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This paper studies the properties of the subnets of a proof-net for first-order Multiplicative

Linear Logic without propositional constants ( MLL−), extended with the rule of Mix: from

` Γ and ` ∆ infer ` Γ,∆. Asperti’s correctness criterion and its interpretation in terms of

concurrent processes are extended to the first-order case. The notions of kingdom and empire

of a formula are extended from MLL− to MLL− + MIX. A new proof of the

sequentialization theorem is given. As a corollary, a system of proof-nets is given for De

Paiva and Hyland’s Full Intuitionistic Linear Logic with Mix; this result gives a general

method for translating Abramsky-style term assignments into proof-nets, and vice versa.

1. Introduction

1.1. The significance of the Mix rule

The structural rule of Mix‡, namely

Mix:
Γ ` ∆ Π ` Λ

Γ,Π ` ∆,Λ

is not accepted in Girard’s system of (classical) Linear Logic (LL). Nevertheless, the

presence of Mix is ubiquitous in researches on linear logic: it is satisfied by most models

of linear logic, such as the denotational semantics of coherent spaces, the game-theoretic

semantics and more. As the example of the game-theoretic semantics shows (Abramsky

and Jagadeesan 1994; Hyland and Ong (manuscript)), results are often obtained for LL

+ MIX first, and additional efforts are then needed to refine them to the case of LL.

† Research supported by EC Individual Fellowship Human Capital and Mobility, contract n. 930142.
‡ The name comes from Girard (1987); the name Mingle has been used for a similar rule in relevance logic.

The name Mix was used by Gentzen for the following rule:

Γ ` ∆, A, . . . , A A, . . . , A,Π ` Λ

Γ,Π ` ∆,Λ
.

However, such a variant of Cut cannot be admitted in linear logic, so there is no real danger of confusing

Gentzen’s use of the term with Girard’s.

https://doi.org/10.1017/S0960129597002326 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129597002326


G. Bellin 664

It could be argued that the rule of Mix represents forms of reasoning that are unavoid-

able in classical logic. Take, for instance, the example by Y. Lafont in the Appendix of

Girard et al. (1989): given any two proofs D1 and D2 of ` A, let D be the derivation

D :

D1 D2

` A ` A
` A,B B ` A

Cut :

` A,A

` A

Lafont correctly argues that, unlike intuitionistic logic, classical logic gives no justification

for choosing between two possible reductions of the indicated cut, the first erasing D1

and yielding D2, the second erasing D2 and yielding D1. Using Mix, we have a third

possibility, namely, reducing D to the following derivation

D′ :

D1 D2

` A ` A
Mix :

` A,A

` A

If cut elimination must preserve the identity of the informal argument formalized by the

given proof, common sense indicates that D′ is intuitively very similar to D, while D1

and D2 are certainly not identifiable with D. We will not pursue the investigation of

Mix in classical logic and consider the rule of Mix only in the context of linear logic.

We will study only the multiplicative fragment MLL of linear logic; MLL− denotes the

multiplicative fragment without the propositional constants 1 and ⊥.

Notice that several extensions of classical linear logic are possible:

(1) LL + MIX.

This system has the equivalent axiomatizations:

LL + ⊥ ` 1

or

LL + A⊗ B ` A℘B, for all A and B.

(2) LL + MIX + the axiom empty sequent `.

This system has the equivalent axiomatization:

LL + ⊥ a` 1.

(3) LL + (A⊗ B) a` (A℘B), for all A and B. We may call this system ‘compact closed

logic’.
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(4) LL + unrestricted Weakening:

` Γ

` Γ, A.

This system has the equivalent axiomatization:

LL + ⊥ ` 0.

This logic is called Affine logic (AL).

It is easy to see that the sets of theorems in these systems satisfy

(1) ⊂ (2) ⊂ (3), (1) ⊂ (4), (2) 6⊂ (4),

where inclusions are proper. We want to distinguish linear logic and these extensions by

their metamathematical and semantical properties.

Affine logic differs considerably from linear logic in its metamathematical properties.

For instance, it is known that propositional AL is decidable, while propositional linear

logic is not. Actually, the idea of a proof-net may have been formulated for the first time for

affine logic, which was studied by J. Ketonen and R. Weyhrauch (Ketonen and Weyhrauch

1984) in Stanford in the early 1980s and called direct logic (for an improved presentation

of a system of proof-nets for multiplicative AL and for a discussion of the relations with

linear logic, see Bellin and Ketonen (1992)). The proof of the sequentialization theorem

for MLL− + MIX given below goes back to the author’s thesis (Bellin 1990) and to

the research in Stanford on direct logic. Proof-nets for direct logic were presented as a

decision procedure and applied to automated deduction (Ketonen 1984); no mathematical

model of cut-elimination was given then. We will not study AL in this paper.

The restricted Weakening rule

` Γ

` Γ, ?A

and the ⊥-rule

` Γ

` Γ,⊥
are needed in the system of linear logic if intuitionistic and classical logics are to be

interpreted within it. However, Weakening creates some problems in the process of cut-

elimination, in particular with respect to the Church–Rosser property. As ⊥ ` ?A for any

A, the problem is already in the treatment of the ⊥ rule, as we shall discuss below.

Concerning systems (1), (2) and (3), the denotational semantics of coherent spaces,

which gave Girard a main motivation for the creation of LL, satisfies the system (2) as

well as (1) (at least in its original form (Girard 1987)). Remember that classical LL is

modelled by ∗-autonomous categories (Barr 1979; Barr 1991; Seely 1989) – with additional

structure to interpret the exponentials – and that the logic (3) is modelled by compact

closed categories; logics (1) and (2) can also be modelled by adding suitable morphisms

in free ∗-autonomous categories.

An argument in favour of MLL− + MIX was given by Girard in his fundamental paper:

‘One of the arguments for MIX is that, without it, the type of communication considered

in proof-nets is very totalitarian: everything communicates with everything, while MIX
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could accept more liberal solutions, typically two non-interconnected proof-nets, etc.’

(Girard 1987, 99–100).

The suggestion that the logic MLL− + MIX might be more suitable for the represen-

tation of parallel logical computations than MLL− itself has been taken up by Asperti

(Asperti 1995). He has given convincing evidence of this fact by showing that the verifica-

tion of correctness for proof-nets in this logic is equivalent to the successful termination

of a concurrent game in the style of Petri-nets.

In Girard (1989, Section II.6.), we read:

‘If one were to accept this rule [Mix], then good taste would require to add the void sequent ` as

an axiom (without weakening, this has no dramatic consequence)’.

If we regard 1 and ⊥ as weak notions of truth and falsity, any system allowing the empty

sequent axiom is paraconsistent, in the sense that it allows local forms of inconsistency.

Even if we reject the interpretation of 1 and ⊥ as truth values, the meaning of the

modalities ‘!’ and ‘?’ changes drastically if the empty sequent is an axiom: indeed by the

restricted Weakening we have also ` ?A for all A; in particular, for any theorem A of

linear logic both ` !A and ` (!A)⊥ hold. Thus in the system (2) the meaning of ?A bears

little resemblance to that of A.

There are reasons to consider the system (2) other than an interest in paraconsistent

logics or good taste. Indeed the system (2) is well behaved with respect to cut-elimination

and enjoys the Church–Rosser property. Therefore it could be used to settle the issue of

Weakening, if there was a simple method of characterizing the proofs of ` Γ in (2) that

can be transformed into proofs of ` Γ in linear logic.

In the first paper to be dedicated to the rule of Mix (Fleury and Retoré 1994), A. Fleury

and C. Retoré developed the idea of a duality between the rule of Mix and the axiom

empty sequent. Such a duality is formalized by assigning an integer (truth-level) to each

sequent with the obvious assignments

`0 A⊥, A `0 1
`m Γ, A `n ∆, B

`m+n Γ,∆, A⊗ B
`n Γ, A, B

`n Γ, A℘B
,

and finally, by letting

`1 `1 ⊥ `m Γ `n ∆

`m+n−1 Γ,∆
.

The system of proof-nets for (2) given by Fleury and Retoré (1994) is a natural extension

of the system for MLL−, and has good metamathematical properties: e.g., it still enjoys

the Church–Rosser property.

However, the notion provable at the zero truth-level does not coincide with provable in

multiplicative linear logic, for example, `0 ⊥ ⊗ (1℘1). Some years ago there might have

been some hope of finding a feasible algorithm that given a proof in the paraconsistent

linear system (2) decides whether or not the proof can be transformed into a proof in

linear logic. However, we now know from a result of Lincoln and Winkler (Lincoln and

Winkler 1994) that the problem of deciding whether a theorem in the logic (2) is also a

theorem of MLL is NP-complete; in other words, knowing a proof D of ` Γ in the logic
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(2) need not reduce the complexity of finding a proof of Γ in MLL: recognizing a proof

in such a representation of MLL is as hard as finding one.

By contrast, to decide whether a theorem ` Γ in MLL− + MIX is also a theorem of

MLL− it is enough to look at Γ, according to the formula (Fleury and Retoré 1994)

(∗) #par + #conclusions = #times + 2(#Mix) + 2;

equivalently, if a proof-net with conclusions Γ is given, we may use

(∗∗) #Mix + #axiom + 1 = #par + #conclusions + #Cut.

Both formulas are easily proved by induction on the derivations in MLL− + MIX.

These facts may be taken as evidence that the border between relevance and irrelevance,

between consistency and paraconsistency remains marked very strongly within linear logic.

This paper ‘draws the line’ between logics (1) and (2) and is interested in (1) per se.

Is the rule of Mix essentially a classical rule, or can it also occur in intuitionistic

systems? The multiplicative fragment of intuitionistic linear logic may be axiomatized as

Gentzen’s systems as follows:

(I-1) (ILL) the intuitionistic linear consequence relation, axioms, Cut, Exchange, rules

for the tensor and linear implication;

(I-2) the classical two-sided linear consequence relation, axioms, Cut, Exchange, rules

for the tensor and the par, without negation;

(I-3) (FILL, Full Intuitionistic Linear Logic) the classical two-sided linear consequence

relation, rules for tensor, par and linear implication, but special restrictions must

be put on the right rule for implication to guarantee the intuitionistic nature of the

connective. It was not immediately obvious how to formulate such restrictions so

that the system would enjoy Cut-elimination, as Schellinx (1991) first pointed out.

Thus FILL simultaneously embodies features of concurrent logical computations, induced

by its connective par and the sequential properties of intuitionistic linear implication.

Remember that the systems of intuitionistic linear logic have well-known categorical

models: the system (I-1) is modelled by symmetric monoidal closed categories; the system

(I-2) is modelled by weakly distributive categories (Blute 1993; Blute et al. 1996; Cockett

and Seely 1992); the system (I-3) also has a categorical model, in fact it was inspired by

one of V. de Paiva Dialectica Categories (de Paiva 1989a; de Paiva 1989b)).

The rule of Mix can be safely added to the system (I-2); moreover, one of de Paiva’s

Dialectica categories satisfies the Mix rule. Here we show that Mix can be safely added

to (I-3), once the restriction on the right implication rule is correctly formulated. To

this purpose, Hyland and de Paiva (1993) uses term assignments to the sequent calculus,

which has been refined recently by Bierman. We give an equivalent formulation using a

system of proof-nets for FILL + MIX; since our system admits cut-elimination, it yields

an independent verification of the restrictions by term assignments on the intuitionistic

implication. This application shows that the rule of Mix need not be excluded if we use

linear logic as a framework for the representation of classical and intuitionistic logic.
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1.2. Why Proof-Nets?

Proof-nets are among the most fascinating constructions to have arisen from linear logic.

They provide a concise graph-theoretic representation of deductions in fragments and

variants of linear logic – principally, first-order MLL− and MLL− + MIX. A beautiful

part of the subject is the interaction between the global correctness conditions, which a

proof-structure must satisfy to be a proof-net, and a local normalization process. Indeed,

a main feature of proof-nets is the decontextualization of inferences, which are represented

as vertices (links) in a graph (proof-structure), without distinction between conjunctions

and disjunctions. This opens the way to a concurrent logical computation (parallelization

of the syntax). Moreover, each normalization step of proof-nets reduces the size of the

data, and the normalization process enjoys the Church–Rosser property.

More precisely, the relation between premises and conclusions of links induce a partial

order on proof-structures, which will be called the structural orientation. The formulas

associated with the premises are subformulas of the formula associated with the conclusion,

so the structural orientation is in agreement with the relation of being a subformula. In

fact, only the axiom (and perhaps Cut) links are needed to define a proof-structure,

once a tree of subformulas is given. In this respect, proof-structures are like sequent

derivations and unlike natural-deduction derivations. As inferences are decontextualized,

the structural orientation is not tree-like, as it is in the sequent calculus: thus one of

the functions of a correctness condition is to guarantee the possibility of recovering the

tree-like order of a sequential proof.

There is a ‘context-forgetting’ map ( )− from sequent calculus derivations in linear logic

to proof-nets, such that (D)− = (D′)− if and only if D′ results from D by successive

permutations of inferences. In other words, ( )− is a bijection between proof-nets and

the equivalence classes of sequent derivations modulo permutations of inferences. Given

a proof-net R, we have a polynomial time method to obtain a sequent derivation D
such that (D)− = R (sequentialization theorem). Several correctness conditions have been

found. They are directly connected with the game-theoretic semantics of MLL−, with

coherence theorem in monoidal closed categories, etc., and provide tools for the study of

normalization in the ‘geometry of interaction’. There are tests of correctness that terminate

in time at worst quadratic on the size of the proof-structure (Gallier (preprint)).

Girard’s no-short-trip condition (Girard 1987) does not distinguish between correct

and incorrect proof-structures for MLL− + MIX: this is done by Danos and Regnier’s

correctness condition (Danos and Regnier 1989), which requires the acyclicity of the

D-R-graphs on the proof-nets in the case of MLL− + MIX, and, additionally, the

connectedness of such graphs in the case of MLL− (of course, the additional requirement

of connectedness may be replaced by counting according to the formulas (*) or (**)). The

correctness criterion of Ketonen and Weyhrauch for direct logic also uses acyclicity of

chains; a chain is just another notation for a path in the D-R-graph.

A significant contribution to proof-nets for MLL− + MIX has been given by A. Asperti

(Asperti 1995). His criterion appears as the correct generalization to MLL− + MIX of

Girard’s no-short-trip condition. While Girard’s trips are sequential processes, Asperti’s

trips are distributed processes. Initially, a token of type ↑ occurs on each conclusion and
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Cut of the proof-structure. They propagate upwards, according to A-switchings for the

times and cut links. Whenever both conclusions of an axiom are reached by tokens ↑,
these are replaced by tokens ↓, which propagate downwards. When tokens ↓ have reached

both premises of a par link, they are replaced by a token ↓ on the conclusion. When a

times or cut link is reached for the second time, the trip continues with a token ↑ on the

premise not yet reached, and so on. The process terminates successfully when there are

tokens ↓ on all conclusions. A proof structure is correct if for every A-switching, Asperti’s

trip terminates successfully.

Asperti’s trips can also be interpreted in terms of concurrent processes, with formula

occurrences as processes. The activation or termination of a process A is the act of putting

a token ↑ or ↓, respectively, on a formula A. A process A℘B is executed by executing

in parallel the processes A and B. The rules of the game on axioms and par links are

syncronization requirements between processes. The execution of a process A ⊗ B is the

execution of A and B as mutually exclusive processes, in the order determined by an

A-switch. Each A-switching imposes restrictions on the order of the execution of the

processes, called causal dependencies; Asperti proved that a trip ends in a deadlock if and

only if there is a cyclic causal chain. This is an interesting process-theoretic interpretation

of the condition of acyclicity.

Proof-nets for first-order MLL− were defined by Girard as a straightforward general-

ization of Danos and Regnier’s condition for the propositional case (Girard (preprint)).

There are switches on for all links, so the conclusion of a for all link may be connected

either to the premise of the link or to any other formula containing the eigenvariable

associated with that link.

One of the contributions of this paper is the extension of Asperti’s criterion to the

first-order case: when the premise of a for all link is activated, its eigenvariable is declared

a global variable; now the premise of an exists link or of a Cut is activated only if all the

eigenvariables occurring in it also occur in the list of global variables. Thus the correctness

criterion for the first-order case is a natural requirement of synchronization between the

activation of processes occurring in for all and exists links.

The bridge between local and global properties of proof-nets, thus the key to many

results in the subject, is the study of the subnets of proof-nets; it is more instructive to

study subnets not just as subgraphs, but as subderivations of formulas: in particular, we

consider the kingdom k(A) and the empire e(A) of an occurrence A in a derivation, i.e., the

smallest and the largest subnet having A as a conclusion.

In the system MLL with the units 1 and ⊥, a full decontextualization of inferences

would require the introduction of an axiom of the form ⊥. By Lincoln and Winkler’s result

(Lincoln and Winkler 1994), proof-structures of this kind underdetermine a proof: in fact

it is easy to construct examples where the same proof-structure corresponds to sequent

derivations that are not equivalent modulo permutations of inferences. It is therefore

necessary to indicate a substructure of a proof-structure where an axiom ⊥ is attached.

This is obtained by introducing Weakening boxes (Girard 1987), but then the Church–

Rosser property is lost. It suffices to attach the axiom ⊥ to any formula or link in the

suitable substructure; it is convenient to choose this area ‘as large as possible’, the empire

of ⊥. This idea has been developed and usefully applied in category theory (Blute et al.
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(to appear)). However, a proof-theorist could argue that such proof-nets are only a small

improvement over sequent derivations, as they do not provide a unique representation of

equivalence classes of sequent derivations modulo permutation of inferences.

In the case of MLL− without Mix it has been shown by J. van de Wiele and the author

(see Bellin and Scott (Theorem 13, 35–45)) that certain of Girard’s trips on a proof-net

correspond to translations of intuitionistic MLL− (namely, the multiplicative fragment of

ILL, see I-1 above) into classical MLL−. More precisely, there is an operation G mapping

sequent derivations in intuitionistic MLL− into sequent derivations in classical MLL− as

follows. In an intuitionistic sequent Γ ` A, the formulas in Γ may be regarded as inputs

and A as the output. The operation G maps a sequent ΓI ` AO to ` ΓI , AO , where G(pO)

= p = G(p⊥I ) and G(pI ) = p⊥ = G(p⊥O) and, moreover,

G(A⊗ B)O = AO ⊗ BO G(A⊗ B)I = AI℘BI

G(A −◦ B)O = AI℘BO G(A −◦ B)I = AO ⊗ BI .
Conversely, we have the following fact: given a cut-free proof-net R with conclusions

Γ, A in MLL−, every trip in the sense of Girard (1987) on a proof-net reintroduces an

input-output orientation and thus corresponds to a derivation D′ in intuitionistic MLL−

such that R may be regarded as (G(D′))−. If R contains cut-links, only trips that are

compatible with the process of cut-elimination (computationally consistent orientations)

yield such an intutionistic derivation.

This result essentially shows that one can simulate the structure of a natural deduction

derivation on a proof-net by adding another ordering, the input-output orientation, which

goes up in the proof-structure from formulas marked input to axioms – like in the

elimination part of a natural deduction path – and down from axioms to formulas marked

output – like in the introduction part of a natural deduction path.

Does an analogous result hold for MLL− with Mix? The intuitionistic system ILL

permits the use of Mix only with severe restrictions, which are removed in the systems

(I-2) and (I-3), i.e., in FILL. Now the translation of the system FILL into proof-nets is

easy once an adequate restriction on the intutionistic implication rule has been found:

the key notion here is that of a directed chain, which yields the requirement that for every

par link AI℘BO , if a directed chain from AI eventually terminates in XO , then X = B

(functionality of implication). On the other hand, the converse result has no analogue:

there are proof-nets for MLL− that are not in the image of any FILL− derivation, e.g.,

the only subnet with conclusions p℘q, q⊥℘r, r⊥℘q⊥, where functionality of implication

fails for every admissible input-output orientation.

The dynamical interpretation of this result is that every cut-elimination process in

classical MLL− can be simulated by some cut-elimination process in intuitionistic MLL−;

the classical nature of the dynamics of proof-nets emerges only in the fact that the

correspondence is many-one. On the other hand, when Mix is introduced there are cut-

elimination processes in classical MLL− + MIX that have no intuitionistic counterpart

in FILL− + MIX.

It would be desirable to give these rather technical features of proof-nets a more

abstract mathematical presentation. We will not do this here, except for the following
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elementary remarks. Every proof-structure can be associated with a proof in the compact

closed logic (3), or, in other words, it can be regarded as a morphism in a free compact-

closed category. There is a functor F from ∗-autonomous categories to compact closed

categories. There are morphisms in a free compact closed category that are not in the

image of F , for example, g ◦ f where f : 1 → A ⊗ A∗ and g : A ⊗ A∗ → ⊥. The test of

the correctness conditions and the sequentialization algorithm on a proof-structure R are

related to the construction of a morphism f in a free ∗-autonomous category such that

F(f) corresponds to R; such a construction does not seem to be functorial.

Also, there is a functor G from symmetric monoidal closed categories to ∗-autonomous

categories, which can be described as forgetting the input-output orientation of an intu-

itionistic derivation. Conversely, the result by Bellin and van de Wiele (Bellin and Scott

1994) describes a process of constructing a map in a free symmetric monoidal closed

category, given a map in a compact closed category; such a process does not seem to be

functorial.

R. Blute made an essential use of proof-nets for MLL− + MIX in his study of coherence

in monoidal categories (Blute 1993). Moreover, (two-sided) proof-nets have been used to

give categorical models of various extensions of the system (I-2) of weakly distributive

categories (Blute 1993; Blute et al. 1996); hence proof-nets already play a role in the study

of monoidal categories.

In conclusion, in this paper we present the following results:

1 a generalization of the theory of empires and kingdoms in Bellin and van de Wiele

(1995) from MLL− to MLL− + MIX;

2 a proof of the sequentialization theorem for MLL− + MIX;

3 an extension of Asperti’s criterion to the first-order case;

4 a system of proof-nets for the multiplicative fragment of de Paiva and Hyland’s FILL

+ MIX.

The following facts should be noted:

1 The theory of subnets of a proof-net in MLL− with Mix does not coincide with

that for MLL− without Mix (Bellin and van de Wiele 1995). Indeed, the notion of

subnet is trivialized here; instead we need the notion of a normal subnet, i.e., a subnet

whose sequentialization may be a subderivation of the sequentialization of the whole

proof-net. In MLL− without Mix every subnet is normal.

2 Our argument for the proof of the sequentialization theorem for MLL− + MIX is

different from the other existing arguments in that we do not reduce to the case of

MLL− without Mix. We argue directly about the graph-theoretic configuration of

chains and about the nesting of kingdoms.

3 The correctness condition for first-order proof-nets in terms of Asperti’s games is

an efficient characterization, which is more intuitive than the usual graph-theoretic

condition of acyclicity using for all switches.

4 The specific form of our sequentialization argument for MLL− + MIX easily extends

to a proof-net representation of Full Intuitionistic Linear Logic with Mix ; the method

used here for translating sequent calculi with λ-term assignments in the style of

Abramsky (1993) into proof-nets, and vice versa, may be more generally applicable.
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1.3. Further directions

A considerable amount of research has taken place on linear logic with Mix and other

variants in the past decade; proof-nets and other formal tools for these logics are better

understood. What directions remain open?

The rule of Mix may find a place in the study of the cut-elimination procedure for

classical logic, as indicated above. However, the most interesting developments in the

theory of proof-nets will focus on the role of the Exchange rule. Noncommutative linear

logic, which excludes Exchange, has found applications to computational linguistics. The

Exchange rule is studied by the embedding of the proof-graphs in topological spaces.

Braided proof nets are proof-nets embedded in the space R3; the embedding of proof-

nets in R2 yields a representation of commutative linear logic in a non-commutative

enviromnent with the explicit rule of exchange (Bellin and Fleury 1995). In that context,

the techniques of this paper find a more natural presentation: for instance, the correctness

criterion for proof-nets in R2 terminates in linear time (Bellin and Fleury 1995). Here,

linear logic meets interesting and well-known mathematical objects, such as braids, tangles

and knots, and proof-nets are found similar to notations used in physics.

2. Subnets of proof-nets in MLL− + MIX

We begin this section with the definitions of the sequent calculus (2.1) and the standard

definition of proof-structures and proof-nets. Then we state the sequentialization theorem

(2.2) and motivate the definitions of normal subnets, kingdom and empires using the

correspondence with subderivations of sequent derivations (2.3). We then present the

descriptive notions of a chain and a loop (2.4); with these tools, a characterization is

given of kingdoms and empires and of the ordering of the kingdoms (2.5). Finally, we

give our proof of the sequentialization theorem, and the characterization of permutations

of inferences is obtained (2.6).

2.1. The language and the sequent calculus

The first-order language of linear logic is defined in Girard (1987); we consider the

first-order MLL− (Multiplicative Linear Logic without Constants) fragment. Remember

that the operation ( . )⊥ (linear negation) applies to atomic formulas only; formulas

are built from atoms p1, . . . and their negations using the binary connectives ⊗ (times)

and ℘ (par), and the quantifiers ∀ (for all) and ∃ (exists); and negation of non-atomic

formulas is defined by p⊥⊥i =d pi, (A ⊗ B)⊥ =d A
⊥℘B⊥, (A℘B)⊥ =d A

⊥ ⊗ B⊥,
(∀x.A)⊥ =d ∃x.(A⊥), (∃x.A)⊥ =d ∀x.(A⊥).

The sequent calculus for first-order MLL− (Girard 1987) contains logical axioms, cut,

the structural rule of exchange and the logical rules for times, par, for all and exists.

logical axiom:

` A⊥, A
cut:

` Γ, A⊥ ` ∆, A

` Γ,∆

exchange:

` Γ, A, B,∆

` Γ, B, A,∆
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times:
` Γ, A ` ∆, B

` Γ,∆, A⊗ B,

par:

` Γ, A, B

` Γ, A℘B

for all:

` Γ, A

` Γ, ∀x.A

where x /∈ Γ;
exists:
` Γ, A[t/x]

` Γ, ∃x.A

We focus on the extension of MLL− with the structural rule of Mix:

Mix:
` Γ ` ∆

` Γ,∆
.

We use the standard terminology for sequent calculi, namely we speak of the passive,

active and principal formulas in an inference: e.g., all formula occurrences are passive in

a Mix, the cut formulas are active in a Cut, etc. Let I1/I2 be a pair of consecutive

inferences in a derivation such that the principal formula of I1 is not active in I2;

observe that we can always permute the order of these inferences, except in the cases

indicated in the following table.

I1: Cut Mix ⊗ ℘ ∀ ∃

I2:

Cut

Mix

⊗

℘ no no no

∀ no

∃

2.2. Proof-structures

In Girard’s original formulation (Girard 1987) a proof-structure is a set of formula

occurrences and links, where a link is a relation between formula occurrences; this leads

to a graphic representation of proof-structures where vertices are associated with formulas

and edges with links. More recently, a variant graphic formulation has become usual, and

in this, vertices are associated with links and edges with formulas; we will adopt the latter

formulation.

Definitions 1.

(i) A proof-structure is a graph whose edges are oriented and labelled with occurrences

of formulas. (In most cases we will not keep the distiction between edges and their

labels in our text.) Vertices are either conclusions, with one incident edge, or links:

with axioms, for all, exists links, of incidence 2, and cut, times and par links, of

https://doi.org/10.1017/S0960129597002326 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129597002326


G. Bellin 674

incidence 3. The arrows pointing at a link are its premises, the other incident arrows

are its conclusions, as indicated in the following table:

AXIOM CONCLUSION CUT

A⊥ A

BA

A⊥A

cut

A B

∀
A A[t/x]

FOR ALLPARTIMES EXISTS

⊗ ℘

A⊗ B A℘B ∀x.A
∃
∃x.A

(ii) First-order proof-structures must satisfy the following conditions on free and bound

variables; for further details and motivations, see Bellin and van de Wiele (1995).

Remember that an eigenvariable is a free variable that becomes bound in a universal

quantification; to each eigenvariable x associate a distinct constant x.

(a) Each occurrence of a quantifier link uses a distinct bound variable.

(b) If a variable occurs freely in some formula of the structure, the variable is the

eigenvariable of exactly one ∀-link.

(c) The conclusions of the proof structure are closed formulas.

(d) (Strictness condition) No substitution of any number of occurrences of an

eigenvariable x with the constant x yields a correct proof structure with the

same conclusions.

(iii) A Danos-Regnier graph (D-R-graph) is the graph resulting from the following

transformations:

— for each par link select one premise and remove its connection with the link;

— for each for all link L with conclusion ∀x.A select a link L′ whose premise B

contains the eigenvariable x; introduce an edge between L and L′ and at the

same time remove the existing connection between the edge A and the link L;

if no such B exists, leave the link unchanged.

The set of these choices is called a switching; if s is a switching on a proof-structure

R, the D-R-graph is written sR. A path ending with the edges A and B in the

D-R-graph sR will be denoted by paths(A,B).

(iv) A proof-structure R is a proof-net for MLL− + MIX if for every switching s the

D-R-graph sR is acyclic.
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(v) A substructure R′ of a proof-structure R is a proof-structure together with an

embedding ι : R′ → R such that if A = ι(A′), then A′ results from A by substitution

of eigenvariables with constants (each eigenvariable x being replaced by a distinct

constant x). Obviously, in the propositional case we may let ι be the identity function

on a subgraph. Given a formula A in a proof-structure R, which is the conclusion of

a link v, we write st(A), or st(v), for the smallest substructure with A as a conclusion.

(vi) A subnet of a proof-net is a substructure that is a proof-net.

One aim of this paper is to give a new proof of the following theorem.

Theorem 1. There exists a ‘context-forgetting’ map ( . )− from sequent derivations in

first-order MLL− + MIX to proof-nets with the following properties:

(a) Let D be a derivation of Γ in the sequent calculus for MLL− + MIX; then (D)− is

a proof-net with conclusions Γ.

(b) (Sequentialization) If R is a proof-net with conclusions Γ for MLL− + MIX, there

is a sequent calculus derivation D of Γ such that R = (D)−.

(c) If D reduces to D′, then (D)− reduces to (D′)−.

(d) If (D)− reduces to R′, there is a D′ such that D reduces to D′ and R′ = (D′)−.

The proofs of parts (a), (c) and (d) are easy; we will focus on part (b).

2.3. Permutation of inferences and subnets

Another aim of this paper is to develop a theory of subnets of proof-nets that yields an

answer to the following question: given an inference I in a sequent derivation D in MLL−

+ MIX, which inferences I′ of D can be permuted above or below I?

For the system MLL− without Mix the answer is given by Theorem 2 in Bellin and

van de Wiele (1995). The largest and the smallest subnet having A as a conclusion are

called the kingdom kA and the empire eA of A, respectively. Now let I, I′ be inferences

in D and let v, v′ be the correponding links in (D)−; suppose v is a par or times link with

premises A, B and conclusion C . Now I′ can be permuted below I if v′ does not occur

in kC . To see whether I′ can be permuted above I, we look to see whether v′ occurs in

eA ∪ eB if I is a times rule; if I is a par rule, we look to see whether v′ occurs in eC .

We will obtain a similar result for MLL− + MIX, but in order to do this we must

strengthen the notions of kingdom and empire. In order to see this, consider following

derivations:

D1: D2:
` A⊥, A ` B, B⊥ ` A⊥, A ` B, B⊥

Mix ⊗
` A⊥, A, B, B⊥ ` A⊥, A⊗ B, B⊥

exchanges exchanges
` A,B, B⊥, A⊥ ` A⊗ B, B⊥, A⊥

℘ ℘
` A,B, B⊥℘A⊥ ` A⊗ B, B⊥℘A⊥

The ‘context forgetting’ map sends D1 and D2 to the following proof-nets for MLL−

+ MIX:
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R1 = (D1)− : R2 = (D2)− :

A B B⊥ A⊥ A B B⊥ A⊥

B⊥℘A⊥ A⊗ B B⊥℘A⊥

In MLL− + MIX, R1 is the largest subnet of R2 having A as a conclusion. However, D1

is not a subderivation of D2 nor of any derivation resulting from D2 by permutations of

inferences; also, we cannot permute the par rule above the times rule in D2. Notice that in

MLL−, R1 is a substructure of R2, not a subnet; but in MLL− + MIX any substructure

of a proof-net satisfies the acyclicity condition, hence it is a subnet.

Definitions 2.

(i) A non-logical axiom is a link with no premise and n conclusions, for some n. We

consider proof-structures with non-logical axioms; D-R-graphs for such structures

are defined as before. A proof-net with non-logical axioms for MLL− + MIX is a

proof-structure with non-logical axioms that satisfies the acyclicity condition.

(ii) Let R be a proof-structure for MLL− and let S be a substructure of R with

conclusions C1, . . ., Cn. The complementary substructure S of S in R consists of all

edges and links in R\S and, in addition, the edges C1, . . ., Cn and a new non-logical

axiom C1, . . . , Cn with these edges as conclusions.

(iii) Let R be a proof-net for MLL− + MIX. A subnet S of R is normal if the

complementary substructure S of S is a proof-net with a non-logical axiom.

(iv) The kingdom kA (or the empire eA) of A in R is the smallest (the largest) normal

subnet of R that has A as a conclusion.

Proposition 1. Let R be a proof-net for MLL− + MIX. A subnet S of R is normal if

and only if the following condition is satisfied: for every X and Y in S and for every

switching s of R, if there is a paths(X,Y ) connecting X and Y in sR, then such a path

belongs also to sS (where we use the same symbol s for the switching of R and its

restriction to S).

Corollary 1. The intersection of two normal subnets is a normal subnet. The union of two

normal subnets need not be normal.

Proof. The proof is left as an exercise.

It is not immediately obvious how to prove that given a proof-net R for MLL− +

MIX and a formula occurrence A in R, there exists a subnet that is normal and has A

as a conclusion. Girard’s inductive definition of empires (Bellin and van de Wiele 1995,

Proposition 2, Sections 2.3 and 3.3) cannot be used for this purpose in MLL− + MIX :

in the following example the inductive definition in question applied to A℘B does not

identify a normal subnet with A℘B as a conclusion.

https://doi.org/10.1017/S0960129597002326 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129597002326


Subnets of proof-nets in multiplicative linear logic with MIX 677

D D⊥ B⊥ A⊥ C⊥ C A B
D⊥℘B⊥ A⊥℘C⊥ A℘B

(D⊥℘B⊥)⊗ (A⊥℘C⊥)

2.4. Paths, chains and loops

The definition of a chain is just a notational variant for the notion of a path in a D-R-

graph, which has been used in direct logic (Bellin and Ketonen 1992) and later in the work

by Asperti (Asperti 1995). Without introducing switches on the par links, a chain between

A and B is defined as a path from A to B in the proof-structure that changes direction

(with respect to the structural orientation) only at axioms, times and cut links. The notion

of a loop is fundamental for the study of normal subnets; its geometric properties can

be understood best if we consider proof-structures as embedded in a plane, since then a

loop is just a particular kind of a 2-cell and a more efficient correctness criterion can be

defined in terms of the 2-cells (Bellin and Fleury 1995).

Definitions 3.

(i) The relation between a premise and the conclusion of a link has a transitive closure,

which we denote by ≺ ; if A ≺ X, we say that A is a hereditary premise of X or that

X is a hereditary conclusion of A. Obviously, ≺ is also an ordering of links. It may

be called the structural orientation of the proof-structure.

(ii) In a first-order proof-structure the for all switches introduce edges between links

that are not in the ≺ relation. Thus, given a switching s, we consider the order ≺s
of links defined as follows: v ≺s u if and only if there are for all links w1, . . ., wn and

links v0, . . ., vn+1 such that the switching s yields s(wi) = vi and, moreover, we have

v = v0 � v1, w1 � v2, . . ., wn � vn+1 = u.

(iii) Let R be a proof-structure and consider paths(v, w), the path from the links v and

w ending with edges A to B in the D-R-graph sR, also written paths(A,B). Then

paths(v, w) is called a chain of the type indicated by the following table:

TYPE : v has A as a w has B as a

dv, we or dA,Be premise premise

dv, wc or dA,Bc premise conclusion

bv, we or bA,Be conclusion premise

bv, wc or bA,Bc conclusion conclusion.

The notation ‘|A,Be’ stands for ‘either dA,Be or bA,Be’, and, similarly, for dA,B|,
|A,B|. We abbreviate ‘a chain γ of type dA,Be’ by ‘a chain dA− γ − Be’.

(iv) A chain dA− γ−Be where A and B are premises of a par link will be called a loop.

The par link in question (or its conclusion) is called the exit of the loop.
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(v) We define a relation � as follows: let X �0 Y if X ≺ Y (or X ≺s Y for some

switching s, in the first-order case). Moreover, let X �1 Y if X is in a loop γ with

exit Y . Let � be the transitive closure of �0 and �1. Obviously, these relations

apply to links as well.

The proofs of the following propositions are left as an easy exercise.

Proposition 2. Let R be a proof-net. Let A be the conclusion of a link v in R. The smallest

substructure of R with A as a conclusion, denoted by st(A), or st(v), is characterized as the

set of links w such that w �0 v, together with the edges adjacent to any such w.

Proposition 3. A chain γ of type dA,Be in R or bA,Bc has the form

CHAIN OF TYPE dA,Be CHAIN OF TYPE bA,Bc

wn+1w1 wn

. . .

. . .

vn+1v1

A B

. . .

B

. . .

. . .

vn. . .v1

A

w1

where the wi are Times or Cut links and the vj are either axioms or links selected by a

∀-switch. In a chain of type bA,Bc we have wi �0 vi �0 wi+1 for i 6 n, and, moreover,

A�0 w1, B �0 wn+1. Similar facts hold for chains of other types.

We call the links wi lower links of the chain γ; A, B and the conclusions of the links

w1, . . ., wn are called the lower members of γ.

Proposition 4. Let R be a proof-net, let u be any link in R, let γ1 = paths′ (v, u) and γ2 =

paths′′ (u, w) be incident to u by different edges. Then one of the following is the case:

1 u is a par or for all link and the chains have types |v − γ1 − ue, du− γ2 − w|;
2 otherwise, if γ1 ∩ γ2 = {u}, there exists a chain γ = paths(v, w), for some s, the

concatenation of γ1 and γ2, written γ = γ1 ∗ γ2;

3 otherwise, there exists a par or for all link v′ such that

γ1 = |v − γ1
1 − v′c ∗ dv′ − γ2

1 − u|, γ2 = |u− γ1
2 − v′e ∗ bv′ − γ2

2 − w|

and γ2
1 ∗ γ1

2 is a loop with exit v′.

2.5. Kingdoms and their ordering

In the case of MLL− without Mix the fact that the relation � is an ordering follows

easily from a simple fact about the nesting of empires and kingdom (Bellin and van de

Wiele 1995, Lemma 3). But such a nesting no longer holds in MLL− + MIX, and an

explicit graph-theoretic analysis is needed to prove the property of ordering. The definition

of kingdom is a direct generalization of the one for MLL− without Mix (Bellin and van

de Wiele 1995, Proposition 3); the definition of empire is due to Asperti (1995).
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Lemma 1. If R a proof-net for MLL− + MIX and A � B, there exist chains γ of type

|A,Be. Moreover, we may assume that either A is a lower member of γ or γ is of type

bA,Be.
Proof. The argument is by induction on �. For the base case, let γ0 be any loop with

exit v0. If A ∈ γ0 or if A �0 u with u in γ0 and v0 �0 B, then, by choosing suitable

switches and using a part of γ0, we find a chain |A− γ − Be. Such a chain will be of type

bA,Be, unless A is a lower member of γ0, in which case γ is of type dA,Be.
For i = 0, . . . , n, let γi be a loop with exit vi, and let ui be a link in γi such that

A�0 un �1 vn �0 un−1 �1 vn−1 �0 . . . u0 �1 v0 �0 B.

By the induction hypothesis, we have a chain bvn − γ − Be. We show that γn ∩ γ = {vn}.
Suppose this is not true. Starting from vn, follow γ and let u be the first link in γ, different

from vn, such that u ∈ γ ∩ γn.
If Case (1) of Proposition 4 does not apply to u, we are in Case (2) and there are

subchains γn of γn and γ of γ whose concatenation bvn − γ ∗ γn − vne is cyclic; this is

impossible in a proof-net.

Therefore u is a par or for all link and the subchain γ of γ from vn to u is of type

bvn, ue. Since γn is a loop, there is a lower link w ∈ γn such that u �0 w, and therefore

we can find a subchain γn of γn of type bu, vne. But γn and γ intersect only at {vn, u}; thus

bvn − γ ∗ γn − vne is cyclic, which is again a contradiction.

Hence γn ∩ γ = {vn}. The argument for the base case yields a subchain γ′ of γn of type

|A, vne and the result is given by γ′ ∗ γ.

A

vnγn

vn−1

v0

un

un−1

γn−1

u0

B

γ0

Corollary 2. (Kingdom Ordering) In a proof-net for MLL− + MIX the relation � is an

ordering.
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The name of the Corollary is justified by the following characterization of kingdoms.

Lemma 2. Let R be a proof-net for MLL− + MIX and let A be a formula occurrence in R.

Then kA, the smallest normal subnet having A as a conclusion, exists and is characterized

by the following equivalent conditions:

(a) the smallest set closed under the induction conditions

(0) A ∈ kA.

(i) If v = X X⊥, then k(v) = kX = kX⊥.

(ii) If v =
X Y

X ⊗ Y
, then k(v) = k(X ⊗ Y ) = kX ∪ kY ∪ {X ⊗ Y },

and similarly for v =
A[t/x]

∃x.A
.

(iii) If v =
X Y

X℘Y
, then

k(v) = kX℘Y =
⋃
s

⋃
Z∈paths(X,Y )

kZ ∪ {X℘Y }

where s ranges over all switchings of R,

=
⋃

dX−γ−Y e

⋃
Z∈γ

kZ ∪ {X℘Y },

where γ ranges over loops,

and similarly for v =
A

∀x.A
.

(b)
⋃
X�A st(X) ∪ st(A).

Proof. It is easy to see, by induction on�, that Conditions (a) and (b) define the same

set, call it kA: indeed

kA = st(A) ∪
⋃

X℘Y�A
k(X℘Y )

= st(A) ∪
⋃

X℘Y�A

⋃
Z∈dX−γ−Y e

kZ

where γ ranges over loops

= st(A) ∪
⋃

X�1A

kX,

from which the result follows by the induction hypothesis. Now the set (b) is clearly a

substructure of R, hence (in MLL− + MIX) it is a subnet of R. The fact that kA has A

as a conclusion follows from the fact that � is an order. It remains to show that kA is a

normal subnet.

Let V and Z occur in kA and let γ = paths(V ,Z) be any chain such that γ 6⊂ kA.

Starting from V , follow γ and let U be the first element such that U is in kA but the
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next element U ′ is not. Similarly, continuing from U ′ along γ, let W ′ be the first element

such that W ′ does not belong to kA, but the next element W does. By Lemma 1, we have

chains dA− γU −Ue and dA− γW −W e; we also have a subchain bU ′ − γ−W ′c of γ, and

γ is disjoint from γU and γW . By Proposition 4, the concatenation γU ∗ γ ∗ γW yields a loop

with exit in kA; but then γ ⊂ kA and this is a contradiction. Hence kA is a normal subnet

with A as a conclusion, indeed the smallest subnet with these properties, since Conditions

(a) must be satisfied by any normal subnet containing A.

Lemma 3. Let R be a proof-net for MLL− + MIX and let A be a formula occurrence in R.

Then eA (the largest normal subnet having A as a conclusion) exists and is characterized

by the condition

(a) {X : there is no chain |X, . . . , Ac in R }

Proof. Normal subnets with A as a conclusion exist, by Lemma 2. If there is a chain

|X, . . . , Ac and S is a normal subnet containing X and A, then A cannot be a conclusion

of S. Hence every normal subnet with A as a conclusion is included in the set (a).

If a formula occurrence X is in the set (a), all the hereditary premises of X and the

axioms above them are in the set (a). Therefore the set (a) is a substructure of R, hence

(in MLL− + MIX) it is a subnet. To see that the set (a) is normal, let X and Y be distinct

formula occurrences in R and let |X − γ − Y | be a chain such that some link w in γ is

not in the set (a). This means that there is a chain γ′ of type |w,Ac. We may assume that

γ ∩ γ′ = {w} (otherwise we take a subchain of γ′), and that γ is the concatenation

γ = |X − γX − we ∗ bw − γY − Y |.

If γ′ has type bw,Ac, then γX ∗ γ′ is a chain of type |X,Ac. If γ′ has type dw,Ac, then

γY ∗ γ′ is a chain of type |Y ,Ac. In both cases we contradict the fact that X and Y belong

to the set (a).

2.6. The sequentialization theorem

As pointed out above, the structure of kingdoms and empires in MLL− + MIX is

different from that in MLL− without Mix; as a consequence, the standard proof of the

sequentialization theorem for MLL− does not carry through. Crucial to our proof is the

ordering of the kingdoms and a direct graph-theoretic analysis, which in substance was

given in the author’s thesis (Bellin 1990). The general structure of the argument differs

from those in Fleury and Retoré (1994) and Asperti (1994); an original feature of our

proof is the fact that we do not reduce the problem to the case of MLL− without Mix.

Theorem 1.b. If R is a proof-net for MLL− + MIX with conclusions Γ, then there is a

sequent calculus derivation D of Γ such that R = (D)−.

Proof. By induction on the size of R. The following case is trivial:

Case 1.

1 R is an axiom;

2 R consists of two proof structures without axiomatic connections with each others:

just apply the induction hypothesis to them and then use the rule of Mix;
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3 one of the lowermost links of R is a par, for all link or an exists link whose premise

contains no eigenvariable: just remove such a link, apply the induction hypothesis

and use the par, for all or exists rule of the sequent calculus.

Case 2. Otherwise, we may assume that among the lowermost links of R there are Cut,

times or exists links, but no par or for all links. Consider a times (or Cut) link

v :
A B

A⊗ B , A⊗ B ∈ Γ

maximal with respect to � (the case of an exists link is entirely similar).

Subcase 2.1. The link v is splitting, i.e., its removal yields two disconnected proof structures;

apply the induction hypothesis to them and then use the Times rule of the sequent calculus.

Unlike the case of MLL−, in MLL− + MIX a link maximal with respect to � need

not be splitting. For instance, there may be a sequence of chains of the form

dA− γA − C0e, dD0 − γ1 − C1e, . . . , dDn−1 − γn − Cne, dDn − γB − Be

with links

L′i :
Ci Di

Ci℘Di

for i 6 n, where γ1, . . ., γn are in e(A) ∩ e(B); clearly in this case we cannot split R by

removing the link L0 with conclusion A⊗B. In Bellin (1990) this situation was described

as ‘A⊗ B is inside a maze’. We claim that in any case we can find a splitting link L∗.
Subcase 2.2. The given link v is not splitting. Let

GA =
⋃
{γ : γ is a chain of type dA,X| for some X}

GB =
⋃
{γ : γ is a chain of type dB, Y | for some Y }.

Notice that if γ ∈ GA and γ′ ∈ GB , then γ ∩ γ′ = W; otherwise, follow γ starting from A

and let u be the first link in γ ∩ γ′. If u does not satisfy Case (1) of Proposition 4, then we

can obtain a cyclic chain; if u does satisfy Case (1), then A⊗ B cannot be maximal with

respect to �.

Furthermore, notice that any chain dB,X| can be extended to a chain bA,X| including

the times link v, and conversely, every chain bA,X| can be reduced to a chain dB, . . . , X|.
Since

eA ∩ eB = {X : there is no chain of type bA,X| nor of type bB,X|}

and R is a proof-net, it follows that the following is a partition of R

R = GA ∪ GB ∪ (eA ∩ eB) ∪ {A⊗ B}.

Since by the hypothesis of the subcase, R cannot be decomposed in two disconnected

proof-structures, eA ∩ eB is nonempty. Now suppose we have a chain dA − γA − ue and

a chain du− γ1 − z| such that γ1 ⊂ e(A) ∩ e(B), and u satisfies Case (1) of Proposition 4,

for example, u is a par link with conclusion C0℘D0. Let v0 be the lowermost link of the

proof-net such that u ≺ v0: by the assumption of the case, v0 is a times, cut or exists link.
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Subcase 2.2.1. If v0 is also maximal with respect to �, then we repeat the argument of

Case 2, applied to v0. Notice that the chain γA is extended to a chain dv − γ′ − v0e.

Subcase 2.2.2. If v0 is not maximal with respect to �, then it belongs to a loop with

exit u1. Consider the lowermost link v1 of the proof-structure such that u1 ≺ v1: by the

assumption of the case, v1 is a times, cut or exists link. Since v0 is in a loop, clearly there

is a chain bu− γ+− v1e. We claim that γA ∩ γ+ = {u}, so the chain γA ∗ γ+ properly extends

γA.

Suppose the claim fails. Following γA starting from u, let w be the first link different

from u such that w ∈ γA ∩ γ+. By Proposition 4, w is the exit of a loop; such a loop is the

concatenation of a subchain of γA and of a subchain of γ+. More precisely, γA splits as

γA,1 ∗ γA,2, with dw − γA,2 − ue and the loop in question is γA,2 ∗ γ+, where bu− γ+ − we is

a subchain of γ+. It follows that γA,1 is of type dv, wc. But then the concatenation

dv − γA,1 − wc ∗ dw − γ+ − uc ∗ du− γ1 − z|

belongs to GA and this implies that γ1 is not in e(B).

A B

⊗

w

u

γ1

γ+

γA,2

γA,1

v

v0

The claim is proved. Since in passing from v to v0 and to v1 we extend the chain starting

from A, and since R is finite, the process must eventually terminate in a link v∗ that is

maximal with respect to � and ‘not in a maze’.

Theorem 2. (Permutability of Inferences)

1 Let D and D′ be a pair of derivations of the same sequent ` Γ in propositional

MLL− + MIX. Then (D)− = (D′)− if and only if there exists a sequence of

derivations D = D1, D2, . . ., Dn = D′ such that Di and Di+1 differ only for a

permutation of two consecutive inferences.

2 Let R be a proof-net and let A be a formula occurrence in R. Then there exists a

derivation D with (D)− = R and a subderivation B of D such that (B)− = eA. A

similar statement holds for kA.
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Proof. Part (ii) is an immediate consequence of the definition of normal subnet and of

the sequentialization theorem (generalized to proof-nets with non-logical axioms). Part (i)

is obvious in the if case. The only if case is proved by induction on the size of the proof-net

R such that (D)− = R = (D′)−.

First notice if B is any subderivation of D, then (B)− is a normal subnet of R; hence

given a chain dA− γ − Be in R, if A,B ∈ (B)− then γ ⊂ (B)− also.

Now consider a branch of D and let I0 be the last inference from the bottom up where

D agrees with D′. If I0 is an axiom, then D and D′ entirely agree in the order of the

inferences in this branch. Otherwise, let I, I′ be the inferences immediately above I0 in

D and D′, respectively, and let B and B′ be the subderivations of D and D′ ending with

I and I′, respectively.

Case 1. Both I and I′ are Mix rules. Thus B and B′ have the forms

I :

B1....
` Γ1,Γ2

B2....
` Γ3,Γ4

` Γ I′ :

B′1....
` Γ1,Γ3

B′2....
` Γ2,Γ4

` Γ

respectively, where Γ = Γ1,Γ2,Γ3,Γ4 and one of the Γi may be empty. Consider the

subnets

S1

Γ1
= (B1)− ∩ (B′1)− and

S2

Γ2
= (B1)− ∩ (B′2)−.

We claim that S1 and S2 are disjoint. In fact, in R there can be no axiom link connecting

hereditary premises of Γ1 and Γ2 nor any chain with Cuts as lower members connecting

Γ1 and Γ2. This is because (B′)− is a normal subnet of R in which the hereditary premises

of Γ1 and Γ2 belong to two separated proof-nets (B′1)− and (B′2)−. By the same argument,

we have two disjoint subnets S3 and S4 with conclusions Γ3 and Γ4, respectively.

By the sequentialization theorem, we have derivations D1, . . ., D4 such that Si = (Di)−
and

D1,2 M1 :

D1....
` Γ1

D2....
` Γ2

` Γ1,Γ2

D3,4 M2 :

D3....
` Γ3

D4....
` Γ4

` Γ3,Γ4

are derivations ending with Mixes; by the induction hypothesis, D1,2 can be obtained

from B1, and D3,4 can be obtained from B2 by successive permutations of inferences.

If we repeat exactly the same argument for B′, we obtain derivations

D1,3 M3 :

D1....
` Γ1

D3....
` Γ3

` Γ1,Γ3

D2,4 M4 :

D2....
` Γ2

D4....
` Γ4

` Γ2,Γ4

such that D1,3 can be obtained from B′1, and D2,4 can be obtained from B′2 by successive

permutations of inferences. Now it is evident that by successive permutations of the Mixes
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M3 and M4 with I′ we identify

I :
D1,2 D3,4

` Γ
and I′ :

D1,3 D2,4

` Γ
.

Case 2. One of I, I′ is not a Mix, say I. Let I have principal formula A and let I′A be

the inference of D′ corresponding to the same link of R as I; such an I′A exists, since

(D)− = (D′)−.

Moreover, let I′1, . . ., I′k be the inferences that occur in D′ between I′A and I0

(proceeding downwards).

If A = A1℘A2, the par rule I′A clearly can be permuted below I′1, . . ., I′k , as required.

If A = A1⊗A2, then I′A can always be permuted below any I′i, unless I′i is a par rule,

say, with principal formula B. Let IB be the inference of D corresponding to the same

link of R as I′i. Now IB occurs above the inference I0 by our assumption that D and

D′ agree in the given branch up to I0. Hence the subderivation DB of D ending with

IB is a proper subderivation of B and does not contain I, and hence A /∈ k(B), since

A /∈ (DB)−.

Let D′B be the subderivation of D′ ending with I′i. By Part (ii) of the theorem and

induction hypothesis, D′B can be transformed by successive permutations of inferences

into a derivation D∗ where the inference with principal formula B occurs above that with

principal formula A.

If A = cut or if A = ∀x.A1 the argument is similar. By repeating the argument, we

eventually permute A below I′k , as required.

3. Asperti’s concurrent processes

We consider a variant of Asperti’s token game (Asperti 1995). The original formulation

by Asperti is in terms of Petri Nets; we speak informally of trips of tokens in a proof-

structure and regard this condition as the correct generalization of Girard’s no-short-trip

condition to the case of MLL− + MIX.

There are tokens of type ↑ and ↓. There is a Left or Right switch on each times link

(Asperti’s switching). Given a multiplicative proof-structure R, in the initial position we

have a token of type ↑ on each conclusion of R. The game succeeds if it reaches the

terminal position where there is a token of type ↓ on each conclusion of R. The permissible

movements of the tokens are those in accordance with the following instructions:

— case of an axiom link A A⊥:

from a pair ↑A, ↑A⊥ go to the pair ↓A, ↓A⊥

— case of a par link
A B

A℘B
:

from ↑A℘B go to the pair ↑A, ↑B;

from the pair ↓A, ↓B, go to ↓A℘B;
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— case of a times link
A B

A⊗ B
:

Right Switch Left Switch

(1) from ↑A⊗ B, go to ↑B from ↑A⊗ B, go to ↑A
(2) from ↓B, go to ↑A from ↓A, go to ↑B
(2) from ↓A, go to ↓A⊗ B from ↓B, go to ↓A⊗ B

The case of cut is identical to that of a times link.

Definitions 4.

(i) A deadlock for a given switching is a position of the tokens that is reachable from

the initial position from which the game cannot successfully terminate.

(ii) Given a proof-structure and a switching for the Asperti game, a causal path or causal

chain is a path of n + 1 edges together with n transitions such that the transition ti
takes a token from the edge ei−1 and puts a token in the edge ei. A causal path is

cyclic if the edges A1 and An+1 coincide. A causal path where the first transition is

of the form ↑A and the last is ↑B is said of type ↑A, ↑B, and similarly for the types

↑A, ↓B, and so on.

Asperti’s Theorem. A propositional proof-structure is a proof-net if and only if for every

A-switching there is no deadlock in Asperti’s game.

The following facts are needed to prove Asperti’s theorem. Given a proof-structure and

a switching for the Asperti game, let M0 and MT denote the initial and terminal successful

position, respectively.

Proposition A-1.

(i) In any computation M0 ⇒M ′ every transition can be fired at most once.

(ii) We cannot have infinite computations starting from M0.

(iii) In any computation M0 ⇒MT every transition is fired exactly once.

Proof. The proof is left as an exercise (see Asperti (1995, 3.13, 3.15, 3.16)).

Proposition A-2. In some computation M0 ⇒ M ′ there is a deadlock if and only if there

is a cyclic causal path if and only if in R there is a cyclic chain.

Proof. The proof is left as an exercise (see Asperti (1995, Theorem 3.24)).

Finally, note that an Asperti game is reversible: the dual of a given transition is obtained

by changing the kind of the tokens, by choosing the opposite switch in the case of a

times link and by performing the transition in the reverse order (note that the dual of

a transition is a transition). The dual of an Asperti game is obtained by performing the

dual transitions in the reverse order.

Proposition A-3. The dual of an Asperti game is an Asperti game.

Proof. The proof is left as an exercise (see Asperti (1995, 3.20)).
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In the process interpretation, a causal path ↑A, ↑B for a certain A-switching s means

that under the restrictions on the order of the execution of the processes, induced by s,

the activation of A must precede the activation of B or, in other terms, there is a causal

dependency between the activations of those processes. The proofs of propositions A-2

and A-3 yield the following

Corollary 3. Chains are related to causal dependencies between processes as follows:

— the termination of A [B] may depend on the activation of B [A] if and only if there

exists a chain of type |A,B|.
— the activation of A [B] may depend on the termination of B [A] if and only if there

exists a chain of type bA,Bc;
— the activation of A may depend on the activation of B if and only if there exists a

chain of type bA,B|; dually,

— the termination of A may depend of the termination of B if and only if there exists a

chain of type |A,Bc.
Also the empire of a formula A in a proof-net has the following characterization (see

Asperti (1995, the Remark after Proposition 4.10)):

eA = {X : the activation of A cannot depend on the activation of X}.

3.1. Asperti’s correctness condition, first-order case

The main technical idea in Girard’s treatment of quantifiers (Girard (preprint)) is to

define D-R-graphs so that the conclusion of a for all link may be connected either to

the premise of the link or to any other formula containing the eigenvariable associated

with that link. Given the characterization of the empires in Lemma 3, the requirement

that such a D-R-graph should be acyclic implies that an eigenvariable associated with a

for all link cannot occur outside the empire of the premise of such a link. The refinement

in Bellin and van de Wiele (1995) requiring the strictest possible use of eigenvariables,

implies that an eigenvariable cannot occur outside the kingdom of the premise of its

associated link.

We extend Asperti’s characterization of proof-nets to the first-order case†. The re-

striction on the eigenvariables is interpreted here as a synchronization requirement. The

resulting correctness condition seems more intuitive than the official one using for all

switchings.

To a proof-structure we associate a list of global variables that is empty at the beginning

of the verification of the correctness condition. Asperti’s games are defined as before, with

the addition of the following cases:

— case of a for all link
A

∀x.A
:

from ↑∀x.A go to ↑A;

† This section results from a discussion with A. Fleury.
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and add x to the list of global variables;

from ↓A, go to ↓∀x.A;

— case of an exists link
A[t/x]

∃x.A
:

from ↑∃x.A go to ↑A[t/x]

if every eigenvariable occurring in t occurs already in the list of global variables;

from ↓A[t/x], go to ↓∃x.A.

— case of a cut link
A A⊥

cut
:

as in the case of a times link, except that the transition from ↑ cut is not activated

unless every eigenvariable occurring in A already occurs in the list of global variables.

Theorem 3. A first-order proof-structure R is a proof-net if and only if for every A-

switching there is no deadlock in Asperti’s game for R.

Proof. (Sketch) The restriction on the exists case, i.e., the synchronization of an exists

process with a for all process, may be regarded as a transition rule

from ↑∀x.A and ↑∃y.B to ↑B[t/y].

Clearly this corresponds to the chain bB[t/y], ∀x.Ae, in the sense that if v and w are the

for all and exists links in question, the transition from ↑∀x.A to ↑B[t/y] may be regarded

as passing through the edge between v and w in the D-R-graph determined by a switch

for ∀x.A. A similar remark applies to the restriction on the cut process.

As in the propositional case, we must prove Proposition A-2. Using the previous

paragraph, it can be shown that if there is a deadlock, there is a cyclic causal path, and

this may be regarded as a cyclic chain. Conversely, if there is a cyclic chain, first apply

Proposition 5 below and consider a cyclic chain where the conclusions of all for all links

are connected to an exists or cut link. Now consider a D-R-switching s yielding a chain

γ of type bv, w|, where v has ∀x.A as a conclusion and w has B[t/y] as a premise, which

becomes cyclic when we add the edge induced by the switch s(v) = w, so the eigenvariable

x must occur in t. By induction on γ, we find an A-switching that determines a causal

path from ↑B[t/y] to ↑∀x.A, that is, the activation of ∀x.A depends on the activation of

B[t/y]. But the transition from ↑∃y.B to ↑B[t/y], where t contains x, is permissible only

if x is already declared a global variable, and this requires that ↑∀x.A has already been

reached: thus the activation of B[t/y] depends on the activation of ∀x.A and this is a

deadlock.

Proposition 5. Let R be a first-order proof-structure. If in R there is a cyclic chain, we

can find a cyclic chain where every for all switch selects either the premise of its link or

an exists link or a Cut.

Proof. Suppose sR contains a cycle γ, a link v with conclusion ∀x.A is in γ and s(v) = u.

If u is neither an exists link nor a Cut, its conclusion C still contains the eigenvariable x.

Hence C cannot be a conclusion of R and it must be a premise of a link w.
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Let s′ be a switching which is like s, except that s′(v) = w. If w is also in γ, then s′(R)

still contains a cycle. If w does not belong to γ, then s′(R) still contains a cycle, unless

w is a par or for all link and the switching s′(w) = s(w) does not choose C . In the latter

case, take a switching s′′ that is like s′ except that s′′(w) = C . Since the choice s(w) does

not determine γ, it is clear that s′′R again contains a cycle.

Repeating this process, we obtain a switching s∗ with a cyclic s∗(R) where s∗(v) is either

an exists link or a Cut, as required.

Example. The solid arrows indicate the mutual causal dependency.

A⊥(x, y) A(x, y)

∃ ∃

∀y.A(x, y)

∃x.∀y.A(x, y)

∀x.A⊥(x, y)

∃y.∀x.A⊥(x, y)

∀ ∀

4. Full intuitionistic linear logic

In previous work by G. Bellin and J. van de Wiele (Bellin and Scott 1994, Section

5.4) it has been shown that each sequent derivation of multiplicative intuitionistic linear

logic ILL can be represented as a classical proof-net of MLL− together with an Input-

Output orientation; conversely, each proof-net for MLL− corresponds to a set of sequent

derivations in ILL, where each translation from MLL− to ILL is determined by an I-O

orientation satisfying certain conditions. Moreover, suitable orientations are related to

Girard’s trips (or D-R-graphs). In particular, in the case of a cut-free proof-net each

D-R-graph determines a suitable orientation.

In this section we show how to extend this result to MLL− + MIX†. It turns out that

the right intuitionistic system for this purpose is Full Intuitionistic Linear Logic FILL

introduced by M. Hyland and V. de Paiva (1993). We will not discuss the considerations

of categorical logic that motivate Hyland and de Paiva’s work. We consider only the

multiplicative fragment of FILL.

The language of this fragment has the connectives ⊗ (times), ℘ (par), −◦ (linear

implication) and their units, the propositional constants ⊥ and 1 for falsity and truth.

We use the same symbols as in classical linear logic, although the meaning is obviously

different. Linear negation is defined as A⊥ =df A −◦ ⊥.

The consequence relation of FILL is classical linear ; thus sequents have the form Γ ` ∆,

where ∆ may contain several occurrences of formulas.

† The question as to what fragment of intuitionistic linear logic could be represented in MLL− + MIX by an

extension of the I-O-translations for MLL− was asked by P. Scott to the author in private communication.
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4.1. Term calculus for multiplicative FILL

We give here the basic definitions of de Paiva and Hyland’s term calculus.

Definitions 5.

(i) Given a set X of variables and constant terms ◦, −, define the set PX of patterns

with variables in X by the inductive clauses

x⊗ y ∈ P{x,y} x− ∈ P{x} − y ∈ P{x}
Then define the set TX of linear terms with variables in X inductively as follows:

— ◦ ∈ T{}, − ∈ T{};
— x ∈ T{x};
— t ∈ TX , u ∈ TY , X ∩ Y = W implies tu ∈ TX∪Y ;

— t ∈ TX∪{x}, x /∈ TX implies λx.t ∈ TX;

— t ∈ TX , u ∈ TY , X ∩ Y = W implies t⊗ u, t℘u ∈ TX∪Y ;

— t ∈ TX , p ∈ PY , e ∈ TY ∪Z , X ∩Z = W, Y ∩Z = W implies let t be p in e ∈
TX∪Z .

(ii) The sequent calculus rules with the associated term assignment are as follows. We

use x, y, z, v f for sequences of variables, r, s, t, u for sequences of terms. If t is the

sequence of terms t1, . . . , tn, then t[u/x] is the sequence t1[u/x], . . . , tn[u/x].

If x and y are the variables occurring in the premises of a two-premised sequent rule,

it is understood that no variable in x occurs in y and vice versa.

Identity

Axiom : x : A ` x : A Cut :
x : Γ ` u : ∆, t : A x : A, y : Π ` f : Λ

x : Γ, y : Π ` u : ∆, f[t/x] : Λ

Times

⊗− R :
x : Γ ` r : ∆, t : A y : Π ` s : Λ, u : B

x : Γ, y : Π ` r : ∆, s : Λ, t⊗ u : A⊗ B

⊗− L :
v : Γ, x : A, y : B ` t : ∆

v : Γ, z : A⊗ B ` t′ : ∆

where for each t′i ∈ t′ we have

t′i =

{
let z be x⊗ y in ti, if x or y occurs in ti;

ti, otherwise.

Par

℘− R :
x : Γ ` x : A, y : B, u : ∆

x : Γ,` x℘y : A℘B, u : ∆

℘− L :
x : Γ, x : A ` r : ∆ y : Π, y : B ` s : Λ

x : Γ, y : Π, z : A℘B ` r′ : ∆, s′ : Λ
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where for each r′i ∈ r′ we have

r′i =

{
let z be x− in ri, if x occurs in ri;

ri, otherwise.

and for each s′j ∈ s′ we have

s′j =

{
let z be −y in ri, if y occurs in sj;

sj , otherwise.

Linear Implication

−◦ − R :
x : Γ, x : A ` t : B, u : ∆

x : Γ ` λx.t : A −◦ B, u : ∆
where x does not occur in u.

−◦ − L :
x : Γ ` r : ∆, t : A x : B, y : Π ` s : Λ

x : Γ, f : A −◦ B, y : Π ` r : ∆, s[f(a)/x] : Λ

Structural Rules

The term assignments for the rules Mix, Exchange Left and Right are straightforward.

For instance, in the case of Mix we have

Mix :
x : Γ ` t : ∆ y : Π ` u : Λ

x : Γ, y : Π ` t : ∆, u : Λ

where x ∩ y = W, as indicated above.

Multiplicative Propositional Constants

Axiom : ` ◦ : 1 1− L :
x : Γ ` u : ∆

− : 1, x : Γ ` u : ∆

Axiom : x : ⊥ ` ⊥− R :
x : Γ ` u : ∆

x : Γ ` u : ∆,− : ⊥

4.2. Proof-nets with orientations

The consideration of the units is essential in the logic FILL, although it makes sense to

consider the subsystem FILL− with the axioms 1-right and ⊥-left, but without the rules

1-left and ⊥-right. To represent FILL + MIX in MLL + MIX with the propositional

constants 1 and ⊥, we consider proof-nets with links of the form

1− axiom: 1 ⊥− axiom: ⊥

where the ⊥-axioms are attached to other links ⊥⇁ v in correspondence with a Weaken-

ing:

` Γ

` Γ,⊥
.

An attachment induces an edge in every D-R-graph. We have the reduction:
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1-Reductions

1 ⊥ ⇁ X reduces to X
...

...

For the reasons given in the Introduction, the theory of proof-nets for such a system

is not fully satisfactory; however, almost all the basic results hold modulo a given choice

of attachments. In a sequent derivation we can permute the ⊥-rule downwards (unless its

principal formula becomes active in another inference); this corresponds to attaching the

⊥-axiom as low as possible and gives a sort of ‘normal form’ for the attachment. On the

other hand, we can always permute the ⊥-rule upwards, but in the case of a times or mix

inference the choice of the branch is arbitrary; thus the notion of kingdom of a ⊥-axiom

is not well defined.

Definitions 6.

(i) Given such a proof-net S, an orientation is a map δ : S → {O, I} satisfying the

following restrictions:

axiom: (0) O I I O

tensor: (1)
O I

I
(2)

I O

I
(3)

O O

O
(4)

I I

I

par: (5)
I O

O
(6)

O I

O
(7)

I I

I
(8)

O O

O

For the units we have all possibilities δ(1) = I, O, δ(⊥) = I, O. We write AI , AO for

δ(A) = I , δ(A) = O, respectively.

(ii) An orientation δ : S → {O, I} has a deadlock if it makes the assignments AI A⊥I
or AO A⊥O to some cut link, and is deadlock-free otherwise.

(iii) An orientation δ : S → {O, I} is computationally consistent if no sequence of cut

reductions yields an orientation with a deadlock.

Remark. If a proof-net S reduces to S′ by a cut-reduction, an orientation δ :S→ {O, I}
when restricted to S′ is still an orientation. It is easy to see (e.g., when the links

immediately above a cut have orientations (2) and (5) above) that δ :S→ {O, I} may be

deadlock-free, but not δ :S′ → {O, I}.
We can extend the map ( )− of Theorem 1 so that, given a sequent derivation D in

multiplicative FILL + MIX, we obtain a proof-net with orientation (D)− = δ : R →
{O, I}. The only question is: what condition should correspond to the restriction on the

implication introduction rule?

Definitions 7. Let δ : R → {I, O} be a proof-net for MLL− + MIX with an orientation.

(i) A chain γ is directed if it does not pass through an attachment and for every link L
that occurs in γ the following hold:
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(a) if L is a lower link (thus a times or cut link), it has the orientation

(1)
O I

I
or (2)

I O

I
;

(b) otherwise, the two formula occurrences in L that belong to γ have the same

orientation.

(ii) A par link with orientation

(5)
I O

O
or (6)

O I

O

will be called an implication. Let L be

AI BO

(A℘B)O
:

we say that the orientation δ : R → {I, O} makes the implication L functional if for

every directed chain of type dAI, COe where C is a door of e(A) we have that C is

precisely the formula occurrence B.

(iii) We say that δ : R → {I, O} is a proof-net for multiplicative FILL + MIX if R is a

proof-net for MLL + MIX and δ is a computationally consistent orientation that

makes all implications functional.

Remark. It is easy to see that if γ is a directed chain of type dAI, BOe and

L :
CO DI

(C ⊗ D)I

is a lower link of the chain, then γ may only result from subchains dAI, COe and dDI, BOe
connected by L (cf. Proposition 6 below).

Example.

c′ : C⊥O b
′ : B⊥O

a : AI b : BI e : (C⊥℘B⊥)O d : D⊥I

z′ : (A⊗ B)I c : CI f : ((C⊥℘B⊥)⊗ D⊥)I f(e) : DO

z : ((A⊗ B)⊗ C)I λf.f(e) : (((C⊥℘B⊥)⊗ D⊥)℘D)O

t : A⊥O λzf.f(e) :
(
((A⊗ B)⊗ C)℘(((C⊥℘B⊥)⊗ D⊥)℘D)

)
O

(The term assignment arises from the attempted translation into FILL.) Of the two

implications in the example, the higher one is functional, since there is only one directed

chain d((C⊥℘B⊥)⊗ D⊥)I , DOe between its premises, but the lower one is not, because of

the directed chain d((A⊗ B)⊗ C)I , A
⊥
Oe. Indeed, letting
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t = let z be z′℘− in (let z′ be a℘− in a),

b′ = let z be z′℘− in (let z′ be −℘b in b),

c′ = let z be −℘c in c

e = c′℘b′

we have that

z : (A⊥℘B⊥)℘C⊥ ` t : A⊥, λf.f(e) : ((C⊥℘D⊥) −◦ D) −◦ D

is provable in multiplicative FILL, but

` t : A⊥, λzf.f(e) : (A⊥℘B⊥)℘C⊥ −◦ ((C⊥℘D⊥) −◦ D) −◦ D

is not. The general case is given by the following result.

Lemma 4. Let D be a derivation in multiplicative FILL + MIX of v : Γ ` t : ∆ and let

(D)− = δ : R → {I, O}. For each variable vi : Ci in v and every term tj : Dj in t, vi occurs

in tj if and only if there exists a directed chain dCi, Dje in (D)−.

Proof. The proof is by induction on D. If D is an axiom the result is clear. If the last

inference of D is Mix, the result is immediate from the induction hypothesis and the fact

that the variables occurring in different branches of a derivation are distinct. If the last

inference is ⊥-right or 1-left, the term assignments to the passive formulas are unchanged

and the directed chains in D− do not propagate through the new attachment. If the last

inference of D is Times Left or Par Left, the variable z : A ◦ B assigned to the principal

formula occurs in the term t′ : D in the succedent of the conclusion if and only if one

of the variables x : A or y : B occurs in t : D in the succedent of the premise. By the

induction hypothesis this is the case if and only if there is a directed chain of type dA,De
or dB,De in (D)− if and only if there is a directed chain of type dA ◦ B,De. The cases

when the last inference of D is Times Right or Par Right or Linear Implication Right are

similar.

Now suppose the last inference of D is Linear Implication Left. If the variable v and the

term t are both assigned to passive formulas and have immediate ancestors in the same

branch of the derivation, the result is immediate from the induction hypothesis.

For any passive formula L in the succedent of the conclusion, the variable f : A −◦ B
occurs in w : L if and only if w = s[f(t)/x] if and only if there is a directed chain dBI , LOe
if and only if there is a directed chain d(A⊗ B)I , LOe.

For any passive formula C in the antecedent of the left premise and any passive formula

L in the succedent of the right premise, the variable v : C occurs in the term w : L if

and only if w is s[f(t)/x] and v occurs in t if and only if there are chains dCI, AOe and

dBI , LOe connected by the link

AO BI

(A⊗ B)I
.

Finally, for any passive formula P in the antecedent of the right premise and any

passive formula D in the succedent of the left premise, the variable y : P does not occur

in the term r : D and any chain dP ,De cannot be directed, since it must consist of two
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disjoint subchains of types dPI , BIe and dAO,DOe connected by the link

AO BI

(A⊗ B)I
,

and by the above Remark this is impossible in a directed chain. The case of Cut is similar.

We also need the following fact.

Proposition 6. Let R be a proof-net for MLL + MIX and let δ : R → {I, O} be an

orientation satisfying (0)–(8) above and let C be a conclusion of R such that δ(C) = I .

Every maximal directed chain starting from CI has one of the forms

(o) dCI, . . . , DOe or (i) dCI, . . . , 1Ic

where D is a conclusion of R and 1 is an axiom.

Proof. A directed chain paths is obtained by determining the switching s according to

the orientation as follows.

1 Start from CI and proceed upwards.

2 Going up, always remain within formulas marked I , fixing the switching, if necessary,

so that from a conclusion marked I the path reaches a premise marked I . The step is

determined in Cases (1) and (2) (times), and an arbitrary choice is made in Cases (4)

(times) and (7) (par links).

3 At an axiom or cut, change the direction.

4 Going down, remain within formulas marked O whenever possible; namely, proceed

from a premise marked O to the conclusion marked O in Cases (3) (times links) (5)

and (6) and (8) (par) fixing the switching accordingly.

5 If going down you reach a times link with conclusion marked I (Cases (1) and (2)),

then from the premise marked O proceed up to the premise marked I and continue

as in Step 2.

Since every path is acyclic, the process terminates, either (i) going downwards at a

conclusion DO or (ii) going upwards at a link 1I , as claimed.

The proof of the sequentialization theorem for FILL− + MIX is essentially the same

as the proof on Theorem 1 for MLL− + MIX. It is in the treatment of the axioms ⊥ ` of

FILL that the specific graph theoretic analysis contained in the proof becomes necessary.

Theorem 4. There exists a ‘context forgetting’ map ( )− from sequent derivations in

first-order multiplicative FILL + MIX to proof-nets for FILL + MIX with the following

properties:

(a) Let D be a derivation of x : Γ ` t : ∆, then (D)− is a proof-net with conclusions

` ΓI ,∆O .

(b) If δ : R → {I, O} is a proof-net net for FILL + MIX with conclusions ` ΓI ,∆O ,

then there is a sequent calculus derivation D of x : Γ ` t : ∆ such that (D)− = δ :

R → {I, O}.
(c) If D reduces to D′, then (D)− reduces to (D′)−.
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(d) If (D)− = δ : R → {I, O} and R reduces to R′, then there is a D′ such that D reduces

to D′ and (D′) = δ : R′ → {I, O}.

Proof. To prove (a) use Lemma 4.

(b) If R consists of an axiom, of disconnected structures, and if a terminal ⊥-axiom is

attached to some link in R or if R ends with a par link (Case 1), then the argument is

easy; when a terminal par link is an implication we use Lemma 4. When no terminal link

is a par link (Case 2) the algorithm in our proof of Theorem 1 selects a splitting times

link v: we need to show that the two splitting substructures still satisfy the condition that

all implications are functional.

This is immediate if v has orientation

(3)
O O

O
or (4)

I I

I
.

Now suppose the orientation of v is of type (1) or (2), say

v :
AO BI

(A⊗ B)I
,

and let SA and SB be the splitting substructures. Notice that since v is maximal with

respect to �, for every implication

w :
CI DO

(C℘D)O

and every directed chain γ of type dCI, DOe, the link v cannot be a lower link of γ; however,

v may be a lower link of a maximal directed chain of type dCI, 1c. If every maximal directed

chain γ starting from BI is of type dBI , 1Ic, then it may very well be the case that an

implication

w :
CI DO

(C℘D)O

is no longer functional in SA, while it was functional in R if some directed chain γ′

from CI passes through v and v ∈ e(w). To conclude the proof it is enough to refine our

argument for Theorem 1 as follows.

Suppose v is splitting as in Subcase 2.1. If in SA all implications are functional, we are

done. Otherwise, we have a chain γ′ as above, and since C℘D is not a conclusion of R,

we consider the lowermost link

v0 :
E F

E ⊗ F
occurring below C℘D. If v0 was v, then w ≺ v, and hence we cannot have v ∈ e(w), so

we may suppose that v0 is different from v. Notice that we have extended γ′ to a longer

chain (not necessarily directed) passing through v and v0.

We now proceed as in Subcase 2.2 of our proof of Theorem 1.
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Subcase 2.2.1. If v0 is maximal with respect to �, then we test whether v0 is splitting

and whether removing v0 preserves the functionality of all implications, as in the case of

v; if this is the case we are done.

Subcase 2.2.2. Otherwise, we find another terminal times of Cut link v1 and a chain γ′′

properly extending γ′ and passing through v0. In this case, we repeat the argument with

v1 in place of v0.

And so on. Since R is finite, we must eventually find a splitting link such that the

resulting structures have functional implications. This proves (b).

The proof of (c) is routine.

Finally, to prove (d), we must show that our correctness condition for FILL is preserved

under cut-elimination, i.e., that if a proof-net δ : R → {I, O} reduces to δ : R′ → {I, O},
then all implications in δ : R′ → {I, O} are functional. This is immediate for Cut

reductions with the following orientation:

I I

I

O O

O

cut

reduces to
I O

cut

I O

cut
In the remaining cases, e.g. in

A⊥I BO

(A⊥℘B)O

AO B⊥I

(A⊗ B⊥)I

cut

reduces to

A⊥I AO

cut1

BO B⊥I
cut2

,

we argue thus. Let

CI DO

(C℘D)O

be an implication in δ : R′ → {I, O} and let γ be a directed chain of type dCI, XOe.
Suppose γ reaches cut2 first. Notice that γ cannot pass through cut1, since otherwise, by

the above Remark, γ would be the concatenation

dCI − γ1 − BOe ∗ dB⊥I − γ2 − AOe ∗ dA⊥I − γ3 −XOe

and γ2 would yield a cyclic chain in R. Therefore γ results from a directed chain γ′ =

dCI − γ′1 − (A⊥℘B)Oe ∗ d(A ⊗ B⊥)I − γ′2 − XOe in δ : R → {I, O}, where all implications

are functional, so X = D.

Now suppose γ reaches cut1 first. Then γ must also reach cut2: indeed in δ : R → {I, O}
the implication

A⊥I BO

(A⊥℘B)O
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is functional, and so in any directed chain of type dA⊥I , YOe we have Y = B. Therefore γ

has the form

dCI − γ1 − AOe ∗ dA⊥I − γ2 − BOe ∗ dB⊥I − γ3 −XOe.
But then

γ′ = dCI − γ1 − AOe ∗ dB⊥I − γ3 −XOe
is a directed chain in δ : R → {I, O}, where all implications are functional, so X = D.
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