of upstream flow Mach number M and shock angle φ. Flow deflections
through expansion waves and the shock–expansion-fan interactions are modelled
using the Prandtl–Meyer function. The slip line is taken to be a straight line until
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the location where the leading characteristic from the expansion fan interacts with it.
The slip line curves downstream of this point to become parallel to the horizontal
line of symmetry at a further downstream location. It is at this location that the sonic
throat occurs, where the subsonic pocket of the quasi-one-dimensional flow has the
minimum area of cross-section. Downstream of the throat, the flow expands further,
with the slip lines diverging as well. Thus the expansion fan from the trailing edge of
the wedge determines the size and location of the Mach stem by carrying information
of the geometrical features through the subsonic pocket to the Mach stem.

A salient feature of the Li & Ben-Dor (1997) model is that the shape of the Mach
stem is assumed to be slightly curved, and modelled using a second-order curve as a
function of the boundary conditions (coordinates and slope at its ends), under a first-
order approximation assuming minimal change in slope. Other similar shapes, such as
the curved portion of the slip line and the characteristic lines of the expansion fan in
the entropy layer region, are also modelled using this relation. The equation of the
curve (Li & Ben-Dor 1997) is as follows:

J(x, y, x1, y1, x2, y2, δ1, δ2)= [(y− y1) sin δ1 + (x− x1) cos δ1]
2 tan(δ2 − δ1)

+ 2[(x2 − x1) cos δ1 + (y2 − y1) sin δ1][(x− x1) sin δ1 − (y− y1) cos δ1] = 0 (2.1)

and the coordinates of the end points [(x1, y1), (x2, y2)] satisfy the relation:

y2 − y1 = tanΛ[δ1, δ2](x2 − x1), (2.2)

where (δ1, δ2) are the slopes (with x-axis) at the ends, and Λ is given by:

Λ(δ1, δ2)= arctan
[

2 tan δ1 + tan(δ2 − δ1)

2− tan δ1 tan(δ2 − δ1)

]
. (2.3)

Roy & Rajesh (2017) proposed the model for asymmetric MR as a combination of
upper and lower domains of symmetric MR, as shown in figure 6. Here, the axis of
symmetry (for symmetric MR) is taken as the common horizontal x-axis for both the
upper and lower domains. By inverting the vertical axis of the coordinate system in
the lower domain (yu to yl), all the conventions used for the geometrical parameters
in the upper domain are retained.

The flow domains around the triple point, and the region of interaction of the
expansion fan with the reflected shock, for both the upper and lower domains, were
solved independently. The geometrical relations for the upper and lower domains were
grouped together to be solved simultaneously, which yielded a set of 23 equations
with 24 unknowns. Various possible closing equations were proposed in Roy &
Rajesh (2017) and the results for the oMR configurations were compared. Figure 7
gives schematic representations of the closing equations proposed. In figure 7(a), the
flow in the subsonic pocket is assumed to choke at the same horizontal location,
giving a straight vertical line profile to the sonic contour. In figure 7(b), the sonic
contour is assumed to follow the Mach stem profile by following the exact curvature
of the stem. The third approach, which is more fundamental, is shown schematically
in figure 7(c). Here, it is imposed that the Mach stem has a continuous profile across
the upper and lower domains, with the slopes being equal (and perpendicular) at
the point of confluence on the axis. This condition for the closing equation was
previously concluded to give the best results (Roy & Rajesh 2017), and has been
subsequently used in the present study as well.
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FIGURE 7. (Colour online) Conditions for closing the equations in Roy & Rajesh (2017)
model: (a) choking at the same abscissa; (b) sonic (choking) contour along the Mach stem
profile; (c) profile continuity of the Mach stem.
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FIGURE 8. (Colour online) Position of common x-axis in Roy & Rajesh (2017) model:
(a) DiMR–DiMR; (b) StMR–DiMR; (c) InMR–DiMR (hypothetical).

In the Roy & Rajesh (2017) model, the Mach stem is perpendicular to a common
x-axis. It is argued that there is at least one streamline in the uniform flow upstream
that passes through the Mach stem without deviation, and this streamline essentially
forms the x-axis. The vertical location of the x-axis is variable and depends on the
particular case of oMR configuration, as shown in figure 8. In case of DiMR–DiMR,
the axis passes through the Mach stem at some intermediate position between the
triple points. The axis keeps shifting to any of the triple points for decreasing wedge
angle of the corresponding side. The limiting case occurs for StMR–DiMR in which
the axis passes through one of the triple points and is also perpendicular to the Mach
stem at that point, and the contribution to the Mach stem height is made entirely
by the domain on one side of the axis. Although this approach works well for the
DiMR–DiMR or DiMR–StMR case, it cannot give the solution for the condition when
one of the reflections is an InMR, as shown in figure 8(c). Here, the axis becomes
perpendicular to the Mach stem at a hypothetically extrapolated location. In this case,
the axis cannot be taken as a symmetry plane for any of the symmetric MR halves.
This limitation, in particular, has been addressed and resolved in the present work.
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FIGURE 9. (Colour online) Schematic of asymmetric Mach reflection model. Ht is the
total height between the wedges. Subscripts u and l depict the upper and lower regions,
respectively, with respect to the x axis upstream of the Mach stem and the inclined axis xi
downstream of the Mach stem. H is the height of the leading edge of the wedge, measured
from the common horizontal x-axis. The wedge slant length is given as w. Hm is the
Mach stem height, i.e. distance of the triple point from the x-axis. Hs is the height of the
sonic throat, measured from axis xi. i is the incident shock, r is the reflected shock, r′
is the reflected shock after interaction with the expansion fan, s is the slip line. L is the
horizontal gap between the wedges.

3. Formulation of asymmetric MR configuration model

This section contains the detailed formulation for the present asymmetric MR model.
The algorithm has been coded in Python, and particularly makes use of the scipy
module.

A schematic of the present model is given in figure 9. An inverse MR configuration
is given in particular to emphasise the detailed formulation of the present model for
InMR cases, while all the other oMR configurations are also analysed. On comparing
the present model with the earlier model (Roy & Rajesh 2017) given in figure 6, it is
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FIGURE 10. (Colour online) Based on theory given by Tao et al. (2017), (a) xTu < xTl,
(b) xTu > xTl; based on present model, (c) xTu < xTl, (d) xTu > xTl.

to be noted that the subsonic convergent–divergent pocket downstream of the Mach
stem, is assumed to be oriented along an inclined axis xi, rather than parallel to and
in continuation with the common horizontal x-axis, where the angle of inclination
(θ4) is the average of the angles at which the streamlines are deflected by the Mach
stem at the two triple points. It is argued that at least one streamline from the
upstream uniform flow is deflected at this average angle (θ4) by the Mach stem, at an
intermediate location between the two triple points. This incoming streamline before
the Mach stem, and its extension beyond the point of deflection, forms the common
horizontal x-axis. The direction of the deflected streamline behind the Mach stem is
taken to be the inclined axis xi. Although the subsonic flow behind the Mach stem
is known to be non-uniform, the axis xi indicates the mean orientation of the flow,
which is assumed to be quasi-one-dimensional for the present study.

A somewhat seemingly similar approach can be seen in Tao et al. (2017). Figure 10
gives a comparison of their approach and that of the present model. Tao et al. (2017)
employed an average deflection angle θavg, given by the mean of the slip-line angles
with respect to the incoming flow upstream of the Mach stem ms near the two
triple points Tu and Tl. This is used to calculate the relative locations of the triple
points based on the orientation of a straight oblique shock obtained from this average
deflection angle. This is shown in figure 10(a). It is our understanding that the von
Neumann three-shock theory gives only the angles and flow properties near each triple
point for given wedge angles, whereas the locations of the triple points are influenced
by the geometry and the Mach number of the incoming flow. The geometry comprises
of the wedge angles as well as the relative positioning of the wedges. However, in
Tao et al.’s (2017) model, the θavg fixes the triple point locations. This is elucidated
in figure 10(b), where the average flow deflection, which is downward, requires a
straight right running oblique shock (xTu < xTl as in figure 10a) and is shown by the
dotted line. However, by virtue of the geometry (location of the wedges), the triple
points may be located in such a way that xTu > xTl, which forms a left running shock.
In the present model, this ambiguity is removed by considering the curvature of the
Mach stem ms which is modelled as a second-order curve using (2.1) to (2.3). Here,
the average flow deflection θavg is used to estimate a location on the curved Mach
stem where the inclination would be the same as that of an oblique shock at a shock
angle φavg. This accommodates both the cases as shown in figure 10(c,d). The only
difference is that vertical location of x-axis is shifted along the Mach stem.

The governing equations used for this model are based on the assumptions as stated
in Li & Ben-Dor (1997). A stable MR configuration exists in the absence of far-field
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downstream disturbances. The fluid in consideration is ideal and hence its dynamic
viscosity and thermal conductivity are zero. The gas is perfect, with a constant heat
capacity ratio γ . The flow in region 2 (see figure 9) is supersonic. The slip lines form
a two-dimensional convergent–divergent nozzle, whereby the subsonic flow behind the
Mach stem accelerates to become sonic at the throat. Any secondary waves reflected
from the slip lines (Gao & Wu 2010; Bai & Wu 2017) have been ignored here, with
the understanding that their contribution is not significant in comparison to the primary
waves in the overall shock reflection configuration (Ben-Dor 2007, § 2.3.4).

Geometrical inputs required for the model include the total height Ht between the
leading edges of the wedges, the slant lengths wu and wl of the wedges and the
respective deflection angles θwu and θwl. The Mach number of the incoming flow is
required, along with flow properties such as pressure and temperature from which the
thermodynamic state variables are to be calculated.

The region 0 has uniform flow field before the shock structure, and is common to
both the upper and lower domains. Region 1 has uniform supersonic flow conditions
after being deflected by the incident shock i. It extends till the region bound by
the leading characteristic of the expansion fan emanating from the trailing edge of
the wedge. Region 2 has flow conditions after the flow field passes through the
reflected shock r. It also extends until and is bound by the leading characteristic
of the expansion fan from the trailing edge of the wedge. Region 3 is the area
past the Mach stem ms and below the slip line s and in close vicinity of the triple
point T . Region 4 lies downstream of the Mach stem, in the vicinity of the x-axis,
and demarcates the interface of the upper and lower domains at the Mach stem.
Subscripts u and l depict the upper and lower domains, respectively. The equations
in the following subsections apply to each of the domains, and have been written
without the respective subscripts, unless specifically required.

3.1. Triple point

First, we consider the region near the triple points, given in figure 11. The classic von
Neumann three-shock theory is applied individually to each triple point, which is the
point of confluence of four discontinuities: incident shock i, reflected shock r, Mach
stem ms and slip line s.

The sign conventions for the angles are as shown in figure 11. Since the vertical
axis is inverted for the lower domain, the sign conventions are also reversed. For the
general case of DiMR given in figure 11(c), the flow deflection angle θ3l is taken to
be positive for any deviation of the streamline towards the x-axis by a left running
shock wave, as in the segment of the Mach stem in this domain. The shock angle
φ3l is acute. On the other hand, the upper domain given in figure 11(b) has an InMR.
Following the sign conventions, the flow deflection angle θ3u (depicted as −θ3u for
clarity) is negative. The segment of the Mach stem in this domain is a left running
shock wave (instead of a right running wave if it were a DiMR). Hence, in accordance
with the mathematics, the shock angle φ3u is taken as obtuse. (The angle would be
acute for DiMR and 90◦ for StMR.)

The following equations are used to relate the downstream properties ( j) to the
upstream ones (i) across an oblique shock. The details of these relations, which are
derived from the conservation equations, can be found in Li & Ben-Dor (1997) and
Ben-Dor (2007). Here the flow properties are – Mach number M, shock angle φ,
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FIGURE 11. (Colour online) (a) Schematic of asymmetric MR; insets (b) upper triple
point region, and (c) lower triple point region.

pressure P, flow deflection angle θ , density ρ and local acoustic speed a.

Mj = F(Mi, φj)
θj = G(Mi, φj)
Pj = PiH(Mi, φj)
ρj = ρiE(Mi, φj)

aj = aiA(Mi, φj)

 σj = σiΠ(Mi, φj), (3.1)

where, the functions are given as,

F(M, φ)=

1+ (γ − 1)M2 sin2 φ +

[
(γ + 1)2

4
− γ sin2 φ

]
M4 sin2 φ[

γM2 sin2 φ −
γ − 1

2

] [
γ − 1

2
M2 sin2 φ + 1

]


1/2

(3.2a)

G(M, φ)= arctan
[

2 cot φ
M2 sin2 φ − 1

M2(γ + cos 2φ)+ 2

]
(3.2b)

H(M, φ)=
2

γ + 1

[
γM2 sin2 φ −

γ − 1
2

]
(3.2c)

E(M, φ)=
(γ + 1)M2 sin2 φ

(γ − 1)M2 sin2 φ + 2
(3.2d)

A(M, φ)=
[(γ − 1)M2 sin2 φ + 2]1/2[2γM2 sin2 φ − (γ − 1)]1/2

(γ + 1)M sin φ
. (3.2e)

Across the incident shock i, we have:

σ1 = σ0Π(M0, φ1). (3.3)
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Then, across the reflected shock r, we have:

σ2 = σ1Π(M1, φ2). (3.4)

And, across the Mach stem ms, we have:

σ3 = σ0Π(M0, φ3). (3.5)

It is to be noted here that weak shock solutions for (3.3) and (3.4), and strong shock
solutions for (3.5), are to be considered.

Finally, we have the following boundary conditions:

θ1 = θw, P3 = P2 and θ3 = θ1 − θ2. (3.6a−c)

The above set of 18 equations are solved for the 18 unknowns: M1, M2, M3, P1, P2,
P3, φ1, φ2, φ3, θ1, θ2, θ3, ρ1, ρ2, ρ3, a1, a2 and a3.

For the particular configuration of MR shown in figures 9 and 11, the solution
would yield a negative value of θ3u in the upper domain. This negative value is in
accordance with the sign convention and is to be retained as such.

While solving the region around the triple points in the upper and lower domains,
it is not particularly required to include equations for ρ and a in the set to be solved
simultaneously; the set of equations would otherwise contain 12 equations and 12
unknowns, and could be solved nevertheless. However, these quantities are being
solved for, as they are required in the upcoming subsection.

As evident from the formulation above, each region around a triple point can be
solved for, independent of other geometric and/or physical constraints. Consequently,
the angle of deflection of the slip line from the x-axis (and hence the classification
among DiMR, StMR or InMR) at either of the triple points is independent of the
other.

3.2. Subsonic pocket downstream of the Mach stem
3.2.1. Average deflection at the Mach stem

As stated earlier, the inclination of the axis xi is based on an average deflection of
the flow by the Mach stem, given as:

θ4 = θavg =
(−θ3u)+ θ3l

2
. (3.7)

The opposite signs of θ for regions 3u and 3l are evoked so as to comply with
the flipped y-axes (and sign conventions) of the upper and lower domains. In this
subsection, a positive sign is given to angles measured anticlockwise, as for θ4 and
θ3l.

With the Mach stem being modelled as a monotonic second-order curve with
continuous slope and no inflection point (using (2.1)–(2.3)), there exists exactly a
single location on the Mach stem at which the incoming streamline is deflected by
θ4. This location is named G, as given in figure 9. The x-axis passes through this
point on the Mach stem, while its location on the Mach stem itself (given by Hu and
Hl) is a variable as of yet.

To keep in line with the sign conventions of each domain, we henceforward redefine
θ4 as:

θ4′u =−θ4 and θ4′l = θ4. (3.8a,b)
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3.2.2. Average flow properties behind the Mach stem
With θ4 known, the following 5 equation set is solved for the 5 downstream

properties, at some intermediate location G on the Mach stem: φ4, M4, P4, ρ4 and a4.
Again, strong shock solution is taken for this case.

σ4 = σ0Π(M0, φ4). (3.9)

Following Li & Ben-Dor (1997), the average Mach number (M) behind the Mach
stem segments for each domain is defined based on the average velocity (u) and
average acoustic speed (a), and is given as:

M = u/a, (3.10)

where a first-order approximation is applied for the following averaging:

u=
1

Hmρ

∫ Hm

0
ρu.ex dy=

1
2ρ
(ρ3u3 cos θ3 + ρ4u4 cos θ4) (3.11)

a= 1
2(a3 + a4) and ρ = 1

2(ρ3 + ρ4). (3.12a,b)

Hence, for the subsonic region behind the Mach stem, we have:

M =
2(ρ3u3 cos θ3 + ρ4u4 cos θ4)

(ρ3 + ρ4)(a3 + a4)
, (3.13)

where the velocities are given as,

u3 =M3a3 and u4 =M4a4. (3.14a,b)

The cosine function in the above relations lets us ignore the differing signs (positive
or negative) in the two domains for θ3u, θ3l and θ4.

3.3. Expansion-fan interaction region
The regions of interaction of the expansion fans with the reflected shocks, r, are given
in figures 12 and 13. The inclination of the subsonic pocket (along axis xi) by angle
θ4 is included as an angle correction, in the sense that the streamlines are shown to
become parallel to xi rather than x, after interacting with a portion of the expansion
fan (Li & Ben-Dor 1997; Ben-Dor 2007). The slip line also follows the curvature
of the weak tangential discontinuity (originating from point B) which is one among
an infinite number of such entropy layers. The pressure and flow direction remain
constant across each layer. Details of the analytical study of expansion-fan interaction
with a shock wave can be found in Li & Ben-Dor (1996). Beyond the characteristic
line RCD of the centred expansion fan, where the flow for the most part assumes a
common inclination θ4, further influence of the expansion fan is ignored as the flow
downstream of the throat becomes supersonic and properties there do not influence
the upstream flow any further.

Consider the point where the characteristic line RCD interacts with the reflected
shock r. The point upstream of the shock is labelled as C, and the point downstream
as C′. Here, µ is the Mach angle made by the characteristic line at that point. The
angle between the flow direction and axis xi at C, is given as α.
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FIGURE 12. (Colour online) Schematic of asymmetric MR: inset; expansion fan
interacting with reflected shock wave in upper domain.
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FIGURE 13. (Colour online) Schematic of asymmetric MR: inset; expansion fan
interacting with reflected shock wave in lower domain.

Firstly, the Prandtl–Meyer relation is applied between a location in region 2 and
point D. The net change in the flow direction here is θ3 − θ4′ , where θ4′ assumes the
value of θ4′u or θ4′l as given in (3.8). The pressure remains constant across the parallel
entropy layers. Hence, we have the following relations for MD, PD and PC′ .

θ3 − θ4′ = ν(MD)− ν(M2), PD = P2χ(M2,MD), and PC′ = PD, (3.15a−c)

where ν is the Prandtl–Meyer function and χ is an isentropic function relating the
pressures across an expansion fan, given as follows,

ν(M)=
(
γ + 1
γ − 1

)1/2

arctan
[
(γ − 1)(M2

− 1)
γ + 1

]1/2

− arctan(M2
− 1)1/2 (3.16)

χ(Mi,Mj)=

[
2+ (γ − 1)M2

i

2+ (γ − 1)M2
j

]γ /(γ−1)

. (3.17)
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Now, consider a location in region 1, and point C. The Prandtl–Meyer function can
be applied again for a change in flow direction by angle θ1 − (α + θ4′). Standard
relations can be applied across shock r at points C and C′. Hence, the following set of
6 equations are solved for the 6 remaining unknowns: MC, MC′ , PC, φC, θC′ and α.

ν(MC)− ν(M1)= θ1 − (α + θ4′), PC = P1χ(M1,MC), (3.18a,b)

MC′ = F(MC, φC), PC′ = PCH(MC, φC), (3.19a,b)

θC′ =G(MC, φC), and α = θC′ . (3.20a,b)

The flow parameters calculated herewith, can now be applied to solve for the
geometrical relations.

3.4. Flow in the subsonic pocket and geometrical relations
The boundary conditions at the interface apply to both the upper and lower domains,
and hence the set of equations in this subsection have to be solved simultaneously.

Consider the subsonic pocket TFEKG in figure 9. Here, the cross-sectional area
of the pocket at the Mach stem is approximated as the vertical height of the Mach
stem Hm. Hs is the perpendicular area of the cross-section at the throat i.e. EK. In
order to evaluate Hs, certain geometric manipulations are employed. The details of the
geometric relations and the set of equations employed for this subsection are detailed
in appendix A.

It is to be noted here that the leading edges of the two wedges have been considered
to have a horizontal gap L and the same has been included while calculating the
corresponding abscissae. L is to be set to zero where the leading edges are required
to be at the same horizontal location.

The quasi-one-dimensional analysis and the geometrical relations along with the
closing equations, yield a total of 26 equations with 26 unknowns, including Hmu and
Hml, from which we get the total height of the Mach stem.

Hmt =Hmu +Hml. (3.21)

Finally, the coordinates of the points obtained from the solution are used to
reconstruct the entire oMR configuration. Further discussion on this is given in § 4.3.

4. Results and discussion
4.1. Symmetry case verification

Due to the nature of the algorithm used herein, the asymmetric MR formulation is
expected to predict symmetric MR cases as well. Hence, the data of non-dimensional
Mach stem height for symmetric MR are compared with those of the present model
in table 1 and figure 14. It follows from symmetry that for equal upper and lower
wedge angles, the shock reflection configuration for any mathematical model would
be identical in the upper and lower domains. The comparison has hence been made
with symmetric half-models by taking half of the height of the Mach stem Hmt and
that between the wedges Ht.

The data reported in table 1 and figure 14 are taken from Gao & Wu (2010). From
table 1, it can be seen for cases 5 and 6 that the present model gives better, if not
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FIGURE 14. (Colour online) Comparisons of non-dimensional Mach stem height, Hmt/Ht,
from current theory with those of Gao & Wu (2010), Li & Ben-Dor (1997) and Mouton
& Hornung (2007), and numerical results from Gao & Wu (2010); w/Ht = 1.1.

Hmt/Ht

Case M0 θw φ1 w/Ht Present Analyticala Analyticalb Analyticalc Numericalc

1 2.84 20.8 40.1 1.42 0.1175 0.118 0.140 0.202 0.191
2 4.00 23.0 36.0 1.28 0.0767 0.076 0.106 0.110 0.121
3 4.00 25.0 38.5 1.19 0.1704 0.167 0.300 0.213 0.223
4 4.50 23.0 34.5 1.10 0.0376 0.036 0.051 0.058 0.052
5 4.96 28.0 39.7 1.10 0.2742 0.269 0.395 0.292 0.283
6 5.00 26.9 38.2 1.10 0.1974 0.191 0.296 0.213 0.203

TABLE 1. Comparison of the non-dimensional Mach stem height, Hmt/Ht, with the values
from aLi & Ben-Dor (1997), bMouton & Hornung (2008) and cGao & Wu (2010). All
angles are in degrees.
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the best, agreement with the numerical data. From figure 14, it is evident that the
present model (and that of Li & Ben-Dor (1997)) shows excellent agreement with
numerical results towards higher Mach numbers (M0 > 4.5). In selected cases, the
present theory performs even better than that of Gao & Wu (2010). The Mouton
(2007) theory deviates from the numerical data at such high Mach numbers. At lower
Mach numbers, there is considerable under-prediction of the Mach stem height by
the present model. Since the primary distinction of the Gao & Wu (2010) model
is the consideration of secondary waves in the MR configuration, the above analysis
suggests that ignoring the secondary waves leads to large errors at low Mach numbers.
However, the extent of their contribution at higher Mach numbers needs to be further
considered, since we see very good agreement with the numerical data for a certain
range, and some over-prediction beyond that (figure 14a,b).

It can also be noted from table 1 and figure 14 that there exists some discrepancy
between the present data and those reported in Li & Ben-Dor (1997). A closer scrutiny
revealed a possible error in the algorithm reported in the latter (see Li & Ben-Dor
1997, C9, the appendix). The sign of the angle θ3 is incorrect, and the same has been
corrected in the present theory in (A 12). It has separately been verified that for the
symmetric case, the present asymmetric formulation gives exactly the same results as
the corrected Li & Ben-Dor (1997) model.

4.2. Variation of Mach stem height
Using the present algorithm, the wedge-angle-variation-induced changes in the Mach
stem height have been estimated for a series of cases. Also, the wedge angles at which
the Mach stem height becomes zero is in direct conformation to the von Neumann
criterion. It is to be noted however that each value calculated using the present theory
is a steady-state result. There is no dynamic effect (Naidoo & Skews 2014) associated
with changing wedge angles in this analytical model.

For all calculations in this subsection, the Mach number M0 has been taken to
be 4.96. The geometric parameters have been taken following Li et al. (1999). The
vertical height between the wedges is 71 mm and the wedges are of equal slant height
at 40 mm each. The total pressure is taken to be 8.5 bar and the total temperature
is 473 K. (These parameters are required as input to the algorithm. However, except
the Mach number and geometrical parameters, other flow properties are dealt with as
ratios across the discontinuities, and can be arbitrarily assumed within the perfect and
ideal gas assumptions.) The above parameters ensure that oMR is possible for a range
of angles in such a flow field, as determined from experimental results. The horizontal
gap L between the wedges is zero.

In figure 15, the transitions from oMR→ oRR have been shown for various types
of initial oMR configurations. The cases taken here are symmetric DiMR–DiMR
with equal wedge angles changing along the path (c), asymmetric DiMR–DiMR
with unequal wedge angles varying along a straight line path (d), StMR–DiMR with
constant upper wedge angle (symmetric θN

w ) and varying lower wedge angle along
the path (e) and, lastly, InMR–DiMR with unequal wedge angles varying along the
straight line path ( f ). Figures 15(c) through 15( f ) represent shock polars for the
paths as indicated in figure 15(a), and the normalised Mach stem heights versus
the lower wedge angles for these cases are given in figure 15(b). Solution points
have been marked in colour in all the corresponding plots for each of the cases –
only oMR, dual-solution (ds) domain and von Neumann (vN) criterion. A global
sign convention for wedge angles is adopted for the shock polars here, whereby

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

94
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.945


260 S. Roy and R. Gopalapillai

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

œwu (deg.)
20 22 24 26 28 30 32 34 36

(20.88�)
œwl (deg.)

40

35

30

25

20

15

10

5

œ w
l (

de
g.

)
40

35

30

25

20

15

10

5

0

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

H
m

t/H
t

(20.88 , 20.88) Dual-
solution
domaim

oMR

oRR

œw
D

œw
N

Symmetric
vN criterion

Sym DiMR-DiMR
Asym DiMR-DiMR
StMR-DiMR
InMR-DiMR

(e)

(c)

(c)

(e)

(f)

(f)

(d)

(d)

œw (deg.)
-60 -40 -20 0 20 40 60

œw (deg.)
-60 -40 -20 0 20 40 60

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60

20.88 20.8820.88

20.88 20.88 20.8820.88

20.88
27.0

25.0 26.025.0 22.77

29.0
34.0

29.0 25.0 32.029.0

35.0

18.019.22

70

60

50

40

30

20

10

70

60

50

40

30

20

10

70

60

50

40

30

20

10

70

60

50

40

30

20

10

P/
P 0

P/
P 0

P/
P 0

P/
P 0

DiMR

DiMR DiMR DiMRDiMR

DiMR
(ds)

DiMR
(ds)

DiMR
(ds)

DiMR (ds)

DiMR (ds)

DiMR
(ds)

InMR (ds)

oRR (ds)

oRR (ds)

oRR (ds)

oRR (ds)
oRR/StMR-SMR (vN) 

oRR/StMR-StMR (vN) 

oRR/StMR-StMR
(vN) 

oRR/
StMR-StMR (vN) 

DiMR

InMR

(a) (b)

(c) (d)

(e) (f)

FIGURE 15. (Colour online) Symmetric von Neumann criterion for M0 = 4.96. (a) The
dual-solution domain in the (θwu, θwl)-plane (Li et al. 1999); (b) plots of normalised Mach
stem height versus lower wedge angle; (c) shock polars for symmetric DiMR–DiMR case;
(d) shock polars for asymmetric DiMR-DiMR case; (e) shock polars for asymmetric StMR-
DiMR; ( f ) shock polars for asymmetric InMR-DiMR case.

anticlockwise rotation as for the lower wedge is taken to be positive, and clockwise
rotation as for the upper wedge is taken to be negative.

All the plots in figure 15 converge at the symmetric von Neumann point, which for
M0 of 4.96 occurs at 20.88◦. There is excellent agreement of the analytically predicted
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Asymmetric Symmetric
Case θwu θwl φ1u φ1l Hmt/Ht θw φ1 (equiv.) Hmt/Ht Difference (%)

DiMR 22.4 25.0 32.69 35.85 0.053936 23.7 34.267 0.054305 0.684
StMR 20.9 25.0 30.88 35.86 0.032166 23.0 33.371 0.033056 2.767
InMR 20.0 25.0 29.92 35.87 0.022526 22.6 32.890 0.023743 5.402

TABLE 2. Comparison of the non-dimensional Mach stem height, Hmt/Ht, from the present
theory for various asymmetric cases with corresponding symmetric case, based on the
equivalence shock angle concept (Mouton 2007). All angles are in degrees.

value as confirmed from theory from the (θwu, θwl)-plane and the shock polars. It
is interesting to note that both the wedge angles would be equal at the symmetric
von Neumann point, and this point hence, is a theoretical StMR–StMR configuration.
However, the Mach stem height is zero at this point, and this denotes a transition to
oRR.

It is interesting to note from figure 15(b) that the highest Mach stem heights are
obtained for the symmetric case, and the Mach stem heights for corresponding lower
wedge angles become smaller as one moves away from symmetry. It is easy to
extrapolate from symmetry that plots on the other side of symmetry line (c) in the
(θwu, θwl)-plane would bear the same pattern.

It is also plausible to comment from this analysis that any approximation of an
asymmetric MR to a symmetric MR (concept of equivalence shock angle, (Mouton
2007, chap. 5, 9)) would result in estimation of Mach stem height higher than the
actual value. To elucidate this, table 2 lists the Mach stem heights for the various
types of oMRs on paths d, e and f , and those for the corresponding equivalence shock
angle on path c, in figure 15(b). It is seen that the difference increases with asymmetry,
with the highest for InMR. For near-symmetric wedge angles as in the DiMR case,
however, the difference is quite small, corroborating that proposed in Mouton (2007).

The salient feature of this work is the prediction of the InMR configurations. To see
how accurate the present model predicts these configurations, cases of InMR–DiMR
have been considered here in figure 16, whereby the upper wedge angle is retained at
18◦ and the lower wedge angle is reduced until the von Neumann condition at 23.84◦.
The path is shown on the (θwu, θwl)-plane in figure 16(a), the Mach stem height in
figure 16(b), and the corresponding shock polars in figure 16(c). It can be seen that
the von Neumann condition is accurately predicted at θwl of 23.84◦, as obtained from
the shock polar theory.

4.3. Asymmetric MR configurations
The coordinates of various points obtained as solutions from the algorithm are used to
render the oMR configuration. Here, (2.1) is used to interpolate points for the curved
entities – Mach stem, and portions of the slip lines, expansion-fan characteristic lines
and reflected shocks.

The configuration obtained from the present model has been validated with
numerical and experimental results in this section. As mentioned earlier, cases of
highly asymmetric configurations such as those of InMR, are especially considered.

In figure 17, the plots corresponding to an inverse Mach reflection, in particular
oMR(DiMR+InMR), for an upper wedge angle θwu of 28◦ and lower wedge angle
θwl of 18◦, are shown. The wedge angles chosen correspond to an InMR–DiMR in
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FIGURE 16. (Colour online) Asymmetric von Neumann criterion for M0 = 4.96. (a) The
dual-solution domain in the (θwu, θwl)-plane (Li et al. 1999); (b) plot of normalised Mach
stem height versus lower wedge angle for InMR-DiMR; (c) shock polars for asymmetric
InMR-DiMR case.

the dual-solution domain on the (θwu, θwl)-plane, as can be seen from figure 16(a). In
figure 17(a), the predicted configuration has been overlapped upon a colour schlieren
photograph of an oMR for the same wedge angles, given in Li et al. (1999). It can be
seen that the predicted oMR configuration matches very well with the experimental
oMR configuration. The rather small size of the Mach stem makes it difficult to
visualise the area close to the stem. A zoomed-in view is therefore presented in
figure 17(b). The line plots for various features such as shocks, characteristic lines
of the expansion fan, slip line and streamline, are differentiated with colour. (The
coordinate system shown in figure 17(b) corresponds to the approach primarily
adopted in the present algorithm. For the latter plots, the axes have been shifted
vertically down by Hl.)

It may be noted that the streamline direction downstream of the Mach stem is
fictitious, as the flow is no longer uniform. The streamline represents the general
flow direction and inclination of the subsonic pocket, or more correctly, axis xi of the
present model. The slip lines become parallel to xi at their respective choking sections
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FIGURE 17. (Colour online) Comparison of inverse Mach reflection (DiMR–InMR)
configuration at M0 = 4.96 for (θwu, θwl) = (28◦, 18◦) with present model (line plot).
(a) Comparison with colour schlieren (Li et al. 1999); (b) zoomed-in view of the Mach
stem region; (c) comparison with data from numerical results, marked with @ (Ivanov
et al. 2002); (d) zoomed-in view of the Mach stem region in plot c.

(part of the boundary conditions in the model) which is reasonable in the context of
the experimental observations of such flow fields.

In figure 17(c,d), the predicted results have been compared with numerical data
presented in Ivanov et al. (2002). Here, the trailing edges of the two wedges are at the
same horizontal location, unlike the leading edges as in the case of Li et al. (1999).
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FIGURE 18. (Colour online) Comparison of oMR configurations with present model (line
plot) with data from numerical results for M0= 4.96, marked with@ (Ivanov et al. 2002).

The two data sets have been scaled and mapped by matching the leading and trailing
edges of the wedges. The agreement is seen to be quite good, with a clearer picture
being provided by the magnified view.

The present model is known to predict a discontinuity between the upper and
lower sections at the choking location. This is likely to become predominant at
large asymmetric wedge angles owing the deviation from the quasi one-dimensional
assumption used in the present formulation. However, it can be seen from the plots
that the agreement between the computational and analytical data is quite good
despite the fact that the asymmetry in wedge angles is large, indicating the reliability
of the present model even for highly distorted oMR configurations.

Further cases of asymmetric MR have been given in figure 18, to compare the
profiles of the present configurations with numerical results of Ivanov et al. (2002).
Figure 18(a) shows a direct MR (DiMR–DiMR) case with (θwu, θwl) as (28◦, 30◦).
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The oMR configuration is more asymmetric in figure 18(b), but the configuration
is still a direct MR. Figure 18(c) shows a case of stationary MR (DiMR–StMR),
whereby the slip line for the lower domain emerges parallel to the incoming flow
direction at the triple point. Lastly, figure 18(d) shows an inverse MR (InMR–DiMR)
with a substantial height of the Mach stem. This configuration clearly reveals the
profile of the Mach stem. The agreement with the numerical data is excellent for the
above cases, though close inspection reveals that the present model under-predicts
the Mach stem height by a small margin for cases (a), (b) and (c), while slightly
over-predicting for case (d). The Mach stem profile is accurately captured, as seen in
cases (a) and (d).

5. Conclusion
The analytical formulation presented in this paper predicts the overall configuration

of an asymmetric Mach reflection for all the possible oMR configurations. The model
successfully predicts the profile of the waves and wave interactions in the oMR
configurations. The present model takes into account most of the flow phenomena,
such as the curved Mach stem, subsonic pocket and the interaction of the reflected
shocks with the expansion fans, that occur in the shock reflections in the asymmetric
wedge flows. The Mach stem heights predicted by the model have been validated with
several numerical and analytical data available for symmetric cases. The agreement is
quite good at high Mach numbers. However, the effects of ignoring secondary waves
in the present model at very high Mach numbers need to be further investigated.

The asymmetric Mach stem heights have been computed for various types of oMR
configurations. The pattern of variation of Mach stem height with wedge angles, for a
Mach number of 4.96, is explored. The von Neumann criterion is found to be satisfied
exactly by the present model for both symmetric and asymmetric cases. The highest
Mach stem height is obtained when approached on the symmetric path. This suggests
that equivalence angles, as employed in some of the previous works to approximate
the asymmetric case to symmetric case, will result in over-prediction of the Mach stem
height, although the difference is minimal for small asymmetries.

The profile of the overall asymmetric MR configuration is predicted and validated
for a Mach number of 4.96 with experimental and numerical data. It is seen that the
present model is able to predict the MR configuration with appreciable accuracy. The
Mach stem profile is well captured in all cases, including inverse MR.

Appendix A
A.1. Flow in the subsonic pocket and geometrical relations

A schematic of the upper domain with the necessary nomenclature is given in
figure 19. The lower domain follows a similar description. From figure 19, the
following relations are evident based on the geometry. The abscissa of the leading
edge of the lower wedge is the same as the origin on the x axis. The upper wedge
is at a horizontal gap L, as shown.

XAu = L, XAl = 0.0, XRu = L+wu cos θ1u, XRl =wl cos θ1l,
XTu = L+ (Hu −Hmu) cot φ1u, XTl = (Hl −Hml) cot φ1l,

YR =H −w sin θ1, and YT =Hm.

 (A 1)

Consider the subsonic pocket TFEKG. The angle β is given by the inverse of the
tangent of the ratio of EN and GN. By adding θ4′ to β (in case of the upper domain,
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FIGURE 19. (Colour online) Schematic of upper domain of asymmetric MR configuration.

adding θ4′u=−θ4 to βu), we get the angle δ, from which Hs can be obtained using a
sin function along with the length EG. The relations are given below.

β = atan
[

YE

XE − XG

]
, δ = β + θ4′,

and Hs =
√
(YE)2 + (XE − XG)2 sin δ.

 (A 2)

As mentioned at the beginning of § 3, the sonic contour is not taken to be
continuous from Eu to El. Rather, the choking throats are approximated as straight
cross-sectional areas, perpendicular to the axis xi, to be better suited to the
quasi-one-dimensional assumption here. Results obtained by Roy & Rajesh (2017)
show that the MR profile around the Mach stem is disoriented when the sonic
contour is imposed to be a continuous straight or slightly curved line. Furthermore,
adding boundary conditions of continuity for both the Mach stem and sonic contour
over-constrains the set of equations in this subsection.

The average Mach number downstream of the Mach stem ms has been calculated
in § 3.2.2. Using M, we apply the quasi-one-dimensional-area–Mach-number relation
between Hm and Hs, as follows.

Hm

Hs
=

1
M

[
2

γ + 1

(
1+

γ − 1
2

M2
)](γ+1)/2(γ−1)

. (A 3)

We now advance with a more rigorous consideration of the geometric relations.
Refer to figure 19 for the following.

Consider the straight line RB,

YB − YR =− tan(µB + θ1)(XB − XR), where µB = arcsin(1/M1) (A 4)
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consider the straight line RC,

YC − YR =− tan(µC + α + θ4′)(XC − XR), where µC = arcsin(1/MC) (A 5)

consider the straight line BF,

YF − YB =− tan(µF + θ3)(XF − XB), where µF = arcsin(1/M2) (A 6)

consider the straight line DE,

YE − YD =− tan(µD + θ4′)(XE − XD), where µD = arcsin(1/MD) (A 7)

consider the straight line TB,

YB − YT = tan(φ2 − θ1)(XB − XT) (A 8)

consider the straight line TF,

YF − YT =− tan θ3(XF − XT). (A 9)

For curved line segments, we take equations of the form given in (2.2), and use the
function in (2.3). It is assumed here that these curvatures are very small. The profile
of the curve is a function of the coordinates of its end points and the inclinations
(slope with the x-axis) of the curve at the end points.

Consider the curve BC,

YB − YC = tanΛ[(φ2 − θ1), (φC − α − θ4′)](XB − XC) (A 10)

consider the curve CD,

YC − YD = tanΛ[(− arcsin(1/MC′)− θ4′), (− arcsin(1/MD)− θ4′)](XC − XD) (A 11)

consider the curve BD,

YB − YD = tanΛ[(−θ3), (−θ4′)](XB − XD) (A 12)

consider the curve FE,

YF − YE = tanΛ[(−θ3), (−θ4′)](XF − XE). (A 13)

The set of equations (A 3) to (A 13), considering both the domains, constitute a total
of 22 equations and 26 unknowns. Additional equations for boundary conditions have
to be added, to close the set of equations. Firstly, we know the relation for the total
height between the wedges.

Ht =Hu +Hl. (A 14)

As discussed earlier in § 2, following Roy & Rajesh (2017) we employ the condition
that the Mach stem is required to have a continuous profile between the triple points
in the upper and lower domains. Value of φ4 has already been obtained in § 3.2.1.

YT = tanΛ[(π− φ3), (φ4′)](XT − XG), where φ4′u = φ4, φ4′l =π− φ4. (A 15)

And,
XGu = XGl. (A 16)

We now have a total of 26 equations (A 3) to (A 16) for the 26 unknowns (read for
both upper u and lower l domains): XG, YT , XB, YB, XC, YC, XD, YD, XF, YF, XE, YE
and H. Here, Hm = YT , from which we get the total height of the Mach stem, and
from H we get the location of the x/xi axes.
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