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Abstract  Let C be a proper smooth geometrically connected hyperbolic curve over a field of charac-
teristic 0 and £ a prime number. We prove the injectivity of the homomorphism from the pro-£ mapping
class group attached to the two dimensional configuration space of C' to the one attached to C, induced
by the natural projection. We also prove a certain graded Lie algebra version of this injectivity. Conse-
quently, we show that the kernel of the outer Galois representation on the pro-£ pure braid group on C
with n strings does not depend on n, even if n = 1. This extends a previous result by Ihara—Kaneko.
By applying these results to the universal family over the moduli space of curves, we solve completely
Oda’s problem on the independency of certain towers of (infinite) algebraic number fields, which has
been studied by Ihara, Matsumoto, Nakamura, Ueno and the author. Sequentially we obtain certain
information of the image of this Galois representation and get obstructions to the surjectivity of the
Johnson—Morita homomorphism at each sufficiently large even degree (as Oda predicts), for the first
time for a proper curve.
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0. Introduction and motivation

Many predecessors have been studying the Galois action on the étale fundamental group
of an algebraic variety over an ‘arithmetic’ field. From this point of view, it is known
that actual higher-dimensional configuration spaces of an affine hyperbolic curve do not
contain more information on the Galois group than the one-dimensional configuration
space, namely, the original curve in the pro-¢ situation [11,15,25]. The main purpose of
this paper is to show that this also holds true for a proper (hyperbolic) curve.

This new result seems even more highly non-trivial and more mysterious, at least to
the author, than the known results in the affine case.

Let k be a field, Y a connected scheme of finite type over Spec k, and g a geometric point
on Y. Then we have a profinite group 71 (Y, ) called the étale fundamental group [8].
This topological group classifies finite étale coverings of Y: roughly speaking, there exists
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a one-to-one correspondence between the connected finite étale coverings of Y and the
open subgroups of 71 (Y, 7). The isomorphism class of 71 (Y,y) does not depend on the
choice of the base point 7, and usually we do not specify ¢ in the rest of this paper. Fix
a separable closure k of k and assume that Y := Y ®;, k is connected. Then the following
exact sequence of profinite groups exists

1o m ) =»m(Y) 2 G2 =1,

where G, stands for the absolute Galois group Gal(k/k) of k.
This exact sequence gives rise to the following continuous homomorphism:

py sk + Gr — Out(m (Y)), } (0.1)

o (v 5y~ ) mod Inn(m, (Y)),

where o € Gy, 7 € p;/lk(a) (an arbitrary lift of ), v € 71 (Y) and, for a topological group
G, Out(G) denotes the group Aut(G) of all automorphisms of G divided by the group
Inn(G) of all inner automorphisms of G. This homomorphism, which is often called outer
Galois representation, carries the information of fields of definition of each covering of Y.

Suppose that k is of characteristic 0 and is embedded into C. Then we have a compar-

ison isomorphism

m(Y) = m™(Y(C)).
Here Y (C) means the complex analytic space associated to Y. m{°?(A) stands for the
topological fundamental group of a complex analytic space A and G stands for the
profinite completion of a discrete group G.

So the isomorphism class of the geometric fundamental group m(Y) is determined
only by the homotopy type of Y (C).

Moreover, suppose that Y is separated smooth over Spec k and of dimension 1.

Let g and r denote the geometric genus of the smooth compactification Y* of Y and the
number of k-rational points on Y* \ Y respectively. We refer to such Y as a (g,)-curve
over k throughout this paper. The representation (0.1) in the case that Y is hyperbolic
(i.e. 2—2g —r < 0) has been studied by many predecessors for this quarter of a century.

For each n = 1,2,..., the configuration space of distinct ordered n points on Y is
defined as follows:

1<i<j<n
Ay (i,7) = {1, yn) €Y" | yi = y;}.

Note that F1(Y) =Y. We denote by IT, g(,"r)wp the fundamental group of the configuration
space of distinct ordered n points on a fixed r-punctured Riemann surface of genus g.
Then there is an isomorphism

m P (Fa(Y)(C)) = TP,
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Let ¢ be a prime number. Let II4y (") be the pro-¢ completion of the discrete group

Hg(,r)mp, that is to say, the maximal pro—€ quotient of
Hgg’f;’)top

Let T{W® Y e the subgroup of Aut(II3%) which consists of all the elements pre-
serving each ‘fibre subgroup’ and the conjugacy class of each inertia subgroup. Let
I’(fﬁ)(pm “) be the subgroup I“g(? pros Z)/Inn( g7" ) of Out(HéfL)), which is often called
the ‘n-dimensional’ pro-¢ mapping class group (see, for example, [26, §1], [25, §§1, 2]).

There is a natural central filtration {Héri( )}m>1 of Hé ") called the weight filtra-
tion (see, for example, [25, (2.3)] and [18, §1]), which is preserved by the elements of
F(")(pm % Sequentially thls filtration induces a natural filtration {F(?)(pm'e) (m)}m>1 of

F(n)( )(pro- Z)( )

Pro-8) More precisely, F(" is defined to be the image of

Ker (f;;;ﬂpro%) = [ Aut(z{2) () /{7 (d + m))>

d>1

in I\ In what follows, for simplicity, we sometimes denote I\ by P, and

T éﬁ)(pro'@ by I},. Depending on the context, we use both notations.
For each m > 1, there is a natural projection P,+; — P,, obtained by forgetting a
strand and it induces continuous group homomorphisms

Log1/Tosi(m) = I/ Tn(m)  (m = 1) (0.2)

and
Fn+1 — Fn. (03)

Theorem 0.1 (see Corollaries 2.8 and 2.11). If2—2g —r < 0, the homomorphisms
(0.2) and (0.3) are injective.

Remark 0.2. The injectivity of (0.2) is an expansion of [25] which treats the case
r+n > 2 (ie. Y is affine or the dimension is greater than or equal to 2). The injectivity
of (0.3) is a consequence of the first one combined with

() Tn(m) = {1} (Lemma 2.10),

m=0

which is a higher-dimensional version of [2, Theorem 2].
Thara and Kaneko have already proved the injectivity of (0.3) when 3—2g —r—n <0
and r +n > 2 [15, Theorem 1].

This theorem is a rather immediate consequence of a certain Lie algebra version (Theo-
rem 2.5) of it. Therefore, Theorem 2.5 is the main technical result of this paper. However,
we would like to state an exact formulation of Theorem 2.5 in § 2, since we need a lengthy
preparation for it.
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When r +n > 2, we profile derivations with some conditions to prove the assertion of
Theorem 2.5 (i.e. [25, Theorem 4.3]). However, in the case r +n = 1, the Lie algebra
does not have enough relations to profile derivations in the same way as in [25]. Thus,
we prove it after going through various complicated calculations of Lie algebras in §§ 1
and 2.

Theorem 0.1 brings us the following many important arithmetical consequences. We
begin with considering two kinds of pro-¢ monodromy representations.

The first one is associated with a single curve. Let k be a field of characteristic 0 and
embedded into C. Let C be a (g,r)-curve over k. For each n > 1, we can consider the
quotient representation of pg, (o) /k:

pgr?ce e Gr = Out(H(")) (0.4)

The second one is associated with the universal family of curves. Let M, , be the
moduli stack over Q of proper smooth geometrically connected curves of genus g with
disjoint ordered r sections. In [29], Oda developed a theory of fundamental groups of
algebraic stacks, from which, as in the case of a single curve, we obtain a monodromy
representation

@)l (M) — Out(11{), (0.5)

g,r

called the pro-£ universal monodromy representation. It is known that the images of both

(pro-£) "
FI:-:L((J)/;c and q&&r)(po )

r{W®0 when all points

are contained in the ‘n-dimensional’ pro-¢ mapping class group
of C* \ C are k-rational. See the second paragraph in §3 for more detail.

With each of these two kinds of representations, a field tower is associated. More
precisely it is defined as follows.

The field tower {k'(cn)(pm_l)( ) b1 for pF ?Ce))/k is defined by

kgz)(pro—é) (m) — E(pgj?’cf;/k)fl(F;T;)(pro.l)(m)).

The field tower {ng}(pm'é) (m)}m>1 for @é’?r) (Pro-£) §5 defined by

QUIETo0) (1) 1= Qo (") THE 0 ()

)

where pg, is the projection m(My,) — Gg. The field tower {Q(n pro-£) ( ) }m>1 is
defined by Thara (9 =0, r =3 and n =1 in [10]), Oda (¢ > 2,7 =0 and n = 1 in [28])
and Nakamura (g, » and n general in [25;)

Moreover, the fields k:gl )Ero-f) and Q(" (ero-6) are defined as follows:

k(n)(pro—f) — EKer p(Fp:?g))/k

Q(n pro-£) ng r(Ker 95(")(10"’ e))

https://doi.org/10.1017/S1474748010000241 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748010000241

Pro-f braid monodromy on proper curves 165

In what follows we shall often omit the superscript (1) that expresses one dimension.
For example we write

Hg,r = H5571727 F(pro—Z) — Fé,lT)(PYO'Z)7 k(cl')ro'e) — k(c})(Pro‘é)’ Q;{J?EO_Z) Q(l) pro- 2)

g,r

and
QProD(m) = QNEO (m)  (m > 1).

Roughly speaking, {(Jf’;o 9 is the maximal subfield of k(pm g

on the moduli of the (g, r)-curve C. We note that

QP O(1) = Que=)-

which does not depend

It is known (see [25, (6.2)]) that

[QPre-O) (2m) : QPre-9) (2m — 1)] <

and the tower {Q(pm g (2m) }m>1 coincides with Thara’s tower {Q(m)}.,>1 [10,12]. Note
that the union Um; 1 Q(m) is described explicitly in terms of higher circular ¢-units in [1].

Remark 0.3 (cf. Remark 3.1).

(1) We have
n)(pro-£ n)(pro-£
ké)(p ) _ U ké)(p )(m)
m>1
and
(n)(pro 0) _ U Q(n)(pro 4) (m).
m>=1
(2) We have
QP (m) € kPO (m) - (m > 1),
(3) We have

n)(pro-£ n)(pro-¢
QBT (m) = QG (m)  (m > 1),

We proceed in studying various independency of the above two kinds of field towers.
At first it is known that the field tower {k(n)(pro'e)( )}m>1 is independent of n if
r+n > 2 by Thara and Kaneko [11,15]. In this paper we remove the assumption r + n > 2.

Theorem 0.4 (cf. Theorem 3.2). Suppose that C is hyperbolic. For n > 1,

In particular,
kgL)(pro—Z) _ k(c?ro-é).
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Theorem 0.4 gives a non-trivial example in which the kernel of the Galois action on
the pro-¢ fundamental group of a proper variety is the same as that of the variety minus
a divisor. It implies that the smallest common field of definition of finite étale Galois
coverings of F,,(C) (n > 2) of degree £th power is not larger than that of C even in the
case where C' is proper. This conclusion looks highly non-trivial and mysterious at least
to the author.

Next in the situation of the universal family of curves, Oda predicts that this
tower is independent of (g,r) [28]. It has been already established that the tower
{(@(n pro-£) ( )}m>1 is almost independent of g, r and n under the assumption r +n > 2
[16,20,22,25]. We extend these results by removing the assumption r +n > 2.

Theorem 0.5 (cf. Theorem 3.6). If2—2g—r < 0, n > 1, then we have the following.

(1) {Q(") pro- Z)( )}m>1 is independent of r and n and almost independent of g, r and
n in the following sense:

(pro—E)( )DQn)(proé( ) Q(PTO‘Z)( )’
QP (m) = QPO (m)], [QGE™O (m) - Q3™ (m)] < oe.

(2) QP g independent of g, r and n.

We have two applications of Theorem 0.5. The first one is on the image of the Galois

representation pg);z %) For each m > 1, set

™ Gy = Gal(kE"™) (m -+ 1)K m).
gr[g{]Tm GQ = Gal((@g?ﬁo-f) (m + 1)/@9}::0 Z)( ))

Theorem 0.6 (cf. Corollary 4.1). Suppose that C' is hyperbolic. Then we have

dlmQ,(ng Gr ®z, Q¢) = 1,

where r,,, = dimg, (gro 5 Go ®z, Qo).

For the value of r,,, see Remark 4.4. In the affine case, Theorem 0.6 is proved [22, §4].
The second application is one on the so-called Johnson—Morita homomorphism 7, in
low-dimensional topology [17,21]. (See §4 for a definition of 7,,.)

Theorem 0.7 (cf. Corollary 4.5). If2 —2g —r <0, then
dimg, Coker(7y, ®z Q¢) = ry  (m > 1).

In particular, if m # 2,4,8,12 and m is even, then 7, ®z Qy is not surjective.

For the dimension of the cokernel of the Johnson—Morita homomorphism 7,,, several
kinds of bounds have been obtained so far by Morita [21], Oda [27] and Nakamura [22].
However, we remark that any single obstruction to the surjectivity of 7, has not been
known in the proper case r = 0.
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The contents of this paper are as follows. In §1, we show some lemmas on free Lie
algebras, among which Proposition 1.3 is the main result. In §2, we show some proper-
ties of the graded Lie algebra associated to I, ,SZ«). Especially in the case (r,n) = (0,2), we
study this Lie algebra in detail by using its presentation, together with the results of §1,
and get Lemma 2.2, which is the main tool to prove the main technical result, Theo-
rem 2.5, of this paper. After establishing Theorem 2.5, we deduce the main injectivity
results (Corollaries 2.8 and 2.11). In § 3, we accomplish the main independence theorems
(Theorems 3.2 and 3.4) and give a solution to Oda’s problem (Theorem 3.6). In §4, we
present the above-mentioned two applications (Corollaries 4.1 and 4.5).

1. Some lemmas on free Lie algebras

The purpose of this section is to show Proposition 1.3, which is at the core to verify
Lemma 2.2 in § 2. Since the proof of Proposition 1.3 is elementary but needs lengthy and
complicated calculation, the reader may skip through this section to the next section at
the first reading.

Notation

Throughout this section, we fix an integral domain K with fraction field of charcater-
istic 0 and a set S. We denote by L(S) the free Lie algebra over K with free generating
set S. For s € S and w € L(S), we denote by deg,(w) the degree of s in w. For a Lie
algebra L over K and a subset T" of L, we denote the centralizer of T'in L by C,(T'), the
centre Cr(L) by Z(L), and the Lie subalgebra (respectively the submodule) generated
by T over K by (T)pie (respectively (T)yec). For w,w’,--- € L, Cp(w,w’,...) means
Cr({w,w',...}) and (w,w’,... )i (respectively (w,w’,...)vec) means ({w,w’, ... }Lie
(respectively ({w,w’,...})vec). For a Lie algebra L over K, a derivation on L means
a K-linear endomorphism D on L such that D[A, B] = [D(A), B] + [A, D(B)] for any
A, B € L. We denote by Der(L) the set of all derivations on L, which is equipped with
the structure of K-Lie algebra by operation [D,D’]| = DD’ — D'D. For A,B € L, we
denote

ad(A)"(B) =[A,[A,...,[A,B]]---]

n

by A"B and write AB = A'B.

Lemma 1.1. We have
CL(S)({S}) = (S8)vec

for any s € S.
Proof. See, for example, [7, Lemma 2.2]. O

Lemma 1.2 (cf. [31]). Set L = L(S). Let T C L and w € L. If there exist S’ C L,
Ae KX, s; €S, w € (S \{s)})Lie, such that T C S"\ {s(,}, that (S")Lic is free with

https://doi.org/10.1017/S1474748010000241 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748010000241

168 N. Takao
free generating set S’ (namely, (S")1;. «— L(S’)), and that
w = \s; +w',
then (T, w)y;e is free with free generating set T11{w} (namely, (T, w)p;c <— L{TT{w})).

Proof. (S)ie = L(S’) admits a Lie algebra automorphism @ defined by 6(s}) =
A" (sh—w') and (s") = s’ for s’ € S"\{s}}. (The inverse map 61 is given by 7 1(s)) = w
and 071(s') = s’ for s € S"\ {s}}.) We see that 0|7 = idy and O(w) = sj,. As T U {s}}
is a free generating set, so is T'U {w}. O

Proposition 1.3. Assume that S is a finite set {A1,..., Ap} of cardinality h > 4 and
set Ly = L(S). Let D be a derivation on L, such that D(As) + AsAy € ({As; 4 <
a < h})rie and that D(A,) = A1 A, for all @ # 2. Then KerD = (A, Ep)Lie, where
E'D = D(AQ) — AlAQ.

Proof. By the assumption on D, KerD D (A1, Ep)ric. We shall prove the other inclu-
sion.

First of all we shall eliminate A; to compute KerD. The elimination theorem [6,
Chapter 2, §2, Proposition 10] ensures that a K-linear isomorphism

LA = <A1>Lic 2] Lan
where
L'y :=(ATAs; m 20, a > 2.

Applying Lemma 1.2 to L = L, T = {A1}, w = Ep, 8" = {AJAy; m 2 0, « # 2},
A =1and sj = Ay A;, we have (A1, Ep)rie = L(A1, Ep). Hence

(A1, Ep)Lie ~ (A1) Lie ® (AT 'Ep; m = 1)1e,

by the elimination theorem. Observing that {A7" " 'Ep; m > 1} C L/, and the above
isomorphism (L4 =~ (A1)rie ® L'y), we have

(A1, Ep)rie N Ly = (AT Ep; m > 1)14e.

Taking Ker D O (A1) into account, KerD C (41, Ep)Lie if and only if Ker(D|L/A) -
(AT 'Ep; m > 1)pe.

Next we shall take another free generating set of the free K-Lie algebra L’,, extending
{Agn_lED; m > 1}.

Let B, g (n > 0 and h > [ > 2) be mutually distinct indeterminates and let Lp :=
L{Bng; n >0, 8 > 2}). By the assumption of D, AT 'D(Ay) € (ATAs; m > 0,
@ 2 3)Lie- Thus we have the following Lie algebra homomorphism:

0 : L;‘ — Lp,
AT"Aq = Bpo (@ #20rm=0),
ATAQ — _Bm,Q + G(A;n_lp(Ag)) (m > 1),
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which is bijective, with the inverse map being given by

Bpor AY7'Ep  (n>1),
B, g — AT Ag (B#2o0rn=0),
because of the assumption on D(As). We denote L(B,, g; n > 0, § > 2) by Lg. From
the assumption of D, D induces on Lp the following derivation Dg:
DB : LB — LB,
Bn,ﬁ = Bn-i-l,ﬁ (6 = 3);
By, = 0(D(A2)),
Bn72 — 0 (TL > ].)
It is easy to see that Ker(D|r,,) C (A;”*IED; m = L) if and only if Ker Dp C (B, o;
n 2 1>Lie-

To prove the latter inclusion, we shall first prove Ker Dp C (B, 2; 1 > 0)1e. For each
nz20,n>20,h2022,h>20>2520,t>0,let Lg(B,3,Bn g;s,t) be

(all monomials with the degree of B,, 3 being s and the degree of B, g being t)yec,

p(Bn.g, Bunr g3 8,t): Lp — Lp(Bp g, By g3 s,t) the canonical projection. For n > 0 and
h>p=>2 let u(n,B): Lg — Lp be the K-Lie algebra endomorphism of Lg given by

Bn+1’ﬁ — Bn’g,
By g+ By g ((0,0) # (n+1,5)).

Ifbe L\ (Bn2; n = 0)Lie, then there exists ng > 0, Bp = 3, dp = 1 such that

dean)ﬁ(b) =0 (n>0andg> f),
degp, . (b) =0 (n>ng),
deanoﬁo(b) = dp.

Then we have

u(n(]’ ﬂO) © p(Bnoﬁo ) Bno+17ﬁ0; do — 1, 1) © DB(b) = dop(Bnoﬂo’ BTL0+1,[30; do, 0)(b)
#£0.
Hence Dp(b) # 0. Therefore, Ker Dp C (B 2; 17 = 0)Lie.
Next we shall proceed to show that Ker Dp C (Bj.2; 7 2 1)Lie-
Applying Lemma 1.2 to
S={Bng; n=0, 2<B<h}, w=Dp(Bo2), T={Bp2 n=0},
S"={B{3Bnp; 2<B<h, n=0,v>0, (n,p)#(0,3)},
A= —17 86 = B073BO74 and U.)/ = DB(BQQ) + B0733074,
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we can see that
(Bn,2:;Dp(Boz2); n = 0)Lie ~ L(Bp2,Dp(Bo,2); n = 0),

denoted by Lp,. Hence we can define us : Lp, — Lp, a K-Lie algebra homomorphism,
given by

Dp(Bo2) = Bo,2,
Bn,2 — Bn,2 (n 2 0)

If b€ (Bp2; n = 0)Lic \ (Bn2; 7 > 1)Lie, then there exists dy > 1 such that degp,_ ,(b) =
do. Then we have

ug o p(Bo,2, D (Bo,2);do — 1,1) o Dp(b) = dop(Bo,2, Dr(Bo,2); do, 0)(b) # 0.

Here p(By,2, Pp(Bo,2); s,t) is the canonical projection, which is defined in a similar way
as the above-mentioned p(By g, By g/;5,t). Hence Dg(b) # 0. Therefore, KerDp C
(Bn,2; n = 1)Lie, which completes the proof. ]

2. Braid groups on compact Riemann surfaces and injectivity results for their
outer automorphism groups

The main purpose of this section is as follows. First, we show Lemma 2.2 by using
Proposition 1.3. Second, we obtain Theorem 2.5 by using Lemma 2.2. Third, we establish
the main injectivity results (Corollaries 2.8 and 2.11) as corollaries of Theorem 2.5.
These corollaries are key ingredients of the proof of the main results Theorem 3.2 and
Theorem 3.6 of this paper.

2.1. Some basic facts about surface groups and braid groups

We shall begin by recalling some facts about surface groups and braid groups (see, for
example, [15,24,25]). Let g > 0 and r > 0. Let R, be an r-punctured Riemann surface
of genus g, and for each n =1,2,... set

Fu(Ry,r) = RZT\ U au
1<i<j<n
where

Ai,j = {(xh. . ,xn) S R”glm | T; = (Ej}.

We denote by H‘,STLT)tOp the topological fundamental group 7\°®(F,,(Ry.),b) of Fy(Ry,.,)
with the base point b = (by,...,bn) € Fn(Ry,) and write IT}P for i)t

We fix g > 0,7 > 0, n > 1. For each j = 1,...,n + 1, the canonical projection
RD Ly R qefined by

J
filpr, - png1) = (p1,~7~7pn+1>
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Figure 1. Generators of Nr(bﬁztl()p(: H;?f+n) C P (Frg1(Rgr), (b1, -y bng1)) (2 H;Tﬁl)t(’p).
gives a locally trivial topological fibration. By means of topological homotopy theory, we
see that f; induces a short homotopy exact sequence

1— wiop (Rg,r\{b1, Z, bn+1}’ bj) — ﬁop(FnH(ngT)’ (b1, bny1))
T, o8 (B (R, (b1, b)) = 1. (220)

We shall denote the leftmost group

" (Rg’r\{bl’ z’ bnﬂ}’ bj)

of the above exact sequence (2.1) by Nr(iztf)p (~~ H;?f n)-

Let xgj), z,ij) El <i1<29,1<j<n+1,1<k<r+n+1, k+#r+j) be the canonical
generators of NnQ;Op (see Figure 1).

Let ¢ be a prime number. We denote the pro-¢ completion of I7, éflr)wp by Hg(?r) or P,
and write II, , for H;}). The exact sequence (2.1) of (discrete) groups induces one of
pro-£ groups

1 (f5)

1- N9, 5Py 2P (2.2)

n+1

(see [15, (1.2.2)]), where N7(1J21 means the pro-£ completion of Né{gtfp.
For1<:i<29,1<j<n+1,1<k<r+n+1andk # r+j, we identify a:l(j),z,ij) with
their images in Nflj_el and moreover with those in P, ;1. They make up a generating set of
P, +1. We remark that a presentation of P, is well known for n = 1,2,... [30]. We have
a natural central filtration {P,(m)}%°_; of P,, called the weight filtration (see [18, §1]
and [25, (2.3)]). We note that this filtration coincides with the lower central filtration
in the case r < 1 and n = 1. For m > 1, let gr'" P, denote the mth graded piece
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P,(m)/P,(m+ 1) of P, with respect to the weight filtration. The direct sum

Gr H =GrhP, @ gr' P,

m2>=1

becomes a graded Z-Lie algebra naturally.
The exact sequence (2.2) of pro-¢ groups induces one of graded Z,-Lie algebras

Grmy(f;)
E——

0— GrNY) = GrP,, GrP, =0 (2.3)

for j=1,...,n+1 (see [25, (2.8.1)]). We note that gr'™ P, is generated by
U gr'™ Nr(ﬂl
1< <n+1

as Zg-module for each m > 1 [25, (2.7)], and that Gr P,y is centre-trivial when 2 —2g —
r <0 (see [25, (2.8)]).

2.2. Some properties of Gr H(2)

Throughout this subsection, we consider Gr P, for g > 2 and r = 0 (namely, Gr P,
Gr H(2)) in detail. At first we recall a presentatlon of Gr P2 (25, (2.8.2)].

We denote 27 mod H(2)( 2) by x and z/ modH )(3) by ZU), where {j,j'} =
{1,2}. We remark that Gr N(j) ({X(J <i< Qg}> ‘We also note that Z(1) = Z(®
and denote this element by Z. Now, we have the following presentation of Gr Py:

generators: X7 Z (1<i<2g, 1<j<2), (2.4)
g
relations: > (X X ]+Z=0 (1<j<2), (2.5)
=1
X x67] = 0 (j#4,i<i andd #i+g), (2.6)
v Z (j#7,i<iandi =i+g).
Observe that (2.5) and (2.6) imply
XD+ xP.z1=0 (1<i<2g). (2.7)

For simplicity we shall denote Cg; p, (w) by ng) for w € Gr P,. We shall also abbre-
viate suffix signifying the second strand (e.g. NQ(2 = N>, Xi(2) = X, etc.) and write just
N for Ns.

Lemma 2.1.
(1) GrP,=GrN+C(Z).
(2) GrNNC(Z) = (Z)vee-

Proof. (1) Thanks to (2.7), it is easy to see that Xi(l) € Gr N + C(Z). Since Gr N is a
Lie ideal and C(Z) is a Lie subalgebra, the conclusion follows immediately.
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(2) Let T = {X7X;; n >0, 2g > ¢ > 2}. As GrN = L{X;; 1 < i < 2g}), b
the elimination theorem [6, Chapter 2, §2, Proposition 10], we have an isomorphism as
Zg-modules

GrN ~ (X1)Lic ® (T)Lies
and
<T>Lle — L<T>

Let V,,; (n > 0, 29 > i > 2) be mutually distinct variables and Ly := L(V,,;; 2 < i
2g, n > 0). Then we have an isomorphism as Z,-Lie algebras

N

0: L(T) — Ly,
g n—1
X1 X1+g = Vn JA+g — Z Z < ) Vu,ia anlfu,iJrg] (n 2 ]-)7
=2 v=0
X{X;—V,,; (otherwise),
whose inverse homomorphism is given in the following;:
g n—1
Viigg = = X1 X14g — ZZ ( ) (X7 X, X7 - "Xitgl (n21),
=2 v=0

Vi X7X; (otherwise).

Observed that 0(Z) = Vi 144 and ([ X1, Z]) = V2 144. Hence [X1, Z] is transformed to
an element of degree 1 in Ly and [W, Z] to one of degree greater than or equal to 2 in
Ly for any W € L(T). Thus

GrNNC(Z) c L(T)
or, equivalently,
Gr N NC(Z) = Cpiny(2).
Now, we have
O(GrNNC(Z)) = 0(Crry(2))

= CLV (‘/1,1+g)
= <V1,1+g>vec (Lemma 1.1),

whence
GrNNC(Z) = (Z)vees
which is the desired conclusion. O

Lemma 2.2.
(XM 4+ X)NGr N = (X;, Z)rie  for 1 <i < 2g. (2.8)
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Proof. We prove this in a similar way to Lemma 2.1(2), but here we have the extra
difficulty that X; + X(l) ¢ Gr N. Note that for each 1 < ¢ < 2g,

ad(XV + X;) : Gr N - Gr N,
Xj = [XnX‘] (J#i+9),

z-‘rg = Z L+g7 (7' S 9)7
=1 L;éz
Xi —g Z XLaXL-i-g (Z > g)'
v=1,1#i—g

We may suppose that ¢ = 1 without loss of generahty Since g > 2, we can apply
Proposition 1.3 to h = 2g, As,—1 = X,, Ay, = X4y 1< < g) and D = ad(X; + Xfl)).
Consequentially, we can prove this lemma. (Il

We denote the set {X;, Xy, Z} by S;iv.z.
Lemma 2.3. <Si,i’,Z>Lie = L<Siyilyz> (1 < ) 75 i/ < 29).

Proof. As g > 2, we may assume ,7' # 1 without loss of generality. Eliminating X
as in the proof of Lemma 2.1, it suffices to apply Lemma 1.2 to S = {Xq,..., X},
w=2T={X;, Xy}, 9 ={X7X,; 1 =2,...,29, n > 0}, A = -1, s = X1 X144,

= *Zfﬁ X Xitg 0

Lemma 2.4. Let i and ' be integers with 1 < i@ < 29 and 1 < i < 2g such that
i #Z 14 (mod g). Let m be an integer not less than 1. Let W; € (XZ, Z)Lie N gr™ L N,
Wi € (Xir, Z)1ie N g™t N such that

(Wi, Xo] + XV, Wi =0, (2.9)
If m # 2, then W; = Wy = 0. If m = 2, then W, + Wy € ([Z, X; — Xi/])vec-
Proof. At first, we note
Wi, Xir], [Xi(l),Wif} € (Siir,z)Lie

from (2.6) and (2.7). We denote {X]'X;, X'Z; n > 0} by Sx,, z. By Lemma 2.3 and
the elimination theorem [6], we have

(Si,ir,z)Lie ~ (Xi)Lie @ (Sx,/,2)Lie
and

(Sx,,,z)Lie = L(Sx,, z)- (2.10)

As m > 1, we notice
Wi, Xir), (X, Wa] € L(Sx., 2).
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The case m = 1. It is clear that (X;, Z)1ie Ngr’ N = (Xir, Z)pie N g2 N = (Z)yec-
Hence there are A, u € Zy such that W; = AZ and Wy = pZ. From (2.7) and (2.9), we
have

[Z, )\Xi/ + /LXi] =0.

By Lemma 2.1 (2), we have
A Xy +pX; € <Z>Vec~

Observing the difference of degrees in Gr P,, we have A\ = p = 0. Thereby we conclude
that VVz = Wi’ =0.

The case m = 2. Note that <Xi; Z>Lie ﬂgI‘3N = <[Z7 Xi]>vec and <Xi’7Z>Lie ﬁgr3N =
([Z, Xir])vec- Hence there are A\, € Zy such that W; = MZ, X;] and Wy = u[Z, X;/].
From (2.7) and (2.9), we have

A+ w2, Xi], Xi] = 0.
From Lemma 2.3, we have A + o = 0. Hence we have
Wi + Wy = N Z, X; — Xi],
as desired.
The case m > 3. From (2.10), we can define a Lie algebra homomorphism u as follows:
w: (Sx,, z)Lie = (Si,i",2)Lies

X?Xi/ — )(in)(i/7
X!'Z v Z.

By Lemma 2.3, we can define the canonical projection pg from (S; i/ z)Lie to
(all monomials of degree d with respect to Z in L(S; i z))vec-
Then we can see

0 = pa o u([Wi, Xir] + (XM, W)

. /\[Z7 X,L'/] —p1(Wi/) for some A\ € Zy if d =1,
—dpa(W;) otherwise.

Moreover, as m > 3, the total degree of p;(W;) in Gr N is greater than 4, unless
p1(Wy) = 0. Consequently, pg(Wy) = 0 for d > 1, which means W;; = 0. Hence
(Wi, X] =0 by (2.9). Applying Lemma 1.1 to L = Gr N ~ L(X;,...,Xo,) and s = X,
we have W; € (X;/)yec Ngr™T1 N = {0}, which completes the proof. O

2.3. Filtered injectivity

The purpose of this subsection is to show Theorem 2.5 by using results of §2.2 and
to prove Corollaries 2.8 and 2.11, which lead us to the main results Theorem 3.2 and
Theorem 3.6 of this paper.
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Notation

We define some Zg-modules as follows. For m > 1, set

Der’ (Gr P,)(m)

D(gr?Gr P,) C gr’™™ Gr P, (d > 1),
D(GrNW) c GrNY) (1< j<n),
D(Z,&j)) = [T,gj),Z,gj)] for some T,Ej) €gr™ P

(1<j<n, 1<k<r+n)

:=<¢ D € Der(Gr P,)

Here Z,(Cj) = z,gj) mod 17§ (3) (1 <j<n, 1 <k<r+n). Forn>1, set

Der’ (Gr P,) < U Der’(Gr P,)(m )> o~ @ Der’ (Gr P,)(m),

m>1 vec m>1

Inn(Gr P,) :={adT :GrP, - GrP, |T € Gr P, },
Out’(Gr P,) := Der’(Gr P,)/ Inn(Gr P,).

Note that each of the last three Zy,-modules is naturally endowed with structure of graded
Z¢-Lie algebra. The projection Grmi(f) : Gr P41 — Gr P, obtained by forgetting the
(n + 1)th strand, induces a graded Z,-Lie algebra homomorphism

Out’ Grm, (f): Outb(Gr Poi1) — Outb(Gr P,).

Theorem 2.5. If2 —2g —r < 0, n > 1, then Out’ Gry(f) is injective.

Remark 2.6. This map has already been studied by many predecessors. Thara proved
the injectivity when g = r = 0 and n > 4 [11] and surjectivity (the S,-fixed part) when
g=r=0and n > 5 [13]. Nakamura, Ueno and the author proved the injectivity in the
case 2 —2g —r < 0 and r +n > 2 [25, Theorem 4.3]. Tsunogai proved the surjectivity
when g > 1,7 =1 and n > 3 [32].

Proof of Theorem 2.5. Before we begin the proof, we would like to explain the main
difference between the proof for r+n > 2 in [25, Theorem 4.3] and the proof for r+n =1
given below. To prove the theorem, we need to profile D € Derb(Gr P, +1) which maps
to an inner derivation on Gr P, by the projection Grm(f). To do this, we may put the
extra condition that D is homogeneous, D(Gr P, 41) C Gr NT(LT[U and D(Z) = 0, where
7 = Z£”+1). When 7 +n > 2, we do so by using [Z, V] = 0 for any

Ve {x{™, .. xWzM ..z
However, whenr+n =1 (i.e. 7 = 0 and n = 1), we have [Z, V] # 0 for any Ve {X
X(l)} Thus, we resort to the relation [X(l) + X(Q) Z] =0 (1<1i<29) (2.7) 1nstead
As X @ 4 X; (@) does not belong to any ‘fibre subalgebra calculatlons are difficult. We
overcome thls difficultly by the elimination theorem on free Lie algebras. (See §2.2.)
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Now we enter into details about the proof in the case r+n =1 (i.e. (r,n) = (0,1) and
therefore g > 2). We follow the notation of §2.2. Let D € Der”(Gr P,) and assume that D
induces an inner derivation on Gr P; by Gr 71 (f). We shall prove that D is inner. We may
assume that D € Der”(Gr Py)(m) for some m > 1. As the map Inn(Gr Py) — Inn(Gr P;)
is surjective, we may assume D(Gr P2) C Gr N. Moreover, we may assume D(Z) = 0 by
means of Lemma 2.1 (1). We denote D(Xi(j)) by D; ; in this proof.

From (2.6),

(D1, Xo] + (XM, Div o] = 0, (2.11)

for any i, ¢'. By combining (2.7) with Lemma 2.1 (2),
Di,l + Di,2 S <Z>vec (]- <t < 29) (212)
The case m = 1. Observing the relations (2.5) and (2.6) of Gr P, we have

GrNY NGrN = Ker(Grmy(f)|ar y)
= (Z)v

where (Z) is the ideal generated by Z in Gr N(V), whence
gr? N A gr’ N = (Z)vec-

Hence D;1 € (Z)vec (1 < i < 2g) by the assumption on D. From this and (2.12),
D; 2 € (Z)yec (1 < i< 2g). Combining these with (2.7), Equation (2.11) can be regarded
as one in <Si,i’,Z>Lie~ Since g > 2, <Si,i’,Z>Lie = L<Si,i/,z> if 4 7& i/, by Lemma 2.3. Hence
Cs, 4 )uie(Z) 18 (Z)vec by Lemma 1.1. Considering the difference between the degree of
Z and those of X; and X,/ in Gr P2, we get D;1 = Dy o =0 (1 < i # i < 2g), because
X, and X,/ are linearly independent. Thereby,

Di71 = DZ',Q =0 (]. < ) < 2g)
Since Gr P, is generated by {Xi(l),Xi; 1<i< 29}, D=0¢€Inn(GrP).
The case m > 2. Using (2.12) and observing the degrees, D; 1 +D; 2 = 0 for 1 <1 < 2g.
Since (X9, XM 4 X,] =0 (1< <2, 1<i<2g) by (2.6),

Di; e C(XM +X)NGrN (1<j<2, 1<i<2g).

By virtueHere (C* — Mg, $1,- -, s;) is the universal family of proper smooth geomet-
rically connected curves of genus g with r disjoint sections {s1,--- , s, : My, = C*},C =
C* \ icp<rsu(Mg ), T = Mgy, is a geometric point and Cy is the geometric fiber at 3.

of Lemma 2.2,
D;;e(Xi,Z)ie (1<75<2,1<1<2g). (2.13)

By (2.11) and (2.13), we may apply Lemma 2.4 to W; = D, 1, Wy = D;s » and conclude
that for each 4, i’ such that ¢ #Z ¢’ (mod g),

D;1+ Dy o€ ([Xir — Xi, Z])vec when m =2, (2.14)
Di,l = Di/,g =0 when m = 3. (215)
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When m = 2, by (2.13) and (2.7), it can be checked that
Dij € (X7, Z))sec (2.16)

for j = 1,2. Hence there exists \; ; € Zy such that D; ; = \; ;[X?), Z]. From (2.14), (2.7)
and Lemma 2.1 (2), we have

Air o Xy — X1 Xy — (X — Xi) € (Z)vec
for some p € Zy. By the difference between the degree of X; and that of Z, we get
Airg = )\1,1(: 1)

if i 24 (mod g).
Now, when g > 3, we conclude that A\; ; = A1 (1 <i<2g,1<j<2)and

D = ad()\LlZ)
directly. When g = 2, we have

A1 =22 = Ag1 = A2,
A2 =A21 =A32 = Ag 1.

Since D(Z) = 0, we have

0 =D([X1, X3] + [X2, X4])
= [A1,2[X1, X3] + A2 2[Xo, X4, Z].

By Lemma 2.1 (2), we have
(A2 = 1) [ X0, Xa] + (Ag2 — ) [ X2, X4] = 0
for some p' € Zy. As Gr N ~ L(X;, X, X3, X4), we obtain
ALz = Aa(=4),

which completes the proof of the case m = 2.
When m > 3,
Di1=D;2=0 (1<i<2g)

from (2.15) together with g > 2, which means D = 0.
Thus, we have completed the proof. ([

Now we apply the above filtered injectivity for Lie algebras to show that for pro-£
groups.
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Notation
Forn>1,
FINDY e ND) (1< j<n),
I, :=1{ feAuth, F9 o 20 for some a € ZS (-
(1<j<n 1<k<r+n)
I,:=1I,/TomP,.

Forn>1landm > 1,

B fre | e o)
('~ € P,(2+ m)(z' € P,(2))

I, (m) :== (I,(m)Inn P,)/Inn P,,

gr™ I, == I, (m) /Ty (m+ 1),

(m)
gr’™ I, :=I(m) /I (m + 1).

Moreover,

Grl, = @ er’™ I,

m2>=1

has a natural graded Z,-Lie algebra structure, for {I},(m)}.,,>1 is central in I}, (1) (see
[25] and also [4, Theorem 2] and [18, Proposition 6(1)]). Note that I, is denoted by
r{" in [25).

Corollary 2.7. For n > 1, the Z,-Lie algebra homomorphism
Grl,y1 — Grly, (2.17)

induced by the projection P,4+1 — P, is injective.

Proof (see [25, (2.13)] and also [18, Lemma 5]). We have injective Z,-Lie algebra
homomorphisms

6:GrI, = Out’(Gr P,), (2.18)

for n > 1 (see [25, (2.13.2)]), compatible with the projection. Thus the assertion follows
from Theorem 2.5. U

Corollary 2.8. The continuous group homomorphism
i1/ Lhii(m) — I, /T, (m) (2.19)

induced by the projection P,+1 — P, is injective for each m > 1.
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Proof (see [25, (2.9) ~ (2.11)]. By using the relations of Gr P41 [25, (2.8.2)], we
see that I, acts diagonally on

grl Py ~ (gr1 Pl)@(”ﬂ).

Thus we have
Tost/Tuia(1) = T/ Tu(1). (2.20)

Now we have a commutative diagram

1——=gr™ 1 4>Fn+1/Fn+1(m+ 1) - n+1/Fn+1(m) —1

| | |

1 — g™, —> I /Tp(m+ 1) —— Iy /T (m) —— 1

for each m > 1, in which both rows are exact. Now, considering (2.17) and (2.20), we get
the conclusion by induction on m. (Il

We also have the injectivity result (Corollary 2.11) for the whole pro-¢ mapping class
groups. We shall begin with the following lemma.

Lemma 2.9. Let G be finitely generated pro-¢ group and {G(m)}m,>1 a central filtration
such that (1,5, G(m) = {1}. Let I be a subgroup of Aut G such that I'G(m) C G(m)
and I' > Tnn G. Denote I'/Tnn G (C Out G) by I'. Denote Ker(I" — Aut G/G(m + 1))
by f[m] and f[m]/(lnnGﬁ f[m]) by I'lm] form = 1,2,.... If Z(GrG) = {0}, then we
have

() Ilm] = {1}.

m>=1
Here Gr G is the graded Z,-Lie algebra induced by the central filtration {G(m)}m>1-
Proof. This lemma is a generalization of [2, Theorem 2], which treats the case where

{G(m)}m>1 is the lower central filtration. The proof of the lemma is done in the same
way as that of [2, Theorem 2| except for obvious modifications. O

Lemma 2.10.
() Lu(m) = {1},

m>1
forn > 1.

Proof. As mentioned after (2.3), Z(Gr P,) = {0}. Hence applying Lemma 2.9 above to
G = Py, G(m) = P,(m) and I' = I', for m = 1,2,..., we have (1,5, In[m] = {1}. As
I,(m) C I'y[m], the lemma follows. O

Corollary 2.11. The continuous group homomorphism
Fn+1 — Fn

induced by the projection P, 41 — P, is injective.
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Proof. Combining Corollary 2.8 and Lemma 2.10 (for n+ 1), we complete the proof. [

Remark 2.12. We can consider a discrete situation by substituting the topological
mapping class group I:°P for the pro-¢ mapping class group I,. In exactly the same way
as the pro-¢ situation, IT éﬁ«)mp has a central filtration called the weight filtration and it
induces a filtration {I2°P(m)},,>1 on 1P (see [5, (2.1.1), (2.1.6)]). The results of this
section also hold in the discrete case except possibly for Corollary 2.11. For the present,
the validity of the analogue of Corollary 2.11 in the discrete case is unclear, since we do
not know whether
() Iiop(m) = {1}

m2>=1

or not in general. (It is known that it is true when n = 1 and (g,r) # (2,0) (see [3,
Proposition 2]).)

3. Galois representations and universal monodromy representations

The purpose of this section is to show the main independency theorems of this paper.
One (Theorem 3.2) extends and completes previous results by Thara and Kaneko (see [11,
Galois Kernel Theorem] and [15, Theorem 2]) and the other (Theorem 3.6) almost verifies
Oda’s prediction on pro-¢ universal monodromy representations [28].

In this section we continue to employ the notation in the previous section.

Let k be a subfield of C and C a (g, r)-curve over k (i.e. smooth separated geometrically
irreducible curve over k such that its smooth compactification C* has geometric genus g
and the number of k-rational points on C* \ C is 7). As we have seen in (0.4), to each
n 2 1, we can attach the following continuous group homomorphism

(pro-£)
/)}45;,2)0)/1@ : G — Out P,.

For simplicity we denote pgr?g)) Ik by ¢, in the rest of this paper. We denote by

the fixed subfield of k by Ker ¢,,. Let k' be the compositum of the residue fields of the
points of C* \ C, which is a finite Galois extension of k. Then we can see that the image
of Gy under ,, is contained in the pro-¢ mapping class group I, as follows: for o € Gy
and 1 < j < n, ¢,(0) preserves N,(Lj ) by the functoriality of m; and the definition of
¢n- By means of the branch cycle argument, ¢, (o) maps the inertia generator z](3 ) to a
conjugate of z](?)XZ(U) (1 < j" < r+n), where x¢ : Giv — Z; is the f-adic cyclotomic
character. Hence ¢, (Gy/) C Iy.
Then we obtain the following field tower {kgl)(pm_e) (m)}m>1:

k(-0

k(éz)(pm—l)(m) — fen  (Tn(m)
Another kind of field tower {Q_E,T,Q(pro'[) (m)}m>1 (defined by Thara, Oda and Nakamura;

see §0) is obtained by considering the universal family of curves instead of a single curve.
Let 2—2g—r < 0 and Mg ,- be the moduli stack over Q of smooth geometrically connected
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curves of genus g with disjoint ordered r sections. In [29], Oda developed a theory of
fundamental groups of algebraic stacks and showed that there are two exact sequences

1= m(M,, @9 Q) = m(M,,) 225 Gg — 1, (3.1)

and, for each n > 1,
1= m(Fr(Cy)) = m(Mgryn) = m1(Mg,) — 1. (3.2)
Here (C* — Mg, s1,...,5,) is the universal family of proper smooth geometrically
connected curves of genus g with r disjoint sections {sy,---,s, : Mgy, = C*}, C =
C'\[icrer 86(Mgr), ¥ — Mg, is a geometric point and Cy is the geometric fiber at 3.
As in the case of a single curve, (3.2) induces a continuous homomorphism
@g’fﬂ(pm'a :m(Mg,) = Out Py,

(pro-0)

called the pro-¢ universal monodromy representation, and Im@é@ is also contained

in the pro-¢ mapping class group I,. Then the filtration {I7,(m)},,>1 induces the fol-
lowing tower of fields:

Q c Q(n pro-£) ( ) .C Q(n pro- Z)( ) C.oC QS(]?T}(pro—E) c Q’
where
QUErD) (1) = QPar (@G ) T (T (m)) (m>1)

and

@(n pro-£) qu »(Ker qs(n)(r)ro e))

Just as in §0, in what follows we shall often omit the superscript (1) expressing one
dimension.

Roughly speaking, g}m'é) is the maximal subfield of k:g) ) which does not depend
on the moduli of the (g,r)-curve C.

Remark 3.1.

(1) By Lemma 2.10 and the higher-dimensional version of [25, (6.6)], we can prove

n)(pro— U k(n prof )

m2>1

and

n)(pro— U Qq, prol )

m2>1

(2) By extending [25, (6.4)] to higher-dimensional cases, we can prove

Q(n pro- Z)( ) C kgl)(Pro—é) (m) (m > 1)
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(3) By definition, we have

n)(pro-£ n)(pro-¢
Qe (m) = @FYP " (m)  (m > 1),

(4) (See [25, (6.4)].) We have

Qe me ) k) (=) (3.3)
C/k:(g,r)-curve,
[k:Q]< oo
and
Q‘{(];)):o—é) c ﬂ k(cl?ro-é). (34)
C/k:(g,r)-curve,
[k:Q] <o

The author does not know whether or not the equality holds in (3.3), (3.4).
Theorem 3.2. Suppose that C' is hyperbolic. Then, forn =1,2,..., we have
(1) kPO (m) = kPO m) (> 1),
In particular,

n)(pro-¢ n-+1)(pro-¢
(2) KO0 _ gt D(oro-t)

When r +n > 2, (2) has been proved in [15, Theorem 2] (under the assumption
3 —2g —r —n < 0, weaker than the hyperbolicity assumption 2 — 2g — r < 0).

Proof. The following commutative diagram exists

Fn+1 —— Fn-i-l/Fn-i-l(m)

d

G (m > 1),

AN

r,—1I,/I(m)

where vertical maps are induced by the projection P,1; — P,. The commutativity of
the diagram is due to the functoriality of m; and the definitions of pro-¢ mapping class
groups and their weight filtrations. By virtue of Corollaries 2.8 and 2.11, vertical maps
are both injective. The conclusion follows from this and ¢, 1 (I3,) = G . O

Remark 3.3. According to [15], we have assumed that k is a subfield of C. However
the same statement is still true when k is any field of characteristic 0. Indeed, choosing a
suitable model and using various standard arguments, we reduce the proof for the general
case to the case where k is a subfield of C.
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Theorem 3.4. Suppose that 2 —2g —r < 0. Then, forn =1,2,..., we have

n)(pro-£ n—+1)(pro-£
(1) QP (m) = QP (m) (m > 1).
In particular,

(2) QEre-D _ glrnpro-0)
When r +n > 2, the theorem has been proved in [25, Corollary (4.4)].

Proof. As in the case for the proof of Theorem 3.2, the following commutative diagram

exists:
Fn+1 —_— Fn+1/Fn+1(m)
71'1(ng7~) (m 2 1).
I, —1T1,/I(m)
Now Corollaries 2.8 and 2.11 complete the proof. O

Theorem 3.5. Suppose that g > 2 and n > 1. Then, for r > 0, we have
n)(pro-£) n)(pro-£)
(1) Q2P (m) = QY™ () (m > 1),
In particular,

n)(pro-£ n)(pro-£
(2) QA0 = e,

When r 4+ n > 2, the theorem has been proved in [25, Theorem B(1)].
Proof. This is a direct consequence of Theorem 3.4 and [25, Theorem B(1)]. O

Theorem 3.6 (Oda Prediction). If 2 —2g —r < 0 and n > 1, then we have the
following.

(1) {Q(") pros /)( )}m>1 is independent of (r,n) and almost independent of (g,r,n) in
the following sense:

ro-¢ n)(pro- ro-4
PO (m) > QIE0 (m) 5 QI (m),
QP (m) = QD (m)], [QL) PO (m) : QP> (m)] < oc.

(2) nglr)(pm'e) is independent of (g,r,n).

Proof. The conclusion follows immediately from Theorem 3.4 and Theorem 3.5 together
with known results (see [25, Theorem B], [22, Theorem A] and [16, Theorem 3B]). O
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4. Images of Galois groups and mapping class groups

In this section we present applications of Theorem 3.6, which generalize [22, §4] to the
case of proper curves. Let ¢ be a prime number and C' a hyperbolic (g, r)-curve over a
number field k. For a Z,-module M, we denote M ®gz, Q¢ by Mg,.

Notation

For each m > 1, set

gri ™ Go == Gal(QPr>? (m + 1)/QFr" (m)),
gl Gy = Gal(kg’m‘” (m + 1)/k&"0 (m)).

Corollary 4.1. dimg, (grC Gr)g, > dimg, (grg}gn Go)g, (m > 1).

Proof.

Lemma 4.2.
(el Go)g, = (g Go)a,  (m = 1).

Proof. Immediate from Theorem 3.6. O
As Qgr (pro-£) ( ) C ko (pro-£) ( ) (Remark 3.1(2)), there exists a natural Qp-linear map
o™ (ere™ Gu)o, = (& Godo, (m>1).

Lemma 4.3. The map q’)[é](m) is surjective for each m > 1.

Proof. The proof of this lemma for hyperbolic (g, r)-curves with r > 0 is in [22, (4.5)].
It works just as it is for r = 0. (]

Corollary 4.1 is a direct consequence of the above two lemmas. O
Remark 4.4. For the value of r,,, = dimg, (gr([f];n Gg)q, the following are known:

>1 ifmiseven and m # 2,4,8,12, [9,10,12,19],
T
"1=0 otherwise,

Tom — 00 as m — oo [19].

Moreover, it is conjectured by Deligne and Thara (respectively proved by Hain and Mat-
sumoto [9]) that the graded Q-Lie algebra

llm
P (erbs" Goa,

m>1
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is generated freely (respectively generated) by certain elements 04,42 € (grg’]:;1 e Go)o,

(m > 1), called ‘Soulé elements’. This conjecture gives a (conjectural) formula for the
exact value of r,, [14, (4.2)]:

= L () (St -1 ),

d|lm i=1

where a; (1 < i < 3) are the roots of 3 — z — 1. For the value of r,, for m < 20
(see [22, (4.3)]).

Finally, we shall give an application of Lemma 4.2 to pure topology. Here we follow
the notation of Remark 2.12. We have a natural homomorphism

Tm X7z QZ : (grm Ffop) Xz QZ — (grm Fl)Qz7

where
g™ I{ i= I{ (m) /T{ (m + 1),

This homomorphism essentially coincides with the Johnson—-Morita homomorphism 7,
tensored with Qg (see [5,22]). By [3, Theorem B], we know that Ker(7,,, ®7 Qp) is trivial.

Corollary 4.5. Form > 1,
dimg, Coker(7,, ®z Q¢) = 7,

where r,, = dimg, (gr%{ly Gqg)q,- In particular, if m # 2,4,8,12 and m is even, then
Tm Q7 Qp is not surjective.

Proof. The affine case has been proved in [22, (4.8)]. The proper case can be proved in
the same way by using Lemma 4.2 and Remark 4.4. O
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