
Modeling and solving technical product
configuration problems

ANDREAS FALKNER, ALOIS HASELBÖCK, GOTTFRIED SCHENNER, AND HERWIG SCHREINER
Siemens AG Österreich, Corporate Technology Central and Eastern Europe, Research and Technologies, Wien, Austria

(RECEIVED April 4, 2010; ACCEPTED October 29, 2010)

Abstract

This paper describes and evaluates approaches to model and solve technical product configuration problems using different
artificial intelligence methodologies. By means of a typical example, the benefits and limitations of different artificial in-
telligence methods are discussed and a flexible software architecture for integrating different solvers in a product config-
urator is proposed.

Keywords: Artificial Intelligence; Constraint Logic Programming; Constraint Satisfaction; Product Configuration; SAT

1. INTRODUCTION

Product configurators have a long history in artificial intelli-
gence (AI; Sabin & Weigel, 1998; Felfernig, 2007), the first
and most famous example being the rule-based configurator
R1/XCON system (McDermott, 1982) for DEC-Computer. To-
day there are several established vendors of commercial config-
urators based on AI methods (SAP, Oracle, ILOG, Tacton, Con-
figIt, etc.). Nevertheless, many products especially in technical
domains are configured by engineers using in-house software
without AI technology. A reason for this may be that there is
little literature available on how to use AI methods specifically
for product configuration. Therefore, this paper aims at read-
ers with only limited AI background, who are interested in
how to model and solve product configuration problems using
AI methodologies. For the AI experts it provides insight into
how to map a problem between the different paradigms (logic
programming, object oriented, constraint based) and proposes a
flexible software architecture for product configurators.

Product configurators for technical artifacts pose other chal-
lenges than product configurators for customer products. Cus-
tomer products are typically designed for easy configurability
and can be configured by the average customer. Configuring
technical systems often requires an engineer with high domain
knowledge. Depending on the business domain, various struc-
tural, physical, and chemical constraints, and so forth on the

assembly of the system or product may arise. With their depen-
dencies between several system components, those constraints
can get quite complicated. Although algorithms for general-
purpose solvers have been significantly improved over the
last years (e.g., Cooper et al., 2008), they turn out to be too in-
efficient in many cases (Mayer et al., 2009). Then, problem-
specific implementations seem necessary. Unfortunately, they
also have drawbacks: their maintenance and adaptations to
changing requirements are more difficult; often they require
deep insight into the nature of the problem that an average
knowledge engineer does not necessarily have.

Fortunately, over the last years many (often free) solvers
suitable for real-world applications have been developed. In
contrast to the monolithic AI systems of the past there is a trend
to integrate relatively small specialized AI tools within conven-
tional software systems. A typical example is SAT4J, a satisfia-
bility library, which ships with every instance of the Eclipse in-
tegrated development environment (IDE) and is deployed on
millions of computers. Most of the users of the Eclipse IDE
are even unaware of the AI technology inside of Eclipse.

In the rest of this paper we show a typical product config-
uration problem as an example for such kinds of real-world
problems as well as corresponding solution approaches using
different AI methodologies. Section 2 describes a technical
product configuration problem. Although seemingly simple,
it poses hard efficiency demands on the solving process. In
Section 3 an object-oriented model of the problem is derived
and some of its properties are analyzed using Unified Model-
ing Language (UML)/Object Constraint Language (OCL),
Alloy, and generative constraint satisfaction problem CSP.

Reprint requests to: Gottfried Schenner, Siemens AG Österreich, Corpo-
rate Technology Central and Eastern Europe, Research and Technologies,
Siemensstraße 90, A-1210 Wien, Austria. E-mail: gottfried.schenner
@siemens.com

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 115–129.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000570

115

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

In Section 4 we present and evaluate different approaches for
solving configuration problems. Section 5 gives a summary
of the results and arrives at the conclusion that the challenge
for the knowledge engineer consists not only in choosing the
right solver(s) for the problem, but also in how to integrate the
different solvers into one coherent system. Finally, Section 6
answers that question and proposes an architecture for inte-
grating different solvers into a product configurator frame-
work.

2. PROBLEM DESCRIPTION

The first step for developing a product configurator is the
specification of the customer requirements, that is, the prop-
erties of the configurable product. As an example we use a fic-
titious people-counting system for museums. The structure of
the problem is similar to problems we encountered in differ-
ent real-world domains of our product configurators.

A museum has lots of rooms, and there are doors between
some of them. In order to prevent damage to the objects in exhi-
bition, the number of visitors shall be restricted. This is done by a
people-counting system that consists of the following compo-
nents: door sensors, counting zones, and communication units.

A door sensor detects everybody who moves through its
door (directed movement detection). There can be doors with-
out a sensor.

Any number of rooms may be grouped to a counting zone.
Each zone knows how many persons are in it (counting the
information from the sensors at doors leading outside of the
zone—doors between rooms of the zone are ignored). Correct
function requires that all doors leading outside a zone have a
sensor (the corresponding constraint is not part of this prob-
lem). Zones may overlap or include other zones, that is, a
room may be part of several zones.

A communication unit can control at most two door sen-
sors and at most two zones. If a unit controls a sensor that con-
tributes to a zone on another unit, then the two units need a
direct connection: one is a partner unit of the other and vice
versa. Each unit can have at most N partner units. For the
sake of simplicity, we use N¼ 2 throughout this paper, whereas
higher values for N are more common in real-life problems
of this kind. Of course, the problem diminishes or even van-
ishes when N is chosen sufficiently high or unbounded, but
we assume technical reasons inhibiting high values.

PartnerUnits problem: Given a consistent configuration of
door sensors and zones, find a valid assignment of units
(i.e., a maximum of two partners) striving for a minimal
number of units.

Example 1: Rooms 1 to 8 with doors, eight of the doors
having a door sensor, for example, there is a sensor be-
tween rooms 1 and 2, or 3 and 4, but not between 2 and 3
(Fig. 1).

Given zones: 1 (white), 2378 (light gray), 45 (dark gray), 6
(medium gray), 456, 2367, 2345678. They are consis-

tent to the door sensors because all doors without sen-
sors are only inside zones. The sensor between 7 and
8 is ignored for zones 2378 and 2345678, but necessary
for zone 2367.

The door sensors are named D01, D12, D26, D34, and so
forth for the rooms that they connect (and 0 for the outside,
respectively). The zones get their names from the rooms
that they contain: Z1, Z2345678, Z2367, and so forth.

The relation between zones and door sensors, which is rep-
resented as a bipartite graph, is shown in Figure 2. A minimal
solution using only four units is, for example, solution 1 in
Table 1.

For small examples (i.e., less than six sensors and six
zones), it is easy to find a solution. If the number of sensors
for each zone is less than three and vice versa, a trivial but far
from minimal solution would be to put each zone and each
sensor onto a separate unit.

For bigger configurations, the constraint of maximal two
partner units makes the problem hard. For example, adding
zone Z23 (and new sensor D27) has no solution at all. How-
ever, adding Z18 to the free position on unit 4 is a solution.
Even adding Z4 (and new sensor D45) has a solution with
the minimally achievable number of five units, for example,
solution 2 in Table 2.

Fig. 2. The relation between zones and door sensors in example 1.

Fig. 1. The room layout of example 1.

A. Falkner et al.116

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

In addition to finding a consistent solution to the Partner-
Units problem, the following questions may be asked:

† What is the minimal number of units needed? Clearly,
the absolute minimum is the smallest integer greater or
equal to the half of the maximum of the number of zones
and the number of door sensors. However, we do not
know whether there is always a solution with such few
units.

† Given a partial assignment (i.e., not all sensors or zones
have a unit yet), is there a valid extension?

† Reconfiguration: what is the minimal set of changes to
already assigned units, so that a valid extension is possi-
ble? For example, given solution 1, add Z4 (and new sen-
sor D45) and find a solution with minimal differences to
solution 1, that is, change as few assignments to units as
possible.

This paper concentrates on finding (preferably minimal) so-
lutions. The other topics are subject to further research.

3. MODELING

After collecting the customer requirements of the product to
be configured, the configurator designer must choose an ap-
propriate language and tool for modeling the problem. A
model consists of the representation of the configuration com-
ponents as well as constraints and rules defining valid solu-
tions. For many technical domains, the models get complex
and large, so that a high-level modeling language is required.
It provides for an easy, natural, and elegant problem descrip-
tion, supporting readability, validation, and maintainability
of the model.

We demonstrate the modeling of the PartnerUnits problem
prototypically by three languages: UML/OCL (http://www.

omg.org/spec/UML/2.3, http://www.omg.org/spec/OCL/2.2),
widely used as analysis and design specification language,
Alloy (Jackson, 2002), a first-order logic language well suited
for associations, and generative CSP (Fleischanderl et al.,
1998; Gottlob et al., 2007), which allows the formulation of
dynamic problems like configuration as CSPs. For brevity rea-
sons, we do not cover description logics in this article. Descrip-
tion logics is prominent for the formal representation and rea-
soning on the concepts of complex knowledge networks and
is a wide research field in AI (see, e.g., Baader et al., 2003;
Felfernig et al., 2003).

3.1. UML/OCL

UML class diagrams (Fig. 3) are a common way to describe
the structure of a system in object-oriented modeling. The pri-
mary use of UML diagrams is to communicate the model vi-
sually inside a software project. In combination with OCL it
is also expressive enough to describe product configuration
(Felfernig et al., 2002).

The UML diagram shows a class diagram derived from the
description. It contains the cardinality constraints, but there is
no way to express the fact that the partner units association is
derived from the path over the zone2sensor relation inside the
class diagram. It must be expressed using an OCL constraint:

context ComUnit inv:
myPartnerUnitsSensor = sensor.zone.unit
-.excluding(self)-.asSet() and

myPartnerUnitsZone = zone.sensor.unit
-.excluding(self)-.asSet() and

myPartnerUnitsSensor-.union
(myPartnerUnitsZone)-.size() ,= 2

Let myPartnerUnitsSensor be the set of units reachable from
a unit by navigating from its sensors to the zones and then

Table 2. A minimal solution of extended example 1

Unit Zone1 Zone2 Sensor1 Sensor2 Partner1 Partner2

U1 Z1 Z2345678 D01 D78 U2 —
U2 Z2367 Z45 D12 D56 U1 U3
U3 Z2378 Z6 D34 D67 U2 U4
U4 Z456 Z4 D26 D36 U3 U5
U5 — — D45 — U4 —

Table 1. A minimal solution of example 1

Unit Zone1 Zone2 Sensor1 Sensor2 Partner1 Partner2

U1 Z1 Z2345678 D01 D56 U3 U4
U2 Z2378 Z456 D34 D67 U3 U4
U3 Z45 Z6 D26 D36 U1 U2
U4 Z2367 — D12 D78 U1 U2

Modeling technical configuration problems 117

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

their units (sensor.zone.unit), and let myPartnerUnitsZone be
the set of units reachable by navigating from the zones to the
sensors and then to the units (zone.sensor.unit). Then the
cardinality of the union of myPartnerUnitsSensor and
myPartnerUnitsZone (not counting the unit itself) must not
be greater than 2.

Although UML/OCL is widely used in software engineer-
ing projects especially for the model driven architecture ap-
proach, there are few tools available that actually support rea-
soning with UML/OCL.

One example is the UML-based specification environment
USE (Gogolla et al., 2008). It allows the creation of example
configurations (called snapshots in USE terminology) and
checks the validity of the examples in relation to the UML/
OCL specification.

3.2. Alloy

Alloy is a lightweight specification language and tool (Jack-
son, 2002). The language of Alloy, which is a combination of
first-order logic and relational calculus, is relatively easy to
learn and use (compared to other specification languages).
Using the Alloy Analyzer tool, instances satisfying the spec-
ification can be found and assertions about the specification
can be checked within a given scope. An Alloy specification
of the PartnerUnits problem looks like this:

module PartnerUnits
sig Zone {
zone2sensor: set DoorSensor

}
sig DoorSensor {}

fact cardinalities_zone2sensor {
all z:Zone | #z.zone2sensor . 0

// at least 1 sensor for zone
all d:DoorSensor | #d.~zone2sensor . 0

// at least 1 zone for sensor
}
sig ComUnit {
unit2sensor: set DoorSensor,
unit2zone: set Zone,
partnerunits: set ComUnit

}
fact cardinalities_unit2sensor {
all u:ComUnit | #u.unit2sensor ,=2

// at most 2 sensors for a unit
all d:DoorSensor | #d.~unit2sensor = 1

// 1 unit for a sensor
}
fact cardinalities_unit2zone {
all u:ComUnit | #u.unit2zone ,=2

// at most 2 zones for a unit
all z:Zone | #z.~unit2zone = 1

// 1 unit for a zone
}
fact derivedassoc_partnerunits {
partnerunits =

unit2zone.zone2sensor.~unit2sensor +
~(unit2zone.zone2sensor.~unit2sensor)
-iden

}
fact cardinalities_partnerunits {
all u: ComUnit | #u.partnerunits ,= 2

// at most 2 partner units
}

The sig definitions of the Alloy specification correspond to the
UML class definitions. An expression like zone2sensor denotes
the binary relation between Zone and DoorSensor. The symbol
“� ” denotes the inverse of a relation, that is, � zone2sensor is
the relation from DoorSensor to Zone. The dot operator denotes
the relational join: for example, a navigational expression like
unit2zone.zone2sensor evaluates to a binary relation that re-
lates the units to all sensors that belong to a zone of the unit.

Fig. 3. UML diagram of class PartnerUnits.

A. Falkner et al.118

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

Using Alloy as an instance (model) finder, we can analyze
the specification. Suppose we want to verify whether the
specification allows the existence of partner units at all. By
executing

run {some u:ComUnit | #u.partnerunit = 1 } for 4

Alloy finds all instances of the specification (within the scope,
in this case up to four instances for every class) that contain at
least a unit with exactly one partner unit. If no instance is found,
we know that we made an error, for example, by overconstrain-
ing the specification. If unexpected instances are found then
there are still constraints missing. This is very useful to detect
inconsistencies in the knowledge base at an early stage.

Furthermore, we can check assertions about the specifica-
tion that may lead to additional constraints. For instance, it is
easy to conclude that any configuration containing a zone
with more than six door sensors is inconsistent. We can prove
this assumption (within the given scope) by checking the fol-
lowing assertion:

check { all z: Zone | #z.zone2sensor ,= 6 }
for 10 but 5 int

Alloy tries to find a counterexample, but because the asser-
tion is valid, it does not succeed. Because the problem is sym-
metric for zones and sensors, there cannot be more than six
zones for a sensor as well. Therefore, the cardinalities of
both sides of the zone2sensor association can be restricted
to 1..6 (from 1..*). Deriving cardinality restrictions from an
UML model is an area of active research (Falkner et al., in
press). Such restrictions are very valuable for ruling out in-
consistent requirements (such as in the classical pigeon-
hole problem) at an early stage of the configuration process.

3.3. Generative constraint satisfaction

Constraint satisfaction is widely used to represent and solve
configuration problems. A CSP in the classical sense consists
of a fixed set of variables and their domains, as well as con-
straints that restrict the assignment of the variables. A valid so-
lution is an assignment of all variables with values from their
domains where all constraints are satisfied. A formulation of
the PartnerUnits problem as a standard CSP using the open
source constraint library Choco can be found in Section 4.9.

In our problem, zones and door sensors are input values
and therefore fixed, but the number of communication units
is not. Thus, the formulation as a generative CSP instead of
a classical, static CSP is appropriate (Fleischanderl et al.,
1998; Gottlob et al., 2007).

The modeling of our problem in a generative configurator
framework looks like this: zones, door sensors, and commu-
nication units are the component classes.

class Zone
class DoorSensor
class ComUnit

Each class represents a theoretically infinite set of instances
(i.e., components). A class can have attributes, associations,
and constraints. Whenever a new instance of a class is created,
instances of its attributes, associations, and constraints are
created also. This is the object-oriented view of the modeling.

From the constraint-oriented point of view, attributes and
associations represent the variables. The domain of an attri-
bute variable is its type, for example, Boolean, an integer inter-
val, and so on. Associations are bidirectional and induce two
association variables, one for each side. The domain of such
an association variable is the set of all instances of the class
specified on the other side of the association. For example,
the association definition

assoc Zone.unit(1) - ComUnit.zones(0..2)

represents the connection of zones to units. The two associa-
tion variables induced are Zone.unit (the link from a zone to
its unit) and ComUnit.zones (the link from a unit to all its as-
sociated zones). Allowed cardinalities are given in brackets.
Implicit constraints check that all instances associated to an
association variable are of the specified type (e.g., ComUnit
for Zone.unit) and that the given cardinalities are not violated
(e.g., Zone.unit must contain exactly one instance).

The set of all associations in our problem are the following:

assoc Zone.sensors(1..*)
- DoorSensor.zones(1..*)

assoc Zone.unit(1) - ComUnit.zones(0..2)
assoc DoorSensor.unit(1)

- ComUnit.sensors(0..2)
assoc ComUnit.partnerunits(0..2) - self

A constraint in the context of a ComUnit instance specifies
which elements are to be in the partnerunits association of
that unit. These are all units reachable via its zones and its
sensors, where the unit itself is not member of the association.

constraint ComUnit.derivedPartners :
Partnerunits = zones.sensors.unit
+ sensors.zones.unit - self

Typical tasks in a CSP are to decide whether a given problem
has a solution, to find a valid solution (i.e., consistent as-
signments to the variables Zone.unit and DoorSensor.unit),
and to find a good/optimal solution (i.e., one with few or a
minimal number of units).

Generative CSP is well suited for the modeling of config-
uration problems because of its object-oriented touch (natural
and maintainable formulation of the problem structure), its
constraint-orientedness (declarative formulation of the prob-
lem logics), and its dynamicity. Suitable solvers (e.g., back-
tracking, heuristic repair, SAT) can easily be integrated.

4. SOLVING

In this section we investigate different solving strategies for the
PartnerUnits problem. As there is a huge number of solving and

Modeling technical configuration problems 119

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

search algorithms available as tools and in the literature, we se-
lected a variety of typical proponents, trying to cover a wide
spectrum of distinct approaches. Of course, this selection cannot
claim to be exhaustive. Our aim was to apply existing tech-
niques/tools and analyze their practicability to our problem.

The main questions are the following:

† How easy is it to apply a particular solver to our problem?
† How easy is the mapping of a high-level problem de-

scription to a particular solver?
† How powerful and efficient is the solver on our problem?

We used the techniques/tools in a straightforward way with-
out trying to invent new or improved solving algorithms, taking
over the role of an average knowledge engineer who wants to
use existing AI technology and adjust it to her/his needs.

4.1. Backtracking search

Backtracking is a well-established technique for generating
one or all solutions of a CSP by incrementally finding assign-
ments to the variables, ruling out branches where constraints
are violated. In case of a dead end, the chronologically last
choice is retracted and another option is investigated.

There are two spots to control which branches are visited in
which order: choose the variable that is to be assigned next;
choose the value for the current variable from its domain.
For good performance, it is important to find a statical or dy-
namic order that recognizes and prunes inconsistent branches
as soon as possible. There are several established heuristics
that are known to perform quite well, for example, for vari-
able ordering: dynamic search rearrangement, preferring vari-
ables with a minimum number of consistent values; for exam-
ple, maximum cardinality ordering for values (see Dechter &
Meiri, 1989).

Domain-specific heuristics are promising as well. For in-
stance, sort the variables so that zones and door sensors that
belong together are handled consecutively, increasing the
chance that zones and their sensors are placed on the same
communication unit.

Beside the simplicity of the backtracking algorithm, the
main advantage is its completeness: if there is a solution to
a problem, backtracking will find it. It can also find all solu-
tions, if necessary. However, the price is high computational
costs. Big problems with complex dependencies usually can-
not be solved with backtracking.

There are improved backtracking algorithms (such as back-
jumping or backmarking), but they are not as easy to imple-
ment as basic backtracking, and they normally do not improve
the applicability of backtracking by orders of magnitude.

Symmetry breaking is another way of improving the per-
formance. It tries to avoid choices that are symmetrical to al-
ready made choices that have been proven to be invalid (see,
e.g., Gent et al., 2006). To find and represent all symmetries
in a configuration problem is usually a complex task. How-
ever, often the main symmetries are easy to find and avoid.

In our problem, the following symmetries are already ex-
cluded by the choice of representing the problem: it does
not matter if a zone is connected to the first or second
zone-port of a communication unit. We do no represent com-
munication ports, but only the connection of the zone to the
unit. The same is valid for the connection of a door sensor
to the communication unit.

However, another symmetry can easily be identified. If a
zone or door sensor is to be connected to a unit, all units that
are not yet connected to another zone/door sensor, are symmet-
rical. If we can prove that one of them does not lead to a solu-
tion, we know it for all the others. We exploit this symmetry by
removing all units from the domain of the current variable that
are not used yet, keeping just one of them. This is a consider-
able improvement and allows for tackling larger problems.

4.2. Generative backtracking search

The classical form of backtracking is able to solve static prob-
lems, where all variables and domains are known beforehand.
For solving the dynamic PartnerUnits problem with back-
tracking, an iterative widening approach can be used.

Create a minimal number of communication units and try
to solve this now static problem with classical backtracking.
If backtracking does not find a solution, add a new unit and
try again to search with backtracking. Do this until a solution
is found or the maximum number of units is reached.

The minimum amount of units is obviously

min ¼ max zonesj j, sensorsj jð Þ
2

because each communication unit can take up to two zones/
door sensors. A generous upper bound is

min ¼ zonesj j þ sensorsj j:

This simple iterative widening backtracking approach guaran-
tees to find a solution, if one exists, and furthermore, it finds
the solution with the minimum number of units. However,
keeping in mind that backtracking often performs quite badly
on problems with no solution (because the whole search tree
is traversed), we cannot expect high efficiency on hard prob-
lems, where the minimum number of units is not sufficient.

We could use a lower value for max (e.g., minþ 2) in order
to iterate less, but would lose completeness of search (unless
there is a proof that whenever a solution exists, there is also a
solution for that lower value, e.g., min in the optimal case).

A variant of this approach is to create the maximum num-
ber of communication units and guide backtracking search so
that the assignment of a so far empty unit to the current vari-
able is delayed until all other domain values of that variable
lead to a conflict. When a solution is found, remove all un-
used units. This algorithm is easy to implement and complete,
but it does not guarantee that the first solution found is a mini-
mal one. Another disadvantage is that the implementation of

A. Falkner et al.120

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

sophisticated domain-ordering heuristics is difficult because
of the fact that unused units are to be delayed.

Another approach is generating components during search.
It modifies the static backtrack search so that in certain situa-
tions new components are generated. In our problem, we add
a special wildcard domain value new-unit to all domains of
our unit variables of the zone and door sensor components.
If this value is selected, a new unit is generated and used.
This new-unit value is added at the end of each domain, which
means that new units are generated only if the current set of
units is not sufficient. If a new unit is generated but a dead
end is reached, the new unit is destroyed.

The usage of wildcard components is very similar to the
semifinite sets described in Albert et al. (2008), where possibly
infinite domains are made quasifinite inventing such wildcards.

This generative backtrack search with wildcard compo-
nents needs no initial units generated, because the units are
created during search. It is complete, but it is not guaranteed
that the first solution found is a minimal one. It depends on
which branches are investigated first. It could be that the
only way out of a dead end situation is the generation of an
additional unit, which would not be necessary, if a better con-
stellation has been chosen in previous steps.

The performance of generative backtracking is comparable
with the classical version of backtracking, but with superior
suitability and elegance in solving dynamic problems. All
these three methods can easily be advanced by symmetry
breaking as described above.

4.3. Heuristic search methods

In heuristic search methods, a heuristic function is used to locally
guide the variable assignment during search. These methods are
normally fast but not complete, which means that it is not guar-
anteed that a solution is found even if one exists.

The crucial part of these methods is the definition of the
heuristic function. For the PartnerUnits problem, we use the
following terms as part of a multiobjective heuristic function:

† vc(sol): The number of violated constraints in the (par-
tial) solution sol. This value is to be minimized. A solu-
tion is valid, if vc(sol) ¼ 0.

† mp(sol): The sum of all partnerunits connections in the
(partial) solution sol. Minimizing this value results in
compact solutions, where zones and door sensors that
belong together are preferably situated on the same com-
munication unit. Although, this does not contribute di-
rectly to the goal of a minimal number of units, it directs
search earlier to better results.

† mu(sol): The number of units that have at least one zone
or door sensor assigned. Minimizing this value results in
minimizing the number of units used in the solution.

It is interesting that we heuristically guide search not only to
find a good solution but also, and of more importance, to find a
valid solution: by the term vc(sol). Therefore, when combining

the three terms to a single value, the vc(sol) has the highest
weight, favoring a valid solution over a smaller invalid solution.

The general metaheuristic of heuristic algorithms is to first
make an initial assignment of the problem variables, and then
iteratively improve that assignment using problem-specific
heuristic functions (like fitness functions) until a valid and ac-
ceptable solution is found.

Sections 4.4 to 4.8 contain different heuristic algorithms.

4.4. Domain-specific heuristics

For comparison to the general algorithms, we implemented a
simple problem-specific heuristic: place zones having sensors
in common on to the same units, starting with those having
higher cardinality. If it does not find a solution, try simple re-
pair steps that swap unit allocations one-by-one, striving to
reduce the number of violated constraints.

Of course, this algorithm will not always find a valid solu-
tion, but is expected to perform well on weakly connected
configurations.

4.5. Iterative repair

For making an initial assignment, a greedy technique shows
potential: for each variable, the locally best choice is made,
hoping that this leads to a good solution candidate with no
or only few violated constraints. Because our PartnerUnits
problem does not have an optimal substructure (optimal sub-
structure means that it is guaranteed that each best local
choice leads to a solution), greedy assignment will normally
return an invalid solution candidate.

To correct this initial assignment to a valid solution, itera-
tive repair can be used. Iterative repair continually tries to im-
prove the constellation, hoping to end up at a valid solution.
To avoid a local optimum, choices during search have a prob-
abilistic aspect, possibly leading to temporary solution candi-
dates that are worse than the best one already found. A max-
imum number of cycles or a timeout avoid endless loops,
especially in cases where no solution exists.

// iterative repair pseudo-code
// sol = (initial) assignment of all variables
// h(sol) = heuristic function as combination

of vc and mp

iterative_repair(sol)
if (sol is consistent)
return sol // solution found

if (timeout)
return sol // timeout,

no valid solution found
A := {}
vars := all variables which are involved

in violated constraints
for each var in vars

for each val in domain(vars)
A = A + ,var, val.

,var, val. = choose(A, h, p)

Modeling technical configuration problems 121

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

new-sol = sol/var:=val // exchange

varassignment in sol (repair)

iterative-repair(new-sol)

The goal in each cycle of the algorithm is to change the value
of a variable so that as much conflicts as possible are repaired.
The function choose selects a repair assignment from all pos-
sible repair assignments. Using the probabilistic function p,
which is not always the best candidate with regard to the heur-
istic function h, is chosen, but of course, preferring those with
lowh values. This may lead out from a local optimum. Another
way to break out from a local optimum is to restart search with a
different initial constellation.

Dynamic configuration problems can only be tackled with
iterative repair by providing a fixed set of components and try
to solve this problem that is a static one now. The method of
iteratively increasing the components (see iterative widening
in Section 2.2) can be applied. Creating components during
search is not possible because search does not investigate
the search space in a determined manner. It would be hard
to decide if the creation of a new component or the deletion
of an existing one leads to a solution.

Although iterative repair is not complete, for several prob-
lem classes it performs very well and has a high probability to
converge fast at a solution if one exists.

4.6. Simulated annealing

A slight change in the iterative repair algorithm leads to an al-
gorithm in the style of simulated annealing (Kirkpatrick et al.,
1983). The basic idea of simulated annealing is to change the
probabilistic function p, which chooses the next repair assign-
ment, during search. In analogy to metallurgy, the probabilis-
tic function reflects the temperature of the system. High tem-
perature means that variables and values to be repaired are
chosen almost randomly, ignoring the scheme of preferring
repair steps that improve the current constellation best. Over
time, the temperature is gradually cooled down, that is, the
probability of choosing the best candidate increases.

The idea behind this approach is to move the system out of
local optima in the start phase of search, and with the proceeding
of time, to improve the system by taking more and more atten-
tion to the heuristic function leading, hopefully, to a valid and
good solution.

4.7. Genetic algorithm (GA)

A quite different approach to solve the PartnerUnits problem
is to use an evolutionary technique like a GA (see Goldberg,
1989). GAs (Fig. 4) are built on the metaphor of Darwin’s
evolution theory. In a population the fittest individuals sur-
vive and evolve to the next generation. Variations are induced
by mutation and recombination.

To use a GA for solving our configuration problem, we
have to define a mapping from the configuration world to
the GA world, and we have to provide a fitness function.

As fitness function we use a heuristic function as described
in Section 4.3. It is a multiobjective function combining the
sum of violated constraints and the sum of partnerunits. We
just have to multiply this heuristic function by 21 to inverse
its meaning: low values reflect bad fitness, high values (with
maximum 0) good fitness.

In addition, the mapping from CSP to GA is straightforward.
CSP variables represent the connections of zones and door sen-
sors to communication units. Each such variable is mapped to a
gene in the GA chromosome. These genes are not binary, but are
a number representing the index of the unit in the list of all units.

In the simple example in Figure 5 we have two zones z1
and z2, four door sensors d1 to d4. Zone z1 is associated
with d1, d2, and d3. Zone z2 is associated with d3 and d4.
Of course, to use GA for our dynamic problem, we have to
provide a set of units using the iterative widening method de-
scribed in Section 2.2. Thus, we provide two units u1 and u2.

Now we map our variables z1.unit, z2.unit, d1.unit, . . . ,
d4.unit to six genes, each is having the possible values 1 or
2, representing units u1 and u2. Each chromosome configura-
tion (Fig. 6) uniquely represents a variable assignment.

The recombination operator (Fig. 7) performs a crossover
of two chromosomes. Normally, a crossover point is chosen
randomly, and the new chromosome is built from the head
of the first chromosome and the tail of the second one.

The mutation operator (Fig. 8) changes the value of one or
more genes: which genes to change and which new values are
completely random choices.

During GA search, each new individual chromosome is
mapped back to our CSP model, which provides the follow-

Fig. 4. The genetic algorithm schema.

Fig. 5. A simple example with two zones and four door sensors.

A. Falkner et al.122

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

ing information: is this individual a valid solution? What is
the fitness of this individual?

For implementation we use the JGAP package. Following
the idea of clearly separating the model from the solver (see
Section 4), we let the model provide the fitness function
and kept domain-specific heuristics out of the GA solver. In-
tegrating domain-specific heuristics in the gene combination
steps certainly would improve GA performance, but with the
loss of simple and straightforward integration into a complex
configuration environment.

4.8. Ant colony optimization (ACO)

ACO is a probabilistic technique based on how a colony of
ants finds paths to food sources. Each individual ant is laying
down a pheromone trail. Other ants follow such trails. The
more pheromone is on the trail, the more likely other ants fol-
low that trail. In that way, high-pheromone trails develop over
time on short paths.

ACO is typically used for graph search problems, like the
traveling salesman problem. However, ACO can also be ap-
plied to other problem fields, like solving CSPs (Schoofs &
Naudts, 2000; Khichane et al., 2008) and configuration prob-
lems (Albert et al., 2008).

We apply ACO to the PartnerUnits problem in a straight-
forward way. Each ant of a colony assigns a value to each
variable iteratively, preferring choices with high pheromone
values. Pheromones are stored for each variable-value pair
in a pheromone map. The first iterations are fully random
choices. However, preferred paths emerge over time.

// ACO pseudo-code
aco()
do until solution found or timeout
for each ant in the colony
create solution, preferring choices

with high pheromone
update pheromone map with best solution

in this iteration

The best solution candidate in an iteration, which is the one
with best fitness function, is rewarded in the pheromone
map by the following formula:

tij (1� r) tij þ Dij,

where tij is the pheromone value of variable assignment vari

¼ valj; r is the evaporation rate, and pheromones evaporate
over time to forget bad choices; and Dij is the amount of pher-
omone. It is zero, if variable assignment vari ¼ valj is not in
the best solution candidate of the colony. Otherwise it is (total
number of constraints/number of violated constraints þ 1);
that is, the better the solution, the higher the pheromone drop.

Like GAs, ACO is very general in the sense that it requires
only a minimum amount of problem-specific knowledge:
only a fitness function for rating an individual solution is
needed. Unfortunately, ACO in its plain version does not per-
form very well on the PartnerUnits problem because of its
complicated and highly connected inner structure. The usage
of higher sophisticated variants of ACO along with domain-
specific heuristics and local search could possibly be more
successful in dealing with the PartnerUnits problem. How-
ever, the goal of this study was to plainly use ACO without
highly specialized expertise and without packing any domain
knowledge into the solver.

Fig. 6. The chromosome configuration.

Fig. 7. The recombination operator.

Fig. 8. The mutation operator.

Modeling technical configuration problems 123

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

4.9. Choco

Choco is an open source constraint library written in Java. To
encode the assignment of sensors and zones to the units, we
use the two-dimensional IntegerVariable arrays sensor2unit
and zone2unit. Each array represents one of the relations of
our problem, that is, sensor i is associated with unit j, if and
only if sensor2unit[i][j] ¼ 1. To ensure that a sensor/zone
i is only assigned to one unit, a constraint is added that the
sum of integer variables in each row must be 1.

Choco.eq(Choco.sum(sensor2unit[i]), 1))
Choco.eq(Choco.sum(zone2unit[i]), 1))

In addition, there must not be more than two sensors or
zones for every unit. This is ensured by the constraint

Choco.leq(Choco.sum(column), 2);

for every column of the arrays zone2unit and sensor2unit.
To restrict the number of connections between units an-

other two-dimensional array partnerunits is needed. partner-
units[i][j]¼ 1, if there is a connection between unit i and unit
j. The following constraints are posted:

Choco.leq(Choco.sum(partnerunits[i]),2)
// There must not be more than

2 Partners for every unit
Choco.eq(partnerunits[i][j],

partnerunits[j][i]) for i != j
// The relation is symmetric

Whenever there is a zone assigned to unit i and one of its sen-
sors assigned to a different unit j, there must be a connection
between the units:

Choco.implies(Choco.and(
Choco.eq(zone2unit[zoneindex][i],1),
Choco.eq(sensor2unit[sensorindex][j],1)),
Choco.eq(partnerunits [i][j],1))

Given this encoding Choco can solve the basic example
without the need of additional heuristics. If the solver finds
a solution, mapping the result back to an object-oriented
model is straightforward. For every IntegerVariable vij ¼ 1
of the arrays zone2unit and sensor2unit, associate zone/sen-
sor i with unit j.

4.10. KodKod

KodKod is a SAT-based constraint solver for relational logic
(Torlak, 2009). Alloy 4, which is based on KodKod, can con-
vert Alloy specifications to KodKod-Java source files. We
used this option to translate our Alloy specification from
Section 1.1 to KodKod.

The KodKod Solver works by translating the problem to a
SAT-problem. The SAT-problem is then solved by an exter-
nal SAT-Solver (such as SAT4J). Therefore, the use of Kod-
Kod (like all SAT-based approaches) is limited by the number

of the created clauses for encoding the problem as a SAT-
problem. Although KodKod may not be suitable for solving
problems with many instances (.30), its ability to enumerate
models is for instance convenient for generating test cases.

Mapping the results of the solving process back to the source
model is particular easy because KodKod allows using the Java
objects of the source model directly as atoms in the relations.
Thus, for instance, translating the relation between units and
sensors back to our object-oriented model looks like this:

unit2sensor = Relation.nary
("this/ComUnit.unit2sensor", 2);

Iterator,Tuple. unit2sensorItor =
solution.instance().
tuples(unit2sensor).iterator();

while(unit2sensorItor.hasNext()) {
Tuple t = unit2sensorItor.next();
ComUnit u = (Unit)t.atom(0);
DoorSensor d = (DoorSensor)t.atom(1);
d.setUnit(u);

}

4.11. DLV (Datalog)

DLV Complex is an Answer Set Programming System ex-
tending DLV, a system for disjunctive datalog with con-
straints, true negation, and queries (Eiter et al., 1997). It offers
a very concise representation of the problem.

The relation between zones and door sensors and the maxi-
mally usable amount of communication units are given as
positive facts. The implicit unique name assumption ensures
that the listed zones (z1, z2) and door sensors (d1, d2, d3, d4)
are considered different, for example, for the example in
Section 4.7:

zd(z1,d1).
zd(z1,d2).
zd(z1,d3).
zd(z2,d3).
zd(z2,d4).
unit(1..2).

We formulate the possible assignment of units to zones and
sensors as a disjunction of positive and negative facts. Con-
straints restrict their cardinalities: not more than two zones
per unit, exactly one unit per zone (analogous for sensors):

zu(Z,U) v -zu(Z,U) :- zd(Z,_), unit(U).
:- unit(U), not #count{Z: zu(Z,U)} ,= 2.
:- zd(Z,_), not #count{U: zu(Z,U)}= 1.
du(D,U) v -du(D,U) :- zd(_,D), unit(U).
:- unit(U), not #count{D: du(D,U)} ,= 2.
:- zd(_,D), not #count{U: du(D,U)}= 1.

Similarly, we calculate and restrict the partner units:

pu(U,P) :- zu(Z,U), zd(Z,D), du(D,P), P!= U.
pu(U,P) :- pu(P,U).
:- unit(U), not #count{P: pu(U,P)} ,= 2.

A. Falkner et al.124

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

Running the program and filtering the relevant facts zu, du,
and pu results in

zu(z1,1). zu(z2,1).
du(d1,1). du(d2,1). du(d3,2). du(d4,2).
pu(1,2). pu(2,1).

In addition, the complete program has a final step that
pretty-prints the result (omitted for brevity).

It performs well for finding solutions for medium-sized
problems like the example at the beginning of this paper.
However, it takes very long to realize if there is no solution
at all. Furthermore, it will not find minimal solutions if there
are too many units available. One can avoid this by setting the
number of available units to the minimum (e.g., unit(1..2) in
the example above).

The use of weak constraints for optimizing the solution (in
case the number of available units is higher than the number
of necessary ones) increases the runtime considerably so that
it is not recommended:

used(U) :- zu(_,U).
used(U) :- du(_,U).
:� used(U).

4.12. Constraint handling rules (CHR)

CHR is a declarative concurrent committed-choice constraint
logic programming language consisting of guarded rules that
transform constraints (represented as multisets of relations) un-
til no more change occurs (Frühwirth, 2008). With its built-in
reasoning mechanism for simplification and propagation rules
it is well suited for optimizing constraint satisfaction.

We use CHR with host language SWI-Prolog. Therefore, we
can take advantage of Prolog’s inference machine and variable
unification: the relation between zones and door sensors as an in-
put is represented by factszdu/2, which relate variables that la-
ter will be instantiated to the unit for that zone or sensor (explor-
ing an idea of Frühwirth, 2009, personal communication), for
example, for the simple example in Section 4.7:

?- zdu(Z1,D1), zdu(Z1,D2), zdu(Z1,D3),
zdu(Z2,D3), zdu(Z2,D4),
label([z1-Z1,z2-Z2], [Z1,Z2],

[d1-D1,d2-D2,d3-D3,d4-D4],
[D1,D2,D3,D4], [1,2]).

They are simplified to relations for the partner units
(pu/2): when both arguments are bound (i.e., zone and sen-
sor are placed on a unit), then the two units are related as
partners.

zdu(ZU,DU) ,=. nonvar(ZU), nonvar(DU)
| pu(ZU,DU), pu(DU,ZU).

Partner units are optimized and restricted (to two): remove
reflexive and duplicate relation instances with simplification
rules that have a “true” body. Raise a failure when there are

too many partner units for a given unit (all anonymous vari-
ables “_” in the third rule are considered different).

% same unit is never a partner
pu(U,U) ,=. true.
% remove duplicates
pu(U,PU) \ pu(U,PU) ,=. true.
% not more than 2 partner units
pu(U,_), pu(U,_) \ pu(U,_) ,=. fail.

The placement of doors and sensors to units is done by a
naı̈ve labeling of zones and sensors with a unit, which at first
tries to place two zones and two sensors onto one unit, and
only if it fails, places fewer ones. By using variable binding
for that, it realizes a natural way of symmetry breaking. If a
variable is bound then it triggers generation of the partner
unit in the simplification rule of zdu/2.

label(Zs,ZVs,Ds,DVs, [U|Us]) ,=.

% symmetry breaking
(ZVs= [U|ZVs1]; ZVs= [],ZVs=ZVs1),
(select(U,ZVs1,ZVs2); ZVs1=ZVs2),
(select(U,DVs,DVs1); DVs=DVs1),
(select(U,DVs1,DVs2); DVs1=DVs2),
label(Zs,ZVs2,Ds,DVs2,Us).

label(_,_,_, [_|_], []) ,=. fail.
label(_, [_|_],_,_, []) ,=. fail.
label(Zs, [],Ds, [],_) ,=. label(Zs,Ds).

The results are the facts for the partner units and the final
labeling, for example,

label([z1-1,z2-1], [d1-1,d2-1,d3-2,d4-2]),
pu(1,2), pu(2,1).

The complete program has in addition a preparation step
that creates the initial query and a final step that pretty-prints
the result (omitted for brevity).

The program performs similar as the backtracking ap-
proach. It prunes dead ends early and finds good solutions
for smaller problems quite fast. However, sometimes it does
not find a solution within a reasonable time period, and it al-
ways takes a long time to detect that there is no solution at all.

5. EVALUATION OF THE RESULTS

In the preceding section we presented several approaches to
solve the PartnerUnits problem: various general-purpose solv-
ers parameterized to the problem (Choco, KodKod, DLV),
different AI methods adapted to the problem (generative
backtracking, iterative repair, simulated annealing, GA, ant
colonies), and problem-specific algorithms (domain-specific
heuristic and repair, CHR).

The problem could be mapped to all of them with only little
effort. Some of them are easier to understand (e.g., the object-
oriented approaches and DLV with their close relation to real-
world concepts) than others (e.g., Choco because of the map-
ping of object connections to integer arrays).

Modeling technical configuration problems 125

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

Clearly, analyzing the properties of the problem (like com-
plexity) and exploiting them in the algorithms would help to
improve their performance. However, it takes time and math-
ematical expertise to get deep insight in the problem, which
may not be available for the average knowledge engineer in
real-world projects. Furthermore, tuning algorithms or imple-
menting special solutions for better performance tends to be
expensive and difficult to adapt when requirements change.
We are sure that experts for the used tools can do better
than us. However, we wanted to evaluate the results for aver-
age knowledge engineers.

We tested all algorithms described in the previous sections
on the following example configurations:

† small: examples from Section 2; the first with seven
zones (example 1), the second with eight (solution 2),
the third (with eight zones) having no solution (small-
no); see Table 3

† single: a highly packed configuration with 11 zones, 6
sensors, and 22 connections between them; see Table 3

† double (see Fig. 9): a double row of connected rooms, each
room being a zone (number of zones given as parameter); a
variant (dv in Table 4) has additional zones for each two
connected rooms vertical to the row; to be solved with
maximum of partner units raised to three or four for the
variant, respectively (as no solver found a solution with
smaller bound for partners within the given time frame)

† triple (see Fig. 10): a weakly connected group of rooms,
each room being a zone (their number given as pa-
rameter); in some cases with additional two or four
zones consisting of 2 to 3 rooms; in Table 5 we used
one to four blocks of “width” 10 (i.e., of 30 rooms); to
be solved with max partners raised to 4

The input data for the evaluation as well as some of the used
algorithms are available by e-mail from the authors.

Tables 3–5 summarize the results as the time for finding a
valid solution on a 2-GHz PC; or in the case of small-no, for
finding a proof that the problem has no solution. The time is
given in seconds (i.e., the numbers in the table). A “—” means
time out, that is, no solution was found within 30 min. We in-

troduced this time out because the users expect a result within
a few minutes. For some examples, the domain-specific algo-
rithms got stuck in a local optimum and gave up before time
out, which is represented by an “x.” Furthermore, “m” means
that an algorithm ran out of memory before time out (memory
was limited to 600 MB).

It is interesting that the general heuristic methods (like simu-
lated annealing or GA) do not perform very well on large Part-
nerUnits problems, because of the complicated inner structure
of the resulting configurations. These methods are better be
used for problems where the focus lies on optimization, and
not on consistency. The main advantage of these heuristic
methods is the possibility to give a time limit. Although the
most complete methods, like backtracking, have no solution
at all if stopped after a time out, heuristic methods most often
return a solution candidate that is close to a consistent solution.

As expected, the domain-specific algorithms perform very
well for most of the large but simple (i.e., weakly connected)
examples. Unfortunately, they do not find solutions to harder
problems even when they are quite small (e.g., see Table 3).

We conclude that depending on the problem and even on the
problem instance, different solving strategies are necessary to
arrive at a valid solution. Therefore, a configuration system
needs an architecture that allows selecting suitable solvers, de-
pendent on properties, structure, and size of the problem.

6. A FLEXIBLE CONFIGURATION
ARCHITECTURE

A configurator roughly consists of three main components: the
modeling framework, a solving engine, and interfaces to the
user, file data, a database, Web services, and so forth. A clean
separation of these components allows for using best-fitting tech-
nologies and frameworks for each part. Especially the separation
of and relationship between modeling and reasoning is crucial.
The surrounding interfaces are not in the focus of this paper.

For complex engineering domains, it is not appropriate to
model the configuration problem using a general-purpose solv-
ing framework, like a standard CSP or a GA framework. To
achieve efficient, natural, and easy to maintain knowledge mod-
eling,an object-oriented type hierarchy, augmented by powerful
constraint and rule concepts is state of the art. Such a knowledge
base supports design and implementation of the surrounding in-
terface components in a straightforward way.

In contrast, specialized reasoning capabilities are required,
ranging from domain filtering, satisfiability checks, finding a

Fig. 9. Example configuration “double.”

Table 3. Evaluation results

Examples Small-7 Small-8 Small-no Single-11

4.2 Generative BT 1 1 12 6
4.4 Domainspec. heuristics x x x x
4.4 Domainspec. repair x x x x
4.5 Iterative repair 1 — — —
4.6 Simulated annealing 1 1490 — —
4.7 Genetic algorithm 6 — — 499
4.8 Ants 1002 — — —
4.9 Choco (classical CSP) 1 251 — 155
4.10 KodKod (SAT) 1 1 79 1
4.11 DLV 3 8 — 2
4.12 CHR 1 349 — 123

A. Falkner et al.126

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

validsolution, to finding thenbestsolutions.Unfortunately, there
is no silver bullet capable of handling all these tasks. Thus, the
architecture should be open to plug in different solvers for the
different purposes. Figure 11 sketches such an architecture.

The problem is modeled in a high-level language. Special-
ized mappers transform the problem or parts of the problem
to appropriate solvers. In turn, the solver results are mapped
back to the high-level model, ready to be presented to the user
or exported to other processes. Typically, the solver needs infor-

mation from the model about the model state during search (e.g.,
the state of the constraints or the value of a fitness function).

For example, the PartnerUnits problem is modeled in a high-
level language and solved using a GA solver (see Section 4.7).
First, the problem is mapped to genes in the GA language. In
addition, solving parameters are provided, like the maximum
number of generations, a time out, or the population size.

Table 4. Evaluation results

Double Examples d-20 dv-30 d-40 dv-60 d-60 d-80 d-100

4.2 Generative BT 1 — 1 — 2 4 6
4.4 Domainspec. heuristics x x x x x x x
4.4 Domainspec. repair 3 15 37 16 135 x x
4.5 Iterative repair 1 55 2 — 6 153 134
4.6 Simulated annealing 35 — 149 — 138 84 350
4.7 Genetic algorithm — — — — — — —
4.8 Ants — — — — — — —
4.9 Choco (classical CSP) 1 — 9 — m m m
4.10 KodKod (SAT) 25 130 m m — — m
4.11 DLV — — — — — — —
4.12 CHR — — — — — — —

Fig. 10. Example configuration “triple.”

Fig. 11. A flexible configuration architecture.

Table 5. Evaluation results

Triple Examples t-30 t-32 t-34 t-60 t-64 t-90 t-120

4.2 Generative BT 3 3 — 11 — 29 65
4.4 Domainspec. heuristics 1 x x 1 x x x
4.4 Domainspec. repair 1 5 1 1 1 1 x
4.5 Iterative repair 5 6 76 35 — 93 1473
4.6 Simulated annealing 5 5 150 113 — 1209 —
4.7 Genetic algorithm — — — — — — —
4.8 Ants — — — — — — —
4.9 Choco (classical CSP) 3 — — 150 — m m
4.10 KodKod (SAT) 602 m m — — — m
4.11 DLV — — — — — — —
4.12 CHR — — — — — — —

Modeling technical configuration problems 127

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

Then the GA algorithm generates an initial solution or, in the
following steps, an offspring of an existing individual solution.
To rate the quality of a solution, a fitness function value is re-
quired. We want to keep the solvers, in this case the GA, as in-
dependent of the domain as possible, avoiding duplicated repre-
sentations of a large part of the model at the solver. Therefore,
the fitness function is provided by the high-level model, because
the object network and constraints are available there, with the
possibility of complex, problem-specific computations.

When the GA solver has finished, eventually the best GA so-
lution candidate is mapped back to the high-level model (Fig. 12).

The benefits of this architecture are a clean separation of
modeling and reasoning and, hence, the possibility of using
best-suited techniques and tools for those tasks. Complex sys-
tems may have different corners with different needs for rea-
soning. Although usually one high-level modeling system is
used, which all other components are based upon, it is some-
times useful to work with more than one reasoning tool. This
architecture is open for this.

The trade-off is the mapping functions from and to modeling
and solver. Design and implementation of these mapping func-
tions must be added to the modeling costs, the runtime over-
head must be added to the solving time and should not be
underestimated.

7. CONCLUSION

When we started writing this paper, we did not anticipate how
hard solving the PartnerUnits problem would turn out to be.
This is a typical scenario for a knowledge engineer when
faced with building a configurator for a new product. There-
fore, we advocate the use of formal tools (such as Alloy) at an
early stage of knowledge engineering to analyze the complex-

ity of the problem before choosing a suitable solving technol-
ogy. Still, it is undeniable that most approaches to product
configuration have a problem with large-scale configurations
(i.e., containing a lot of instances).

Often the knowledge engineer must be able to find a spe-
cial heuristic for the problem at hand or map the problem to
algorithms from other fields (graph theory, OR, etc.). As
stressed in Michalewicz and Fogel (2004), we cannot expect
one general method to solve all the problems of all domains.
Knowledge engineering especially for product configurators
is an interdisciplinary approach.

What makes the PartnerUnits problem hard to solve is the
restriction to N partnerunit connections (e.g., N ¼ 2). Aside
from the intellectual fun to tackle such a problem, it is worth
asking the design engineers of the product whether this re-
striction is really necessary or whether there is another techni-
cal solution without this restriction. Experiences have shown
that many hard configuration problems could be avoided
just by an early integration of configuration architects into
the product design process to make the product easier to
configure (see Falkner & Haselböck, 2009).

At present, there is no well-established modeling language
for product configuration. All the transformations from the
modeling language to the solving language (e.g., UML/
OCL!CSP) had to be implemented especially for this prob-
lem. Automatic translation between the different formalisms
would be a great benefit.

7.1. Tools

To make it easier for the reader to evaluate our results and ex-
periment with the described problem, we have chosen only
freely available tools in this paper.

Fig. 12. The flow of control between the model and solver.

A. Falkner et al.128

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

Alloy: http://alloy.mit.edu/alloy4/

Choco: http://www.emn.fr/z-info/choco-solver/index.html

DLV: http://www.dlvsystem.com/

DLV-Complex: http://www.mat.unical.it/dlv-complex

Eclipse IDE: http://www.eclipse.org

JGAP: http://jgap.sourceforge.net/

KodKod: http://alloy.mit.edu/kodkod/

SAT4J: http://www.sat4j.org/

SWI-Prolog (incl. CHR): http://www.swi-prolog.org/

USE: http://www.db.informatik.uni-bremen.de/projects/
USE/

REFERENCES

Albert, P., Henocque, L., & Kleiner, M. (2008). Ant colony optimization for
configuration. Proc. 20th IEEE Int. Conf. Tools With Artificial Intelli-
gence, pp. 247–254.

Baader, F., McGuinness, D.L., Nardi, D., & Patel-Schneider, P.F. (2003). The
Description Logic Handbook. Cambridge: Cambridge University Press.

Cooper, M., Jeavons, P., & Salamon, A. (2008). Hybrid tractable CSP’s
which generalize tree structure. Proc. ECAI, pp. 530–534.

Dechter, R., & Meiri, I. (1989). Experimental evaluation of preprocessing
techniques in constraint satisfaction problems. Proc. 11th IJCAI, pp.
271–277.

Eiter, T., Gottlob, G., & Mannila, H. (1997). Disjunctive datalog. ACM
Transactions on Database Systems 22/3, 315–363.

Falkner, A., Feinerer, I., Salzer, G., & Schenner, G. (in press). Computing
product configurations via UML and integer linear programming. Inter-
national Journal on Mass Customization.

Falkner, A., & Haselböck, A. (2009). A simple evaluation process for config-
urability. Proc. IJCAI-09 Workshop on Configuration, pp. 17–22.

Felfernig, A. (2007). Standardized configuration knowledge representations
as technological foundation for mass customization. IEEE Transactions
on Engineering Management 54(1), 41–56.

Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., & Zanker, M.
(2003). Configuration knowledge representations for Semantic Web ap-
plications. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 17(1), 31–50.

Felfernig, A., Friedrich, G., Jannach, D., & Zanker, M. (2002). Configuration
knowledge representation using UML/OCL. Proc. 5th Int. Conf. Unified
Modeling Language, pp. 49–62. Berlin: Springer–Verlag.

Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., & Stumptner,
M. (1998). Configuring large-scale systems with generative constraint
satisfaction. IEEE Intelligent Systems 13(4), 59–68.

Frühwirth, T. (2008). Welcome to constraint handling rules. In Constraint
Handling Rules—Current Research Topics (Schrijvers, T., & Frühwirth,
T., Eds.), L Vol. 5388. New York: Springer–Verlag.

Gent, I.P., Petrie, K.E., & Puget, J. (2006). Symmetry in constraint program-
ming. In Handbook of Constraint Programming (Rossi, F., van Beek, P.,
& Walsh, T., Eds.), pp. 329–376. Amsterdam: Elsevier.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization & Ma-
chine Learning. Reading, MA: Addison–Wesley Professional.

Gottlob, G., Greco, G., & Mancini, T. (2007). Conditional constraint satisfac-
tion: logical foundations and complexity. Proc. IJCAI 2007, pp. 88–93.

Jackson, D. (2002). Alloy: a lightweight object modeling notation. ACM
Transactions on Software Engineering Methodologies 112, 256–290.

Khichane, M., Albert, P., & Solnon, C. (2008). Integration of ACO in a con-
straint programming language. Proc. ANTS, pp. 84–95.

Kirkpatrick, S., Gelatt, C.D., Jr., & Vecchi, M.P. (1983). Optimization by
simulated annealing. Science 220(4598), 671–680.

Mayer, W., Bettex, M., Stumptner, M., Falkner, A., & Faltings, B. (2009). On
solving complex rack configuration problems using CSP methods. Proc.
IJCAI-09 Workshop on Configuration, pp. 53–60.

McDermott, J. (1982). R1: a rule-based configurer of computer systems.
Artificial Intelligence 19, 39–88.

Michalewicz, Z., & Fogel, D.B. (2004). How to Solve It: Modern Heuristics.
Berlin: Springer.

Sabin, D., & Weigel, R. (1998). Product configuration frameworks—a sur-
vey. IEEE Intelligent Systems 13(4), 42–49.

Schoofs, L., & Naudts, B. (2000). Solving CSPs with ant colonies. Proc.
ANTS, 2000.

Torlak, E. (2009). A constraint solver for software engineering: finding mod-
els and cores of large relational specifications. PhD Thesis. MIT.

Andreas Falkner is Program Manager and Senior Research
Scientist in the global technology field entitled Constraint-
Based Configurators at Siemens’ Corporate Research &
Technologies division. He received MS and PhD degrees in
computer science from the Vienna University of Technology.
Since 1992 he has been working for Siemens AG Austria,
where he develops product configurators for complex tech-
nical systems in various domains, for example, for railway in-
terlocking systems. For that purpose, his team has created a
domain-independent configuration framework based on gen-
erative constraint satisfaction and is continuously enhancing
it for further real-world requirements.

Alois Haselböck is a member of the research and develop-
ment staff at Siemens AG Austria and is a Senior Research
Scientist in the global technology field entitled Constraint-
Based Configurators at Siemens’ Corporate Research &
Technologies division. He received MS and PhD degrees in
computer science from the Vienna University of Technology.
His research interest comprises knowledge representation and
solving techniques for constraint-satisfaction systems where
he has contributed fundamental findings in the field of gen-
erative constraint satisfaction.

Gottfried Schenner is a Senior Research Scientist in the
global technology field entitled Constraint-Based Configura-
tors at Siemens’ Corporate Research & Technologies division.
He joined Siemens AG Austria as a software developer in 1997.
Mr. Schenner received an MS in computer science (main sub-
ject AI) from the Vienna University of Technology. Since 1997
he has been working on projects developing product configura-
tors, including a domain-independent constraint-based config-
urator framework. His research interests comprise constraint-
based technology and software architecture.

Herwig Schreiner heads the global technology field entitled
Constraint-Based Configurators at Siemens’ Corporate Re-
search & Technologies division. He holds a Senior Project
Manager (zSPM) degree from the International Project Man-
agement Association and received his MS in computer sci-
ence from the Vienna University of Technology. His research
interests include semantic technologies and knowledge repre-
sentation for model-based diagnosis and configurators.

Modeling technical configuration problems 129

https://doi.org/10.1017/S0890060410000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000570

