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We study a cumulative storage system that is totally cleared sporadically at stationary
renewal times and whenever a finite-capacity threshold is exceeded. The independent
and identically distributed inputs occur at time epochs that also form a stationary
renewal process. We determine the distribution of the interoverflow times.
Although this distribution is quite intricate when both underlying renewal
processes are general, in the special case of Poisson sporadic clearings we obtain a
neat formula for its Laplace transform.

1. INTRODUCTION

We consider a storage system that receives inputs of independent and identically dis-
tributed (i.i.d.) random sizes at time epochs that form a renewal process. The output is
generated by two types of clearing:

1. The system is emptied periodically at random times; we assume that these
“sporadic” clearing times form a second renewal process, which is indepen-
dent of the input times and sizes.

2. The system has a finite capacity, and whenever a freshly arriving input cannot
be fully stored, an additional instantaneous clearing takes place.

Hence, the sequence of clearing times is a superposition of the sporadic ones and the
“continuous” ones (due to overflows). We study this system in steady state; that is, both
renewal processes involved are stationary. The main aim of this article is to derive in
closed form the distribution of the length of the period between two successive over-
flows. As the system is in steady state, the sequence of overflow times is also stationary.
It has also a renewal structure if the sporadic clearing times form a Poisson process. In
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general, the renewal property is lost because the future evolution just after an overflow
depends on the current residual waiting time until the next sporadic clearing.

In Section 2 we derive the rather intricate interoverflow distribution in the general
renewal case in terms of the system primitives: the capacity, and the probability den-
sities of (1) the times between sporadic clearings, (2) the times between inputs, and
(3) the input sizes. (We only consider the absolutely continuous case.) Section 3 is
devoted to the case of sporadic Poisson clearings, in which the overflow times
form a stationary renewal process. In this case, the Laplace transform of the interover-
flow distribution takes a neat form, given in Theorem 2.

Stochastic clearing systems (i.e., input/output systems that are periodically emptied
by clearing operations) were introduced and investigated in [10–13]. For questions
regarding their steady-state behavior, see also [4,15]; related queuing models were
studied in [1,3,16]. For production/storage models, we refer to [2,5–9,14]. Most of
these articles deal with the derivation of cost functionals and their minimization.
For our model, which combines general stationary renewal inputs and sporadic clear-
ings with cumulative jump inputs and continuous clearings, any kind of optimization
will be a challenging problem. In this article we only tackle the interoverflow distribution.

2. THE GENERAL CASE

We assume that the sporadic clearing times 0 � C1 , C2, � � � and the input times
0 � I1 , I2 , � � � form stationary renewal processes, independent of each other,
with interarrival time densities p(t) and q(t), t . 0, respectively. We might then
also suppose that the two renewal processes extend to 21 so that they are the non-
negative points of the two doubly-infinite stationary renewal sequences . . . , C22 ,

C21 , C0 , 0 � C1 , C2 , � � � and � � �, I22 , I21 , I0 , 0 � I1 , I2 , � � � on
the entire real line, respectively. The successive inputs are assumed to be i.i.d. positive
random variables with common density r (x), x . 0, and to be independent of the Ci

and the Ii. The capacity of the storage system is denoted by c (, 1).
For an integrable function h : [0, 1)! R, we write ĥ(a) ¼

Ð1

0 e2ax h(x) dx, a �
0, for its Laplace transform (LT). We need the LTs p̂, q̂, and r̂. Convolution of two
functions is denoted by *; we write h*n for the n-fold convolution of h with itself.

Let Sn be the sum of n successive inputs and Rn(x) ¼ P(Sn � x) be its distribution
function (having density r*

n). We also need

Hn(x) ¼ P(Sn � x , Snþ1)

¼ Rn(x)� Rnþ1(x)

¼
ðc

0

ð1

c�x
r(y) dy

� �
r�n(x) dx; n � 0;

where S0 ¼ 0.
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Our aim is to determine the probability density f (t) of the time T between the first
two overflows. Let

fn(t) dt ¼ P (T [ dt and exactly n sporadic clearings take place between

the first two overflows):

Then

f (t) ¼
X1
n¼0

fn(t):

We now derive formulas for the functions fn in a series of lemmas, which might be of
independent interest.

Let gc(t) be the conditional density of T given that no sporadic clearings take place
between the two overflows. The reason for indicating the dependence of this density
on the capacity c is that although gc(t) itself can only be determined as a convolution
series, the double LT ^̂gða;bÞ ¼

Ð1

0

Ð1

0 e�at�bcgcðtÞ dt dc turns out to have a particu-
larly simple form.

LEMMA 1: The functions gc(t) and ^̂g(a, b) are given by

gc(t) ¼
X1
n¼1

Hn�1(c)p�n(t); t . 0; (2:1)

^̂g(a;b) ¼ p̂(a)(1� r̂ (b))
b½1� p̂(a) r̂ (b)� ; a;b . 0; (2:2)

respectively.

PROOF: When no sporadic clearings take place, an interoverflow interval has length
t if and only if either (1) the first input in the interval occurs after t time units and
is of size greater than c or (2) for some n � 1 , the (n þ 1)st input in the interval
occurs at time t, the first n inputs add up to some x � c, and the first n þ 1 inputs
have sum x þ y . c. By our assumptions, this argument yields

gc(t) ¼ p(t)
ð1

c
r (x) dx

þ
X1
n¼1

p�nþ1(t)
ðc

0

ð1

c�x
r ( y) dy

� �
r�n(x) dx; (2:3)

and (2.1) is tantamount to (2.3). Multiplying (2.1) by e2at2bc and integrating over
t and c yields (2.2) after straightforward calculations. B
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Remark: Equation (2.2) also holds for b in the complex half-plane Re b . 0 so that
the LT ĝc(a) of gc can be determined by Laplace inversion: For any a . 0,

ĝc(a) ¼ p̂(a)
2pi

ðaþi1

a�i1

(1� r̂ (b)) ecb

b½1� p̂(a) r̂(b)� db:

Let r (s, t) ds dt be the infinitesimal probability that there is an overflow in [s, s þ
ds] and the first sporadic clearing afterward takes place in [t, t þ dt], where 21 ,

s , t , 1. By stationarity, r (s, t) depends only on t 2 s, and we will determine
r (t) ¼ r(0, t), t . 0. For this derivation we need the renewal density

uc(t) ¼
X1
n¼1

g�nc (t);

associated with gc, and the function

hc(t) ¼ H0(c)
ð1

t
p(v) dv

ð1

c
r (x) dxþ

X1
n¼1

Hn(c)

�
ðt

0
p�n(v)

ð1

t�v

p(w) dw

� �
dv:

LEMMA 2:

r(t) ¼
ð1

0
q(t þ s)½ hc(s)þ (hc � uc)(s)� ds: (2:4)

PROOF: Consider the event that there is an overflow at time 0 and C1 [ [t, t þ dt]. Let
us collect all of the possibilities contributing to its infinitesimal probability. If the first
sporadic clearing after time 0 takes place at time t, the last one before must have
occurred at time 2s for some s . 0. Then there are two cases:

Case 1: The overflow at time 0 is the first one in (2s, 0] and it is due to one of the
following:

1. to the first input in (2s, 0], meaning that the last input before time 0 ccurred at
some time 2v , 2s and the one at time 0 is greater than c,

2. to the (n þ 1)st input in (2s, 0] for some n � 1, meaning that there are
n inputs in (2s, 0) whose sum does not exceed c but the subsequent input
at time 0 leads to an overflow.

Case 2: There is at least one overflow in (2s, 0) so that there are an integer k � 1 and
a v [ (0, s) such that the kth overflow in (2s, 0) occurs at time 2s þ v and the only
overflow in (2s þ v, 0] occurs at time 0 (this latter event can then be decomposed as
in Case 1).
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In terms of probabilities this decomposition yields

r(t) ¼
ð1

0
q(t þ s)

ð1

s
p(v) dv

ð1

c
r (x) dx

�
þ
X1
n¼1

ðs

0
p�n(v)

ð1

s�v

p(w) dw

� �
dv

�
ðc

0
r�n(x)

ð1

c�x
r ( y) dy

� �
dxþ

X1
k¼1

ðs

0
g�kc (v)

ð1

s�v

p(w) dw

ð1

c
r (x) dx

�

þ
X1
n¼1

ðs�v

0
p�n(u)

ð1

s�v�u
p( y) dy

� �
du

ðc

0
r�n(x)

ð1

c�x
r ( y) dy

� �
dx

�
dv

�
ds:

(2:5)

Equation (2.4) is just a more compact way to write (2.5). B

Now we condition on I1 ¼ 0 (i.e., the first overflow in [0, 1) occurs at time 0).
Under this condition, let s (t) dt be the probability of the event that the first sporadic
clearing in (0, 1) takes place in [t, t þ dt]. Clearly, the conditional probability s (t) dt
is proportional to r (t) dt; that is, s (t) ¼ Kr (t) for some constant K, which can be
computed from the normalisation condition

K ¼
ð1

0
r(t) dt

� ��1

: (2:6)

For t . s . 0, let tn(s, t) ds dt be the conditional probability, given I1 ¼ 0, that the
nth sporadic clearing in (0, 1) takes place in [s, s þ ds], the next input after this
clearing occurs in [t, t þ dt], and no overflow has occurred in (0, t). Lemma 3 expresses
tn(s, t) in terms of tn21(., .) and the system primitives and also gives a formula for
t1(s, t). Thus, it provides a recursion for tn(s, t).

LEMMA 3: For n ¼ 2, 3, . . . and t . s . 0, we have

tn(s; t) ¼
ðs

0
tn�1(s0; t) q(s� s0) ds0

þ R1(c)
ðs

0
p(t � t0)

ðt0

0
tn�1(s0; t0)

"
q(s� s0) ds0 � dt0

þ
X1
k¼1

Rkþ1(c)
ðs

0
p (t � t00)

ðt 00

0
p�k(t00 � t0)

 

�
ðt 0

0
tn�1(s0; t0) q (s� s0) ds0

" #
dt0
!

dt 00: (2:7)

t1(s, t) is given by

t1(s; t) ¼ s (s) p(t)þ s (s)
X1
k¼1

Rk(c)
ðs

0
p�k(s0) p(t � s0) ds0: (2:8)
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PROOF: Equation (2.8) corresponds to the following partition of the underlying event:
The first sporadic clearing in (0, 1) takes place at time s and either (1) the first input in
(0, 1) occurs at time t or (2) there are k � 1 inputs in (0, s), none of which causes an
overflow, and they are followed by an input at time t.

To see (2.7), note that for the event underlying tn(s, t), there are the following
possibilities:

1. The (n 2 1)st sporadic clearing takes place at some time s0 [ (0, s) and the
nth one takes place s 2 s0 time units later; there is no overflow in (0, t) and
the next input after time s0 arrives at time t.

2. There are times 0 , s0 , t 0 , s such that the following holds: The (n 2 1)st
sporadic clearing takes place at s0 and the nth one takes place s 2 s0 time units
later; there is no overflow in (0, s0) and the first input in [s0, 1) arrives at t 0 and
is of size less than or equal to c; the next input after the one at t 0 arrives t 2 t 0

time units later.
3. There are times 0 , s , t 0, t 00 , s and a k � 1 such that the following

holds: The (n 2 1)st regular clearing takes place at s0 and the nth one
takes place s 2 s0 time units later; there is no overflow in (0, s0); there is
an input at time t0; the kth input after that at t 0 occurs at t 00; the sum of
the input sizes in [t 0, t 00] does not exceed c; the first input after t 00 occurs
t 2 t 00 time units later.

This decomposition yields (2.7). B

Now we are in a position to determine the interoverflow density f.

THEOREM 1: The density f is given by

f (t) ¼
X1
n¼0

fn(t), (2:9)

where

f0(t) ¼ gc(t)
ð1

t
s (s) ds (2:10)

and the functions fn, n � 1, are given by

fn(t) ¼ H0(c)
ðt

0
tn(s; t)

ð1

t�s
q(t0) dt0

� �
ds

þ
X1
k¼1

Hk(c)
ðt

0
p�k(t � s0)

ðs0

0
tn(s; s0)

ð1

t�s
q(s00) ds00 ds

" #
ds0: (2:11)

The functions gc , s, and tn have been computed in Lemmas 1–3.

PROOF: Clearly, gc (t)[
Ð

t
1s (s) ds] dt is the probability that following an overflow at

time 0, the first sporadic clearing takes place in (t, 1) and the first overflow in (0, 1)
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occurs in [t, t þ dt]. This is exactly f0(t) dt. For n � 1, the right-hand side of (2.11)
times dt is the sum of the probabilities of the following two events:

1. Following an overflow at time 0, the nth sporadic clearing takes place
in (s, 1) for some s [ (0, t) and the next one in (t, 1 ); the first input in
(s, 1) occurs in [t, t þ dt] and causes an overflow.

2. There are integers k � 1 and time instants 0 , s , s0 , t and s00 . t 2 s such
that the following holds: After an overflow at time 0, the nth sporadic clearing
takes place in (s, 1) and the (n þ 1)st takes place in s þ s00, no overflow
occurs in (0, s), the next input after s occurs at s0, the kth input thereafter
occurs in [t, t þ dt], the sum of these k þ 1 inputs is greater than c, and the
sum of the k inputs in [s0, t) is at most c.

The sum of the probabilities of events 1 and 2 is equal to fn(t) dt. B

3. SPORADIC POISSON CLEARINGS

If the sporadic clearings take place at Poisson times (with intensity l, say), the
overflow times form a renewal process. We now derive the LT of the interoverflow
distribution for this case in closed form.

THEOREM 2: In the Poisson case, the LT of f is given by

f̂ (a) ¼ (1� p̂(aþ l)) p̂(a) ĝc(aþ l)
(1� p̂(a)) p̂(aþ l)þ ( p̂(a)� p̂(aþ l))ĝc(aþ l)

: (3:1)

PROOF: It is assumed that q(t) ¼ le2lt so that, by the lack of memory of the Poisson
process,

s(t) ¼ le�lt: (3:2)

Inserting (3.2) in the (2.7) and (2.8) of Lemma 3 we obtain, for n ¼ 2, 3, . . . ,

tn(s; t) ¼
ðs

0
tn�1(s0; t)le�l(s�s 0) ds0

þ R1(c)
ðs

0
p(t � t 0)

ðt 0

0
tn�1(s0; t 0) le�l(s�s 0) ds0

" #
dt 0

þ
X1
k¼1

Rkþ1(c)
ðs

0
p(t � t 00)

ðt 00

0
p�k(t 00 � t 0)

 

�
ðt 0

0
tn�1(s0; t 0)le�l(s�s 0) ds0

" #
dt 0
!

dt 00 (3:3)
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and for n ¼ 1,

t1(s; t) ¼ le�ls p(t)þ
X1
k¼1

Rk(c)
ðs

0
p�k(s0) p(t � s0) ds0

 !
: (3:4)

For t, u, a [ [0, 1), let

Tn(tju) ¼
ðt

0
tn(s; t) eus ds; T̂n (aju) ¼

ð1

0
e�atTn(tju) dt:

Integrating (3.3) with respect to s over (0, t) and using Fubini’s theorem we get, for
n ¼ 2, 3, . . . ,

Tn(tj0) ¼ Tn�1(tj0)� e�ltTn�1(tjl)

þ R1(c)
ðt

0
p(t � t0)e�lt 0Tn�1(t 0jl) dt0

�
�e�lt

ðt

0
p(t � t0)Tn�1(t0jl) dt0

�

þ
X1
k¼1

Rkþ1(c)
ðt

0
p(t � t00)e�lt 00

ðt 00

0
p�k(t 00 � t 0)Tn�1(t 0jl) dt0

 !
dt 00

"

�e�lt
ðt

0
p(t � t 00)

ðt 00

0
p�k(t00 � t 0)Tn�1(t 0jl) dt 0

 !
dt 00
#
: (3:5)

Next, take LTs with respect to t and sum over n � 2. Rearranging terms it follows
easily from (3.5) that

T̂1(aj0) ¼ 1� ½ p̂(a)� p̂(aþ l)�
X1
k¼1

Rk(c) p̂(aþ l)k�1

 !

�
X1
n¼1

T̂n (aþ ljl): (3:6)

According to Theorem 1 and (3.2) we have

f0(t) ¼ e�ltgc(t) (3:7)

and

fn(t) ¼ e�ltH0(c)Tn(tjl)þ e�lt

�
X1
k¼1

Hk(c)
ðt

0
p�k(t � s0)Tn(s0jl) ds0; n � 1:

(3:8)
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Taking LTs in (3.7) and (3.8) yields

f̂0(a) ¼ ĝc(aþ l) (3:9)

and

f̂n(a) ¼ T̂n(aþ ljl) H0(c)þ
X1
k¼1

Hk(c) p̂(aþ l)k

 !
; n � 1: (3:10)

By Lemma 1, the second factor on the right-hand side of (3.10) is given by

H0(c)þ
X1
k¼1

Hk(c) p̂(aþ l)k ¼ p̂(aþ l)�1
X1
k¼0

Hk(c) p̂(aþ l)kþ1

¼ p̂(aþ l)�1ĝc(aþ l): (3:11)

Now, summing (3.10) over all n � 1 and using (3.11) and (3.6) we can conclude that

X1
n¼1

f̂n(a) ¼ p̂(aþ l)�1ĝc(aþ l)
X1
n¼1

T̂n(aþ ljl)

¼ p̂(aþ l)�1ĝc(aþ l) 1� p̂(a)� p̂(aþ l)
p̂(aþ l)

K(aþ l)

� ��1

T̂1(aj0);

(3:12)

where we have set

K(a) ¼
X1
k¼1

Rk(c) p̂(a)k:

There is a simple relation between K(a) and ĝc(a): We have

ĝc(a) ¼
X1
k¼1

Hk�1(c) p̂(a)k ¼
X1
k¼1

(Rk�1(c)� Rk(c)) p̂(a)k

¼ p̂(a)
X1
k¼1

Rk�1(c) p̂(a)k�1 � K(a)

¼ p̂(a)½1þ K(a)� � K(a);

so that

K(a) ¼ ½ p̂(a)� ĝc(a)�=½1� p̂(a)�: (3:13)

We now show that

T̂1(aj0) ¼ ½ p̂(a)� p̂(aþ l)�½1þ K(aþ l)�: (3:14)
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To prove (3.14), recall that, by (2.8), T̂1ðaj0Þ ¼
Ð1

0 e�at½
Ð t

0 t1ðs; tÞ ds� dt is the sum
I1 þ I2 of the two terms

I1 ¼
ð1

0
e�at

ðt

0
s (s) p(t) ds

� �
dt (3:15)

and

I2 ¼
X1
k¼1

Rk(c)
ð1

0
e�at

ðt

0
le�ls

ðs

0
p�k(s0) p(t � s0) ds0

� �
ds

� �
dt: (3:16)

Since s(s) ¼ le2ls, we obtain

I1 ¼
ð1

0
e�atp(t)(1� e�lt) dt ¼ bp(a)� bp(aþ l): (3:17)

Let Ua(x) ¼
Ð

x
1e2atp(t) dt and Va,k(x) ¼ e2axp*

k(x). Then Ûa(l) ¼ l21( p̂ (a) 2

p̂ (a þ l) and V̂a,k(l) ¼ p̂(a þ l)k. The kth term in the series (3.16) for I2 can
be computed as follows:ð ð ð

0,s0,s,t,1

le�lse�atp�k(s0) p(t � s0) dt ds0 ds

¼
ð ð

0,s0,s,1

le�lsp�k(s0)e�as0Ua(s� s0) ds ds0

¼
ð

0,s,1

le�ls(Va;k �Ga)(s) ds

¼ lV̂a;k(l)Ûa(l)

¼ ½ p̂(a)� p̂(aþ l)�p̂(aþ l)k: (3:18)

Combining (3.15)–(3.18) we arrive at (3.14).
Now, we can finally compute f̂ :

f̂ (a) ¼ f̂ 0(a)þ
X1
n¼1

f̂ n(a)

¼ ĝc(aþ l)þ ĝc(aþ l)½ p̂(a)� p̂(aþ l)�½1þ K(aþ l)�
p̂(aþ l)� ½ p̂(a)� p̂(aþ l)�K(aþ l)

¼ ĝc(aþ l) p̂(a)
p̂(aþ l)� ½ p̂(a)� p̂(aþ l)�K(aþ l)

¼ ĝc(aþ l) p̂(a) p̂(aþ l)� ½p̂(a)� p̂(aþ l)� p̂(aþ l)� ĝc(aþ l)
1� p̂(aþ l)

� ��1

¼ ĝc(aþ l) p̂(a)½1� p̂(aþ l)�
ĝc(aþ l)½ p̂(a)� p̂(aþ l)� þ p̂(aþ l)½1� p̂(a)� :
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We have used (3.9), (3.12), and (3.14) for the second equation and (3.13) for the
fourth one. The theorem is proved. B

Taking derivatives in (3.1) and setting a ¼ 0 yields the following:

COROLLARY 1: The expected time between two overflows is

� p̂0(0) p̂(l) [1� ĝc(l)]
[1� p̂(l)] ĝc(l)

:
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