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We consider an M/M/1 queue with a removable server that dynamically chooses its service
rate from a set of finitely many rates. If the server is off, the system must warm up for a
random, exponentially distributed amount of time, before it can begin processing jobs. We
show under the average cost criterion, that work conserving policies are optimal. We then
demonstrate the optimal policy can be characterized by a threshold for turning on the
server and the optimal service rate increases monotonically with the number in system.
Finally, we present some numerical experiments to provide insights into the practicality
of having both a removable server and service rate control.
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1. INTRODUCTION

Much of our modern world, and in particular, large-scale computing, is built upon immense
amounts of readily available energy. In fact, in 2014 data centers in the United States
consumed 70 billion kWh of electricity, nearly 2% of the total US energy consumption
[26]. Although the rate of energy usage relative to demand in data centers has slowed,
continued improvements are needed to sustain, or ideally decrease usage levels as total
demand continues to increase [9]. While large-scale computing centers boast utilization rates
at 65% as compared to only 15% for small-scale centers [2], even at 65% utilization, servers
spend considerable time idle. To compound this effect, servers are least energy efficient when
working at low operating levels; energy-efficient servers consume as much as half their full
power when idle, with less energy-efficient servers using even more power when idling [3].
Thus, identifying times when energy can be saved by turning servers off entirely is critical.

The problem of determining when to turn servers off or on is multi-layered. To begin,
the savings from turning servers off must be compared to potential costs of jobs waiting
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longer for service. This is compounded by the fact that further delays are incurred during
the time it takes to turn servers back on. Moreover, while the servers are on, managers can
employ dynamic control of the service rate and thus choose to increase efficiency by using
a fast service rate, albeit for a higher cost.

In this paper, we propose a Markov decision process (MDP) model that incorporates
both the ability to turn the server on and off and to dynamically control the service rate in
order to analyze how these controls can best be used in tandem. The analysis of this model
is interesting from both a practical and theoretical point of view. While optimal policies,
those attaining minimal long-run average cost, for queues utilizing just one of these controls
are well understood, to our knowledge, no work has been done to understand the effects of
their interaction.

A stationary policy is an N -policy if it calls for turning the server on when N jobs are in
the system and may turn off the server only when the system is empty. Heyman [17] showed
N -policies are optimal for M/M/1 queues with startup costs and a single service rate. For
M/M/1 queues with dynamic service rate control, Lippman [21] showed the optimal service
rate structure is monotone with the number in queue. Our main result is a combination of
these results.

Define a policy that has a threshold for turning the server on, a series of thresholds
increasing with the number in system for the service rate, and that only (possibly) turns
the server off when the queue is empty as a rate-threshold N -policy (see Definition 3.1
below). We prove the existence of a long-run average cost optimal rate-threshold N -policy.
From a managerial perspective, we are interested in such polices as they are useful in
developing more sophisticated controls for implementation in systems of any size. From a
methodological viewpoint, we note that inductive arguments in the spirit of Koole [19] and
similar to those used in [7,20,29], that are commonly used to prove structural properties
such as convexity are intractable. This is because work conserving policies, those that do not
idle or turn off the server with work in the system, are not necessarily optimal under a finite
horizon discounted criterion. To see this, suppose the idling cost rate is less than the service
cost rate (an assumption made in the current study) then in a one period problem with
zero terminal costs, idling is better than serving. Instead we use renewal theory arguments
coupled with a probabilistic interpretation of the relative value functions in average cost
MDP theory to prove our results.

Queues with removable servers have been studied for half a century, beginning with
Yadin and Naor [28] who analyzed M/G/1 queues under N -policies. Heyman [17] and Bell
[4] proved the optimality of N -policies for M/G/1 queues with warm up costs under the
average and total discounted reward criteria, respectively. Baker [1] first studied M/M/1
queues under N -policies with both startup costs and exponentially distributed warm up
times, but without service rate control. Borthakur et al. [5] extended this work, allowing
for general warm up times, providing steady-state probabilities, average wait time, and
number in queue. In the years since, many generalizations of these models have been studied
including by Feinberg and Kella [12] who analyzed an M/G/1 queue where the service time
becomes known upon arrival. Other variations of these models include queues with server
breakdowns and warm up times [27], queues with server vacations [18], and queues with
batch arrivals [11], among others.

There is also a large literature on dynamic service rate control in queues. Crabill [8]
was the first to model a system with varying service rates using MDPs. Lippman [21]
examined the optimal policy for M/M/1 queues with dynamic service rate control proving
the monotonicity of the optimal service rate with the number in system. George and Harrison
[16] examined a queue where service rates are chosen from a closed subset of [0,∞] and
Kumar et al. [20] considered a single server system with dynamic service rate control and
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Markov modulated arrivals. Dimitrakopoulos and Burnetas [10] studied the value of dynamic
service rate control in combination with admission control.

Recently, more work has been done motivated specifically by data center applications
incorporating sleep or low power modes. Research from this perspective often refers to
servers as energy aware. However, they are modeled similarly to removable servers seen in
the earlier queueing literature. To our knowledge, the first queueing-based approach from
this perspective was by Cehn et al. [6]. Gebrehiwot et al. [15] studied the use of sleep-state
control under various policies in M/G/1 queues. Gandhi et al. [13] examined an M/G/1
queue with warm up times and many sleep states for a specific cost function: the product
of the mean power consumption and mean response time in steady state. Much of the work
in this field has also considered multi-server systems, such as [14] and [22,23].

The remainder of the paper is organized as follows. Section 2 introduces the model.
The main result is stated in Section 3, where the proof is divided into several parts. In
Section 3.1, it is shown that the optimal policy is work conserving. In Section 3.2, the
existence of an optimal policy with a series of thresholds determining the service rate is
proven. In Section 3.3, we show the optimal policy has a threshold for turning the server
on. Numerical considerations are presented in Section 4 and the article is concluded in
Section 5.

2. MODEL DESCRIPTION

We consider a Markovian queueing system with a single removable server that, in addition
to being able to be turned off, dynamically chooses its service rate. Jobs arrive according to
a Poisson process with rate λ. When the server is on, the decision-maker can choose from
n rates where service times for rate k are assumed to be exponentially distributed with
rate μk and μ1 < μ2 < · · · < μn. We assume the server can instantaneously switch service
rates and can do so without incurring any cost. Additionally we allow the server to idle at
the discretion of the decision-maker whenever it is on. If the server is not on, jobs can be
serviced only after a warm up period, the length of which follows an exponential distribution
with rate γ. To ensure a policy that admits finite average cost exists, we assume λ < μn.

Let cw, cu, ck be the cost per unit time when the server is warming, idling, or serving
at rate μk, respectively. Assume ck is non-decreasing in k. We also assume that idling is
less costly than serving at any rate or warming; cu < c1, cw. The holding cost rate function,
h(i), depends only on the number in system, i, and not the state of the server. Furthermore,
h(i) is non-decreasing in i, such that h(i) → ∞ as i → ∞. Finally, assume

∑∞
i=0 αih(i) < ∞

for all α ∈ (0, 1) which ensures holding costs grow subexponentially.
Define the state space S = Z+ × {0, 1}, where (i, j) ∈ S denotes the state where i jobs

are in the system, j = 0 represents the server warming or off and j = 1 represents the server
being on. The set of available actions depends on the current state. Let

A(i, j) =

⎧⎪⎨
⎪⎩
{warm, off} if i ≥ 0, j = 0,

{(idle, on), (idle, off)} if i = 0, j = 1,

{(idle, on), (idle, off), (k, on), (k, off)} if i ≥ 1, j = 1,

(2.1)

where k = 1, . . . , n. When the server is off (j = 0), the action off represents leaving the
server off, and warm represents starting a warm up period. When the server is on (j = 1),
the first dimension of the action, k or idle represents the service rate used, μk, k = 1, 2, . . . , n,
or if the server idles. If the server idles, the second dimension specifies if the server should be
turned off or left on following the next arrival. If the server is working, the second dimension
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of the action specifies if the server should be turned off or left on if the next event is a service
completion.

Remark 2.1: Since turning the server off occurs instantaneously and leads to a change in
state (j = 1 to j = 0), allowing the action off in states (i, 1) would lead to instantaneous
transitions. Thus we define the service actions in the above non-standard, two-dimensional
way so that all transition rates are finite and uniformization can be applied.

Given the exponential inter-arrival, service, and warm up times, the continuous time
Markov chain induced by a policy can be uniformized in the spirit of Lippman [21] so the
equivalent discrete time MDP can be analyzed. Let the uniformization rate be λ + γ + μn

and, without loss of generality, scale time so that λ + γ + μn = 1. The remainder of the
paper discusses this discrete model.

A deterministic decision rule d is a map from S to A :=
⋃

s∈S A(s) such that action
d(s) is used when the system is in state s. A policy π is defined as a sequence of decision
rules π = {d1, d2, . . .} where dm defines the action taken in the mth decision epoch. We let
Π be the set of all non-anticipatory policies. We say a policy is stationary if it does not
depend on the time, i.e. it is of the form {d, d, . . .} and denote such policies d∞.

Let c(s, a) be the expected cost of taking action a when in state s. Explicitly,

c((i, j), a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h(i) + cw if a = warm, j = 0,

h(i) if a = off, j = 0
h(i) + cu if a ∈ {(idle, on), (idle, off)}, j = 1,

h(i) + ck if a ∈ {(k, on), (k, off)}, j = 1, k = 1, . . . , n.

(2.2)

The N-step expected total cost under policy π given initial state s is

Jπ
N (s) = IEπ

[
N−1∑
m=0

c(Sm, dm(Sm)) | S0 = s

]
,

where Sm is the state of the system in the mth decision epoch and dm(Sm) is the decision
rule in the mth decision epoch under policy π. The long-run average cost of policy π given
initial state s is given by

gπ(s) = lim sup
N→∞

Jπ
N (s)
N

.

Let g∗(s) be the optimal expected average cost,

g∗(s) = inf
π∈Π

gπ(s).

We call a policy π∗ long-run average cost optimal if gπ∗
(s) = g∗(s) for all s ∈ S.

Consider the policy that always uses rate μn, never turns off, and begins warming
immediately, if the server is not initially in the on state. Note that the induced Markov
chain has a single recurrent class and all the states where the server is off are transient.
Since λ < μn, the set of recurrent states for this Markov chain corresponds to a stable
M/M/1 queue. That is to say, the set of states of the form (i, 1) for i ≥ 0 act as a positive
recurrent, birth-death process. We use this policy, denoted π, to verify the three (CAV)
assumptions in Corollary 7.5.9 of Sennott [25]. These are sufficient conditions to apply
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Theorem 7.2.3 [25] which guarantees the existence of an optimal stationary policy with
finite average cost which is independent of the initial state.

Assumption 2.2: The (CAV) assumptions [adapted for the current study] are:

(1) There exists a policy such that the expected first passage time and cost from any
state (i, j) to (0, 1) are finite. We call the positive recurrent class of the Markov
chain induced by π, Rπ.

(2) Given U > 0, the set DU = {(i, j)|c((i, j), a) ≤ U for some a} is finite.
(3) Given (i, j) ∈ S − Rπ, there exists a policy π̂(i,j) such that the expected first passage

time and cost from (0, 1) to (i, j) are finite.

Lemma 2.3: The (CAV) assumptions hold.

Proof: We note π induces a stable M/M/1 queue thus states (i, 1) for i ≥ 0 form a positive
recurrent class, Rπ, and the stationary distribution on Rπ is φi = (1 − ρ)ρi, where ρ = λ/μn.
Thus, the long-run average cost of this policy is cu(1 − ρ) + cnρ +

∑∞
i=0 h(i)(1 − ρ)ρi which,

following from the assumption that h(i) grows sub-exponentially, is finite. It also follows
from basic continuous-time Markov chain theory that the expected first passage cost between
any two positive recurrent states is finite.

Finiteness of the expected transition time and cost from any transient state (i′, 0) to
the recurrent class remains to be shown. Since the server begins warming immediately if it
is not initially on, the expected transition time is 1/γ. The expected cost before entering the
recurrent class is the sum of the expected energy and holding costs incurred while warming.
The energy cost is finite since the first passage time is finite. Let H be the holding cost
incurred before absorption into the recurrent class. Then

IE[H|S0 = (i′, 0)] =
∞∑

m=0

IE[H | S0 = (i′, 0),m arrivals before the server turns on]

× IP(m arrivals before the server turns on | S0 = (i′, 0))

≤
∞∑

m=0

(m + 1)h(i′ + m)

× IP(m arrivals before the server turns on | S0 = (i′, 0))

Note the number of arrivals before the server turns on follows a geometric distribution with
parameter β = λ/λ + γ. Thus,

IE[H|S0 = (i′, 0)] ≤
∞∑

m=0

(m + 1)h(i′ + m)(1 − β)βm < ∞

where finiteness results from common properties of power series shown, among other places,
in Theorem 8.1 of Rudin [24]. This verifies the first assumption.

To check the next two assumptions, recall that h(i) → ∞ as i → ∞. Hence for any U > 0
there exists MU such that h(MU ) > U . Thus, DU ⊆ {(i, j)|i < MU} is finite as desired.
Finally, we check that given (i, j) ∈ S − Rπ, there exists a policy π̂(i,j) such that the expected
time and cost to transition from state (0, 1) to (i, j) is finite. Since (i, j) is transient under π,
it must be of the form (i, 0). Consider any stationary policy, d∞ such that d∞(i′, 0) = off
for all i′ ≤ i and d∞(0, 1) = (idle, off). Thus given initial state (0, 1), the system under d∞
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shuts the server off after the first arrival, transitioning into state (1, 0) and stays off until
there are at least i + 1 jobs in the system. Thus, the system must pass through state (i, 0)
as no jobs can be served while the server is off. Since the arrival process is Poisson, the
expected hitting time and cost are finite. Thus we have constructed an appropriate policy
for any (i, j) ∈ S − Rπ. �

Accordingly, we restrict our attention to stationary policies that induce a DTMC with
a single positive recurrent class and finite average cost. We refer to such policies as stable
policies. For any stable policy π, we redefine gπ(s) = gπ and let g∗(s) = g∗ for all s ∈ S.
Additionally, Lemma 2.3 verifies the conditions for Theorem 7.4.3 [25], which states that g∗

and an optimal policy π∗ can be obtained by solving the average cost optimality equations
(ACOE) for g∗ and r(i, j), for all states (i, j) in the positive recurrent class induced by π∗

where r(i, j) is the relative value function. The ACOE for the current study follow. For
i ≥ 0 and j = 0,

g∗ + r(i, 0) = h(i) + min

{
λr(i + 1, 0) + (1 − λ)r(i, 0),
cw + λr(i + 1, 0) + γr(i, 1) + (1 − λ − γ)r(i, 0),

(ACOE)

g∗ + r(0, 1) = h(0) + min

{
cu + λr(1, 1) + (1 − λ)r(0, 1),
cu + λr(1, 0) + (1 − λ)r(0, 1),

and for i ≥ 1, j = 1, and k = 1, . . . , n,

g∗ + r(i, 1) = h(i) + min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cu + λr(i + 1, 1) + (1 − λ)r(i, 1),
cu + λr(i + 1, 0) + (1 − λ)r(i, 1),
ck + λr(i + 1, 1) + μkr(i − 1, 1) + (1 − λ − μk)r(i, 1),
ck + λr(i + 1, 1) + μkr(i − 1, 0) + (1 − λ − μk)r(i, 1).

3. MAIN RESULT

In this section we state and prove (over several steps) our main theoretical result: a complete
characterization of an optimal control. As conventional inductive arguments were elusive,
we have used renewal arguments through a probabilistic interpretation of the relative value
function. We first state the definition of a rate-threshold N -policy.

Definition 3.1: A policy is a rate-threshold N-policy if it has one of the two following
structures:

(1) Never turn the server off and the service rate increases monotonically with the
number in system.

(2) Turn the server off when the system is empty and begin warming when N or more
jobs are in the queue. The service rate increases monotonically with the number in
system.

We characterize such policies with a triple (x, y, z) where x is the action taken when
the system is empty, idle or off, y is the smallest queue length where warming the server is
optimal and z is an n − 1 × 1 vector where the kth entry is the smallest queue length where
rate μk+1 is used. Note the threshold for turning on the system, y, is only meaningful to
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characterize the policy when the system turns off when empty. Otherwise all of the states
where the server is off are transient and actions taken in those states do not affect the
long-run average cost as long as the server must turn on eventually.

Theorem 3.2: There exists an optimal rate-threshold N -policy.

The proof is divided into several parts which we provide over the next several sections.

3.1. Work Conserving Policies

We begin our analysis by showing the intuitive fact that turning the server on immediately
after it was turned off is sub-optimal.

Definition 3.3: A policy, π = d∞, has immediate restarts if there exists i ≥ 1 and k ∈
{1, 2, . . . , n} such that d(i, 1) = (k, off) and d(i − 1, 0) = warm.

Lemma 3.4: There exists an average cost optimal policy that does not have immediate
restarts.

Proof: We use a coupling argument to prove this result. Let π = d∞ be a policy with
immediate restarts. We define an alternate policy π′ that does not have immediate restarts
and that has lower average cost. Call the system under π System 1 and the system under
π′ System 2. Let π′ mimic the actions of π until System 1 turns off following a service
completion and transitions into a state (i, 0) such that d(i, 0) = warm. System 2 instead
remains on and idles until either System 1 turns back on or an arrival occurs; if an arrival
occurs first, System 2 turns off. If the server in System 1 restarts before an arrival occurs,
both systems will be in state (i − 1, 1), and if an arrival occurs first, both systems will be
in state (i, 0). Thus, in either case the two systems have coupled. However, since the cost
of idling is lower than that of warming, π′ incurs strictly less cost. �

Lemma 3.5: If a policy, π = d∞, is stable and does not have immediate restarts, then there
exists finite Lπ such that for all queue lengths i > Lπ,

d(i, 1) /∈ {(idle, on), (idle, off), (k, off), k = 1, . . . , n}.
That is to say, there is a finite longest queue length above which the policy does not turn off
or idle.

Proof: Let π be a stable policy that does not have immediate restarts and that shuts off
or idles after a service completion in state (Lπ, 1) and let Δπ be the DTMC it induces. All
states in D(Lπ) := {(i, j) | i < Lπ − 1, j = 0, 1} are transient in Δπ. If the system begins in
state (i, j), i < Lπ − 1, it reaches a queue length of Lπ with probability at least λLπ−i, the
likelihood of Lπ − i consecutive arrivals. Further, once the number in the system reaches
length Lπ, the queue length cannot reach i again since to do so (Lπ, 1) must lead to (Lπ −
1, 1). This is not possible since the server either idles in (Lπ, 1) or is off when Lπ − 1 jobs
are in the system. Figure 1 illustrates this observation in the case where d(Lπ, 1) = (k, off).
Hence, if no such Lπ exists, all states are transient and a stationary distribution does not
exist. �

Definition 3.6: A work conserving policy is a policy that does not idle or turn the
server off when customers (work) remain in the system.
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Figure 1. Rate transition diagram for the DTMC induced by π containing all edges that
may have positive rates if π shuts off after completing service in state (L, 1). Note: for
simplicity, the same service rate is used in all states and we have suppressed the dependence
of L on π.

Proposition 3.7: There exists an optimal work conserving policy without immediate
restarts.

Proof: Using Lemma 3.4 consider an optimal policy π that does not have immediate
restarts. Let Lπ be the level described in Lemma 3.5 so above Lπ the server does not idle or
turn off. For simplicity, for the remainder of the proof, suppress the dependence of L on π.
If π is not work conserving at least one of the following holds:

(1) the server is turned off following a service completion with work remaining;
(2) the server idles with work remaining; or
(3) the server turns off following an arrival after idling while empty.

We discuss each case separately.

Case (1) The server turns off following a service completion with work remaining.
Suppose π turns the server off with L − 1 > 0 jobs in the system. That is,
d(L, 1) = (·, off). By Lemma 3.4, d(L − 1, 0) = off (otherwise π has immediate
restarts) and states in T are transient, where

T := {(i, j) | i < L, j = 1} ∪ {(i, j) | i < L − 1, j = 0}.
Define policy π′ = (d′)∞ such that d′(i, j) = d(i + L − 1, j). That is to say,
π′ uses the action taken by π when there are L − 1 additional jobs in the
system. Both policies induce renewal processes and thus their average cost
can be calculated using the renewal reward theorem. We demonstrate that π′

outperforms π by showing on any sample path both policies induce cycles of
the same length while π′ incurs less cost per cycle.
Refer to the system under π as System 1, and the system under π′ as System 2.
Initialize System 1 in state (L − 1, 0) and System 2 in (0, 0). Note each system
has a single positive recurrent class so the average costs are independent of
the initial state. We explain why these are recurrent states for their respective
systems below. Suppose both systems experience the same arrivals, potential
service completions and warming times are drawn from a common sequence.
System 2 has L − 1 fewer jobs than System 1 and thus both systems take the
same actions, incurring the same energy costs at all times. With probability
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Figure 2. Cycles under work conserving policy π′ and non-work conserving policy π which
turns off with L − 1 jobs in the queue.

one, System 1 eventually returns to state (L − 1, 0) and System 2 returns to
state (0, 0) since these states are positive recurrent. Further, by construction
these events happen simultaneously. Thus on every sample path, Systems 1 and
2 have exactly the same cycle length, however System 2 always incurs less total
cost since there are always fewer jobs in it. Hence, π′ has lower average cost
than π. Note the assumption that d(L, 1) = (·, off) is arbitrary. Any 0 < i < L
where π calls for turning the server off (and leaving it on when there are more
than i customers) would suffice.

Case (2) The policy π idles with work remaining in the queue. Suppose for example,
d(L, 1) ∈ {(idle, on), (idle, off)}. This case follows identically to the previous
case except we define policy π′ = (d′)∞ such that d′(i, j) = d(i + L, j) and
initialize System 1 in (L, 1) and System 2 in (0, 1).

Case (3) The policy idles while empty then turns off when an arrival occurs (d(0, 1) =
(idle, off)). First note, that this case need only be considered if d(1, 1) = (k, on),
k ∈ {1, . . . , n}. Otherwise, (0, 1) is transient and d(0, 1) does not affect the
long-run average cost. Define π′ = (d′)∞ such that d′(0, 0) = off, d′(1, 1) =
(k, off), and d′(i, j) = d(i, j) otherwise. Arbitrarily, initializing both systems
in (1, 1), the systems cycle jointly. Both systems incur the same costs except
when System 1 is idling in state (0, 1) and System 2 is off in (0, 0). Thus, π′

has lower average cost.

Finally it remains to show that with probability 1 and given an arbitrary initial state, each
system enters the state they are initialized in above in finite time. For example, in Case (1)
System 1 must enter (L − 1, 0) and System 2 must enter (0, 0) while in Case (2) System
1 must enter (L, 1) and System 2 must enter (0, 1). We verify this by showing that each
system will enter the positive recurrent class in finite time. Again we begin with Case (1).

Let Rπ and Rπ′ be the positive recurrent classes of the DTMCs induced by π and
π′, respectively. Note {(i, 1)|i ≥ L} ∪ {(L − 1, 0)} ⊆ Rπ and {(i, 1)|i ≥ 1} ∪ {(0, 0)} ⊆ Rπ′ .
First consider System 1 and three cases for the initial state. We refer to these as Cases 1a,

https://doi.org/10.1017/S0269964819000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000299


198 P. Badian-Pessot et al.

1b, and 1c to avoid confusion with the cases already defined. The argument holds similarly
for System 2 however we need not consider Case (1c).

Case (1a) Initial state (i, 1) with i ≥ L. When the server is on and there are more then
L jobs, the system is already in Rπ and thus (L − 1, 0) is reached.

Case (1b) Initial state (i, 0) with i ≥ L. Since π is optimal (and stable), the average cost
is finite, thus the system must turn on eventually (otherwise it incurs infinite
holding cost). Once this occurs, the result follows from Case (1a).

Case (1c) Initial state (i, j) where i < L and j = 0, 1. As noted previously these states
are transient and thus eventually the system reaches a state with L jobs in
the queue. If at this time the server is on, it has reached (L, 1) and the result
follows by Case (1a), otherwise the result follows by Case (1b).

Cases 2 and 3 follow in the same manner. Thus we have constructed a work conserving
policy with average cost at least as low as an arbitrary π that is not work conserving. �

3.2. Rate Threshold Policies

The next two results lead to the main result of this section where it is shown that an optimal
policy exists with monotone (in the number in the system) service rates.

Lemma 3.8: Suppose i + 2 is such that under a work conserving average cost optimal policy
the optimal action in (i + 2, 1) is to work at rate μk, k ∈ {1, . . . , n} and leave the server on
after a service. We have

r(i + 2, 1) − r(i + 1, 1) ≥ r(i + 1, 1) − r(i, 1).

Proof: Consider two systems started on the same probability space so that they see the
same arrivals and the same potential services. System 1 starts in state (i + 2, 1) using the
optimal action (k, on), and System 2 starts in state (i + 1, 1). Assume that System 2 also
uses (k, on) so that each system incurs the same energy costs. Note this action is potentially
sub-optimal for System 2.

Consider the first event. If the first event is a service completion, which occurs with
probability μk/(λ + μk), both systems see the service, and enter states (i + 1, 1) and (i, 1),
respectively. The remaining difference in the costs is r(i + 1, 1) − r(i, 1). If on the other
hand, there is an arrival, then the queue length in each system increases by 1. System 2
continues to follow the same actions as System 1 (which does not include ever turning the
server off) until System 1 re-enters (i + 2, 1). At this time System 2 is back in state (i + 1, 1).
Note the finite return time is guaranteed since System 1 is using an optimal policy, does
not turn the server off in (i + 2, 1) and (by assumption) has finite average cost. Since the
systems maintain their relative positions, the expected difference in cost on this cycle is
non-negative. Denote this difference in cost by B. The remaining difference in cost is then
B + r(i + 2, 1) − r(i + 1, 1).

Combining these two cases yields

r(i + 2, 1) − r(i + 1, 1) ≥ λ

λ + μk
[B + r(i + 2, 1) − r(i + 1, 1)]

+
μk

λ + μk
[r(i + 1, 1) − r(i, 1)]
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≥ λ

λ + μk
[r(i + 2, 1) − r(i + 1, 1)]

+
μk

λ + μk
[r(i + 1, 1) − r(i, 1)].

This implies

μk

λ + μk
[r(i + 2, 1) − r(i + 1, 1)] ≥ μk

λ + μk
[r(i + 1, 1) − r(i, 1)],

which yields

r(i + 2, 1) − r(i + 1, 1) ≥ r(i + 1, 1) − r(i, 1),

as desired. �

Lemma 3.9: Suppose there exists an optimal policy that uses the action (k, off) for some
k ∈ {1, 2, . . . , n} in state (1, 1). Then

[r(2, 1) − r(1, 1)] − [r(1, 1) − r(0, 0)] ≥ 0.

Proof: Define two systems on the same probability space so that

(a) both systems see the same arrival stream,
(b) service times are selected from a common sequence when servers begin serving at

the same rate at the same time, and
(c) warming times are drawn from a common sequence when servers begin warming at

the same time.

System 1 starts in state (2, 1) and uses an optimal work conserving policy, while Sys-
tem 2 starts in state (1, 1) and uses the same service rate as System 1 with the action
that turns the system off if the next event is a service completion. If the first event is an
arrival, System 2 uses the same action as System 1 until it (System 2) re-enters state (1, 1)
and again attempts to turn the server off if the next event is a service completion. This
process continues until System 2 turns off. Note this means System 2 will be in state (0, 0)
while System 1 is in state (1, 1). After this time, System 2 ceases mimicking the actions of
System 1 and instead follows an optimal work conserving policy.

Consider the first actual event (ignoring dummy transitions due to uniformization). If
it is a service completion at the rate μk′ (where k′ is the service rate used by System 1) the
systems transition to states (1, 1) and (0, 0), respectively. If the first event is an arrival (with
probability (λ/λ + μk′)) the queue lengths of each system increase by 1. This continues until
such time that the systems re-enter states (2, 1) and (1, 1). Since System 1 remains with a
queue that is one higher than System 2, the expected cost of System 1 is higher than that
of System 2. Say this difference is B̄ ≥ 0. Since the policy followed by System 2 may not be
optimal, this all leads to the following inequality

r(2, 1) − r(1, 1) ≥ λ

λ + μk′
[B̄ + [r(2, 1) − r(1, 1)]] +

μk′

λ + μk′
[r(1, 1) − r(0, 0)]

≥ λ

λ + μk′
[r(2, 1) − r(1, 1)] +

μk′

λ + μk′
[r(1, 1) − r(0, 0)]
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A little algebra yields

μk′

λ + μk′
[r(2, 1) − r(1, 1)] ≥ μk′

λ + μk′
[r(1, 1) − r(0, 0)].

The result follows. �

Remark 3.10: The previous proof showing r(i, j) is convex does not require that r(i, j) be
non-decreasing (this is also the case for subsequent proofs). Typically, the two properties
are connected in that the assumption that a function is non-decreasing is used to show
convexity along the boundary of the state space. In the current work, we avoid this because
we know the behavior of an optimal policy when we approach the boundary, can condition
appropriately and we are using average cost as an optimality criterion (no discounting).
Having said that, it turns out that r(i, j) is indeed non-decreasing. We have included a
proof of this in Appendix A for the interested reader.

Proposition 3.11: There exists an optimal policy such that the optimal service rate is
monotone non-decreasing with the number in system.

Proof: Consider i ≥ 2 and suppose an optimal work conserving policy uses service rate
μk(i) (resp. μk(i+1)) in state (i, 1) (resp. (i + 1, 1)). Without loss of generality assume that
μk(i) 	= μk(i+1). To prove the result it suffices to show that μk(i) < μk(i+1). Since the optimal
policy is work conserving and i ≥ 2, the server is left on after service in (i, 1). The (ACOE)
imply

g∗ + r(i, 1) = h(i) + ck(i) + λr(i + 1, 1) + μk(i)r(i − 1, 1) + (1 − λ − μk(i))r(i, 1)

≤ h(i) + ck(i+1) + λr(i + 1, 1) + μk(i+1)r(i − 1, 1) + (1 − λ − μk(i+1))r(i, 1).
(3.1)

Similarly,

g∗ + r(i + 1, 1) = h(i + 1) + ck(i+1) + λr(i + 2, 1) + μk(i+1)r(i, 1)

+ (1 − λ − μk(i+1))r(i + 1, 1)

≤ h(i + 1) + ck(i) + λr(i + 2, 1) + μk(i)r(i, 1) + (1 − λ − μk(i))r(i + 1, 1).
(3.2)

Assume at least one of the inequalities (3.1) or (3.2) is strict, otherwise both serving at rates
μk(i) and μk(i+1) is optimal in states (i, 1) and (i + 1, 1) so that a non-decreasing optimal
control can be constructed. Without loss of generality, assume that the inequality in (3.1)
is strict. Note that A < B and C ≤ D implies C − B < D − A. Combining (3.1) and (3.2)
yields,

λ[r(i + 2, 1) − r(i + 1, 1)] + μk(i)[r(i, 1) − r(i − 1, 1)] + (1 − λ − μk(i))[r(i + 1, 1) − r(i, 1)]

> λ[r(i + 2, 1) − r(i + 1, 1)] + μk(i+1)[r(i, 1) − r(i − 1, 1)]

+ (1 − λ − μk(i+1))[r(i + 1, 1) − r(i, 1)]

A little algebra yields

μk(i)[[r(i, 1) − r(i − 1, 1)] − [r(i + 1, 1) − r(i, 1)]]

> μk(i+1)[[r(i, 1) − r(i − 1, 1)] − [r(i + 1, 1) − r(i, 1)]].
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Thus,

[μk(i) − μk(i+1)][[r(i, 1) − r(i − 1, 1)] − [r(i + 1, 1) − r(i, 1)]] > 0. (3.3)

Since r is convex (see Lemma 3.8), μk(i) < μk(i+1) as desired.
Next consider the state (1, 1). Note that if an optimal action is to work at rate μk(1)

and keep the server on if the next event is a service, the previous proof holds. Assume the
decision-maker turns the server off after a service completion in (1, 1) and that μk(1) 	= μk(2).
The (ACOE) yield

g∗ + r(1, 1) = h(1) + ck(1) + λr(2, 1) + μk(1)r(0, 0) + (1 − λ − μk(1))r(1, 1)

≤ h(1) + ck(2) + λr(2, 1) + μk(2)r(0, 0) + (1 − λ − μk(2))r(1, 1). (3.4)

and

g∗ + r(2, 1) = h(2) + ck(2) + λr(3, 1) + μk(2)r(1, 1) + (1 − λ − μk(2))r(2, 1)

≤ h(2) + ck(1) + λr(3, 1) + μk(1)r(1, 1) + (1 − λ − μk(1))r(2, 1). (3.5)

Again, assume without loss of generality that (3.4) is strict. This yields

μk(1)[[r(1, 1) − r(2, 1)] − [r(0, 0) − r(1, 1)]] > μk(2)[[r(1, 1) − r(2, 1)] − [r(0, 0) − r(1, 1)]].

A little algebra yields

(μk(1) − μk(2))[[r(1, 1) − r(2, 1)] − [r(0, 0) − r(1, 1)]] > 0.

Using Lemma 3.9 yields μk(1) < μk(2) as desired. �

Remark 3.12: Note that Proposition 3.11 implies that there exist thresholds 1 = 	1 ≤ 	2 ≤
· · · ≤ 	n ≤ 	n+1 = ∞ such that the optimal action in state (i, 1) uses rate μk if 	k ≤ i < 	k+1.

3.3. Thresholds to Turn the Server On

We conclude our analysis by showing there exists a threshold for turning the server on.
Then we combine all the threshold results into a single result characterizing the structure
of the average cost optimal policy.

Definition 3.13: We say a stationary policy is an on threshold policy with parameter
N if it calls for the server to warm when there are more than N jobs in the system and
remains off otherwise.

Throughout this section we make the assumption that there exists a queue length,
above which we would always warm the server. Note that in fact it suffices to have an
infinite number of queue lengths where it is optimal to warm the server; making all states
of the form (i, 0) recurrent for all (stationary) work-conserving policies that ever turn the
server off. Recall, the action warm attains the minimum in ACOE, and is thus optimal, in
state (i, 0) if

r(i, 0) − r(i, 1) ≥ cw

γ
.

Thus, the existence of the aforementioned threshold is assured if being optimal to warm
the server in (i, 0) implies it is optimal to warm the server in (i + 1, 0). To get this result,

https://doi.org/10.1017/S0269964819000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000299


202 P. Badian-Pessot et al.

it suffices to show

r(i + 1, 0) − r(i + 1, 1) ≥ r(i, 0) − r(i, 1). (3.6)

Without loss of generality assume that it is optimal to turn the server off after service
in state (1, 1) (otherwise, the states with the server off are transient for work-conserving
policies). A little rearranging in (3.6) yields an equivalent inequality,

r(i + 1, 0) − r(i, 0) ≥ r(i + 1, 1) − r(i, 1).

Lemma 3.14: Suppose i is such that under a work conserving average cost optimal policy it
is optimal to warm the server in (i + 1, 0). Let r be the relative value function satisfying the
(ACOE). We have

r(i + 1, 0) − r(i, 0) ≥ r(i + 1, 1) − r(i, 1).

Proof: Start two systems, Systems 1 and 2, in states (i + 1, 0) and (i, 0), respectively.
Suppose System 2 also uses the (potentially sub-optimal) action to warm the server. The
first (actual) event is either the server turns on and is ready for service with probability
γ/(λ + γ) or an arrival with probability λ/λ + γ. In the first case, the remaining difference
in the costs incurred by the systems after the first event are r(i + 1, 1) − r(i, 1). In the
second case, the systems enter states (i + 2, 0) and (i + 1, 0), respectively. Because it is
optimal to warm the server for a sufficiently large queue length, eventually the server in
System 1 goes from off to on. Since, the policy is work conserving, the server stays on and
eventually reaches state (i + 1, 1). Assuming System 2 chooses the same actions as System
1, it remains having one less customer in queue. When System 1 enters state (i + 1, 1),
System 2 is in state (i, 1). At this point, assume both policies follow the optimal policy.
The difference in costs is the difference in (holding) costs accrued until the time System 1
reaches state (i + 1, 1) (denoted B̃) and the remaining costs if both systems then follow the
optimal policy. That is,

r(i + 1, 0) − r(i, 0) ≥ γ

λ + γ
[r(i + 1, 1) − r(i, 1)] +

λ

λ + γ
[B̃ + r(i + 1, 1) − r(i, 1)]

≥ r(i + 1, 1) − r(i, 1)

as desired. �

Proposition 3.15: There exists an optimal policy that is an on threshold policy.

Proof: As mentioned previously, this an immediate consequence of Lemma 3.14 (recall the
discussion immediately prior to (3.6)). �

Theorem 3.2 follows directly from Propositions 3.7, 3.11, and 3.15.

4. NUMERICAL STUDY

In this section we provide insights into the value of the decision maker having both control
mechanisms at their disposal in the case where n = 2. We refer to the service rates as low
and high. First, we compare the optimal policy for systems with increasing traffic intensity
to investigate when the ability to turn the server off will actually be utilized. In the second
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Table 1. Triple description for optimal policies.

λ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

x off off off off idle idle idle idle idle idle idle idle
y 6 7 6 6
z 9 10 9 9 7 6 5 5 4 4 4 3

experiment, we compare the optimal policy to simple (potentially sub-optimal) policies that
only utilize one of the control mechanisms and analyze how the energy and holding cost
contribute to the total cost. Then, we explore the benefit of short warming periods.

We use the following rates in the first two experiments: μlow = 1, μhigh = 3, and γ =
0.5. We assume a linear holding cost function where h(i) = 0.5i. Finally, we let cu = 10,
cw = 20 and clow = cu + 0.5μ3

low and chigh = cu + μ3
high. The choice of a cubic cost function

is motivated by the physics of server farm energy consumption as described by Chen et al.
[6]. We use a buffer size 500 as an approximation to an infinite buffer.

4.1. Value of On/Off Control

The first experiment compares the optimal policy for systems with arrival rates between 0.2
and 2.4. Table 1 contains the characterizing triple for each optimal policy. Recall x gives
the optimal action taken in state (0, 1) and y is the smallest queue length where the system
begins warming. Note y is not provided if we reach (0, 1) and the server idles since the
server does not turn off making states where the server is off transient. The threshold z is
the shortest queue length where μhigh is used. Note since n = 2, z is a scalar as opposed to
the vector described in Section 3. The most notable observation from the experiment is how
low the traffic intensity must be before it is beneficial to turn the server off. We expect the
ability to turn the server off to be most useful when the intensity is low since that system
could also potentially spend the most time idle. However, it is somewhat surprising that
avoiding delays, even for moderate traffic intensity where holding cost contributes relatively
little to the total cost, is preferred by the optimal policy even though it results in additional
costs due to idling. This is illustrated in Figure 3.

4.2. Comparison to Single Control Policy

Our second experiment compares the average cost of the optimal policy to (possibly sub-
optimal) policies that do not utilize both control mechanisms. The sub-optimal policies that
we compare are:

(1) High rate always: This policy always uses rate μhigh regardless of the number in
the system and never turns off. Accordingly, in the long-run, the system under this
policy behaves as an M/M/1 queue with service rate μhigh.

(2) Turn off at 0: This policy uses the same rate threshold as the optimal policy but
turns off whenever the system is empty. It begins warming as soon as a job arrives.

The average cost for a policy is calculated by simulating the system under the policy 100
times. Each simulation has a burn in time of 1000, then the next 10000 decision epochs are
used to compute average cost. As when finding the optimal policy, we use a buffer size of
500.
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Figure 3. The average cost rate under the optimal policy for increasing arrival rates is
split into the component costs incurred from energy costs (serving, idling, or warming) and
from holding costs.

Figure 4. The average cost rate under the optimal policy for increasing arrival rates.
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Figure 5. The average cost rate under the optimal policy for increasing arrival rates is
split into the component costs incurred from energy cost (serving, idling, or warming) and
resulting from holding costs.

Table 2. Average cost incurred per period

λ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Optimal 4.6 7.5 10.0 12.2 13.9 16.0 18.4 21.0 23.4 26.2 29.2 32.1
High rate 11.8 13.7 15.6 17.4 19.3 21.2 23.0 25.0 26.9 29.0 31.1 33.5
Off at 0 7.0 10.3 12.0 13.4 15.3 17.4 20.1 22.3 25.4 28.0 30.7 34.4

The benefit of both controls is most pronounced when the traffic intensity is low, as
shown in Figure 4. This is not surprising since when the traffic intensity is high, we expect
the higher rate should be used more often and the queue is empty infrequently, thus the
differences between the optimal policy and other two are less pronounced.

As observed in Figure 5, the most useful feature of this experiment is the clear trade off
between holding costs and delay. For λ = 1 the reduction in energy costs no longer makes
up for longer delays resulting in higher holding costs. As noted in the previous experiment,
it is somewhat surprising idling is optimal even for moderate to low traffic intensity since
holding costs make up less then 20% of the total cost (Table 2).

Not surprisingly the system which always uses rate μhigh incurs the least holding cost
for all arrival rates, however utilizing the lower rate significantly decreased energy costs
particularly for lower traffic intensity, for instance when λ = 1, the optimal policy incurs
nearly 40% less costs.
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Figure 6. The average cost rate under the optimal policy for increasing warming rate and
arrival rate λ = 0.7

Figure 7. The average cost rate under the optimal policy for increasing warming rate and
arrival rate λ = 1.
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4.3. Value of Fast Warming

Finally we explored the value of faster warming rates. While not useful to a manager once
the system is in use, this experiment aims to provide insights into the value of investing in
faster warming times when the system is being built. This experiment uses the same inputs
as the previous two except the arrival rate is λ = 0.7 and the warming rate varies from
γ = 0.1 to γ = 1.5.

As expected, faster warming rates decrease total cost. More notable however, is the
change in the proportion of costs incurred from energy and holding costs when the action
employed by the optimal policy when the system empties switches from idling to turning
off. We see this in Figure 6, where the average cost changes negligibly between when the
warming rate is 0.3 (so the server idles) and when the warming rate is 0.4 (and the server
turns off) but the proportion due to the holding costs increases significantly. This implies
that increasing the warming rate a small amount might not be sufficient to decrease total
cost but it may be beneficial if lowering costs due to energy usage is a priority. However it
is worth noting that this effect diminishes as the arrival rate increases. In Figure 7, where
λ = 1, we see a much less dramatic trade off when the action taken when the system empties
changes.

5. CONCLUSION

In this paper we considered a system with a single removable server that dynamically
chooses its service rate. We proposed an MDP model for this system and analyzed it under
the average cost optimality criterion. We used a renewal reward approach and renewal
arguments using a probabilistic interpretation of the relative value function to characterize
an average cost optimal policy. Some interesting paths for further work include:

(1) Including switching costs in the model. In reality it may not be possible to dynam-
ically change service rates instantly or without cost. This would also penalize
switching, which in the data center application, can result in a reduction in server
reliability.

(2) Multiple servers. A multiple server model of this problem is clearly of interest since
data centers are not made up of a single server. Multiple server models also introduce
the added complexity of routing jobs to appropriate servers.
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APPENDIX A

We include the following results for two reasons. First, though not necessary for the main results,
interested readers may reasonably ask if indeed the relative value function is non-decreasing. Second,
we think the proof technique, in which we introduce additional actions so that we may construct
coupled policies, is interesting and applicable in other instances.
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In order to do show if r(i, j) is a relative value function satisfying the (ACOE) it is non-
decreasing, we will allow the actions a = {(k, off), (k, on), k = 1, . . . , n} to be taken in state (0, 1).
Since there is no work to be done in this state, taking one of these actions means the server idles
but incurs the cost of serving. If a = (k, off), k ∈ {1, . . . , n}, following a hypothetical service, the
server turns off. Clearly these actions are sub-optimal as the server should either idle and never be
turned off or should have turned off immediately after the system empties. We show this formally
in Lemma A.1.

Lemma A.1: There exists an optimal policy that does not use actions a = {(k, off), (k, on),
k = 1, . . . , n} in state (0, 1).

Proof: First note, this case need only be considered if under an optimal policy π = d∞, d(1, 1) =
(k, on) for some k ∈ {1, . . . , n}. Otherwise, state (0, 1) is transient and the action taken there does
not affect the long-run average cost. Thus r(0, 0) ≥ r(0, 1), otherwise π does not attain the minimum
in the (ACOE) and d(1, 1) = (k, on) is not optimal. Suppose a = (k, off) attains the minimum in
the (ACOE) for (0, 1) and is strictly better than (idle, off). Thus,

ck + λr(1, 1) + μkr(0, 0) + (1 − λ − μk)r(0, 1) < cu + λr(1, 1) + (1 − λ)r(0, 1)

=⇒ ck − cu + μk[r(0, 0) − r(0, 1)] < 0

This is a contradiction; (k, off) need not be used in an optimal policy. Similarly, suppose a = (k, on)
attains the minimum in the (ACOE) and is strictly better than (idle, off). This yields

ck + λr(1, 1) + μkr(0, 1) + (1 − λ − μk)r(0, 1) < cu + λr(1, 1) + (1 − λ)r(0, 1)

=⇒ ck − cu < 0

Thus, again (k, on) need not be used in an optimal policy. �

Lemma A.2: Let r be a relative value function satisfying the (ACOE). Then r(i, j) is non-decreasing
in i for j = 0, 1, i.e.

r(i + 1, j) − r(i, j) ≥ 0.

Proof: Recall that the difference between the relative value function evaluated at different initial
states is the difference in the total cost under an average cost optimal policy. Consider two processes
started on the same probability space so that they see the same arrivals and the same potential
services. System 1 initializes in (i + 1, j) and uses an optimal policy and System 2 initializes in
(i, j) and mimics the actions taken by System 1. Note by Lemma A.1 we can include the additional
actions in (0, 1) that allows System 2 to mimic System 1 in all states. Eventually the systems couple
when a job is serviced in (1, 1) in System 2 while System 1 idles (for the cost of serving). After
this point the systems incur identical costs. Before coupling, System 2 incurs less cost since both
systems use the same actions but System 2 incurs less holding costs as it has fewer jobs in the
system. �
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