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This paper proposes a bootstrap test for the correct specification of parametric
conditional distributions+ It extends Zheng’s test ~Zheng, 2000, Econometric Theory
16, 667– 691! to allow for discrete dependent variables and for mixed discrete
and continuous conditional variables+ We establish the asymptotic null distribu-
tion of the test statistic with data-driven stochastic smoothing parameters+ By
smoothing both the discrete and continuous variables via the method of cross-
validation, our test has the advantage of automatically removing irrelevant vari-
ables from the estimate of the conditional density function and, as a consequence,
enjoys substantial power gains in finite samples, as confirmed by our simulation
results+ The simulation results also reveal that the bootstrap test successfully over-
comes the size distortion problem associated with Zheng’s test+

1. INTRODUCTION

Currently, there exists a substantial body of work on consistent model specifi-
cation testing for regression models and for unconditional distribution ~den-
sity! functions; see Bierens and Ploberger ~1997!, Delgado and Manteiga ~2001!,
Fan ~1994, 1997, 1998!, Fan and Li ~1996!, Hong and White ~1996!, Wool-
dridge ~1992!, and the references therein+ In many economic applications, how-
ever, it is the distribution of one variable conditional on some other variables
that is of more direct interest+ The popular parametric binary or multinomial
response models are but two leading examples of conditional probability models+
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Conditional probability models also are widely deployed in risk management
and insurance settings, where the dependent variable of interest may be the
claim size ~a continuous variable! and the explanatory variables usually con-
tain a mixture of discrete and continuous variables such as sex, age, whether
children are present, whether one smokes, and so forth+ Moreover, in risk man-
agement analysis, usually one is interested in the entire ~conditional! distribu-
tion, rather than only in the conditional mean itself+ Hence, a conditional
probability model is more useful than a regression model in risk analysis+ Rel-
atively speaking, tests for conditional probability models are scarce+ Zheng
~2000!, using kernel density estimators, proposed a consistent test for a para-
metric conditional density function+ He showed that the limiting distribution of
his test statistic is N~0,1! and that the test can detect Pitman local alternatives
approaching the null distribution at the rate of ~nh q02!�102 , where n is the sam-
ple size, h is the bandwidth, and q is the dimension of the conditioning vari-
ables+ To apply Zheng’s test to a given data set, one needs to choose the
bandwidth; no guidance is provided on how this should be accomplished+More-
over, the requirement that both the dependent variable y and conditioning vari-
ables x are continuous variables severely limits the scope of application of
Zheng’s test, as many economic data sets contain both continuous and discrete
variables+ Andrews ~1997! proposed a conditional Kolmogorov ~CK! test for
testing a parametric conditional distribution function+ His test overcomes the
difficulties associated with Zheng’s test; it does not involve smoothing param-
eters and allows for both discrete and continuous variables+ The critical values
of the CK test of Andrews are obtained via a parametric bootstrap procedure,
and the test can detect Pitman type local alternatives that approach the null
model at the rate of O~n�102!+ Although Andrews’ test can handle both contin-
uous and discrete variables, it does not produce an estimate of the conditional
density function, which is of course undesirable when the parametric distribu-
tion function is rejected+ In addition, it does not distinguish between relevant
and irrelevant explanatory variables+

A related literature is the work on dynamic integral probability transform
models such as that outlined in Diebold, Gunther, and Tay ~1998!+ Corradi and
Swanson ~2004! and Li and Tkacz ~2004! have also proposed bootstrap-based
tests for conditional distributions+ The Corradi and Swanson ~2004! procedure
is a nonsmoothing test similar to that of Andrews ~1997!, and their test extends
Andrews’ test to the time series data setting+ Li and Tkacz ~2004! use kernel
smoothing; however, like Zheng ~2000!, they only consider the case whereby
both y and x are continuous variables+ The conventional way of handling dis-
crete variables when estimating a conditional density function involving both
discrete and continuous explanatory variables is by the so-called frequency
method in which the entire sample is first split into a number of distinct cells
and the data in each cell are then used to estimate the conditional density that
is a function of the remaining continuous variables+ For economic data, how-
ever, it is typically the case that the number of discrete cells is comparable to
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or even larger than the sample size+ This renders the nonparametric frequency
approach infeasible+ Moreover, one may not know which conditional variables
should be included in a particular application and hence faces the danger of
including potentially irrelevant variables in the estimate+ This is unfortunate,
particularly in nonparametric settings, as including irrelevant explanatory vari-
ables has serious consequences for the accuracy of the resulting estimate: the
rate of convergence of the density estimator will deteriorate quickly with the
number of irrelevant continuous variables ~the “curse of dimensionality”!,
whereas the number of cells will increase quite quickly with the number of
irrelevant discrete variables+ Recently, Hall, Racine, and Li ~2004! proposed
estimating a conditional density by smoothing both the discrete and continuous
variables and showed that the use of cross-validation can automatically remove
irrelevant variables from the resulting estimate+ This is because the cross-
validation method selects bandwidths that converge to some optimal values for
relevant variables but selects large values for irrelevant conditional variables,
thereby effectively smoothing out the irrelevant variables from the resulting
estimate+

In this paper, we exploit the approach of Hall et al+ ~2004! to establish an
alternative test for a parametric conditional density function+ It is constructed
based on the Zheng ~2000! setup; however, it improves upon Zheng’s test in a
number of important ways: ~i! the bandwidth is automatically chosen by cross-
validation, thereby avoiding potential arbitrariness in the test’s outcome due to
an arbitrary choice of the bandwidth; ~ii! it allows for both discrete and contin-
uous variables; and ~iii! the critical values are obtained from a parametric boot-
strap procedure, which corrects the size distortions present in Zheng’s approach+
Although ~ii! and ~iii! are shared by Andrews’ CK test, our test automatically
produces an estimate of the conditional density function when the parametric
density function is rejected by the test+ More importantly, by automatically
smoothing both the discrete and continuous variables via the method of cross-
validation, our test has the advantage of automatically removing irrelevant vari-
ables from the resulting estimate ~see Hall et al+, 2004! and, as a consequence,
enjoys substantial power gains in finite samples, as confirmed by our simula-
tion results+ Although our proposed test can only detect Pitman local alterna-
tives approaching the null at rates slower than O~n�102!, it can be shown that
for high-frequency alternatives, our test can detect local alternatives that approach
the null at rates o~n�102! in terms of the L1 norm of the difference between the
local alternative and the null model ~e+g+, Fan, 1998; Fan and Li, 2000!+ Hence
it provides a complement to Andrews’ CK test+

The remainder of this paper is organized as follows+ In Section 2 we review
and suggest a modified version of Zheng’s test statistic+We also propose a boot-
strap method for approximating the null distribution of our test+ Section 3 reports
Monte Carlo simulation results that examine the finite-sample performance of
the proposed test+ Finally, Section 4 concludes+ Proofs are presented in the
Appendix+
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2. THE NULL HYPOTHESIS AND THE TEST

2.1. Zheng’s Test

We begin by briefly reviewing the test proposed by Zheng ~2000!+ Suppose
that the data consist of $ yi , xi %i�1

n , an independent and identically distributed
~i+i+d+! sample drawn from the distribution of ~ y, x! with the joint density func-
tion p~ y, x!+ Let p~ y 6x! denote the conditional density function of y given x+
We are interested in testing whether p~ y 6x! belongs to a particular parametric
family+ Let f ~ y 6x,u! denote a parametric conditional density function with u
being a k � 1 parameter+ The null hypothesis is given by

H0 : Pr @ p~ yi 6xi ! � f ~ yi 6xi ,u0 !#� 1 for some u0 � Q,

where Q is the parameter space that is a compact set in Rk + The alternative
hypothesis is the negation of the null:

H1 : Pr @ p~ yi 6xi ! � f ~ yi 6xi ,u!# � 1 for all u � Q+

The Kullback–Leibler information criterion ~Kullback and Leibler, 1951!,
measuring the discrepancy of two conditional density functions, is defined as

I ~ p, f ! � E�log� p~ yi 6xi !

f ~ yi 6xi ,u0 !
�� + (1)

It is well known that I ~ p, f ! � 0 and I ~ p, f ! � 0 if and only if p~ y 6x! �
f ~ y 6x,u0! almost everywhere ~a+e+!+ Thus, I ~ p, f ! serves as a proper measure to
test H0+ For technical reasons, instead of basing his test on the information mea-
sure, Zheng ~2000! considered its first-order expansion,

E�log� p~ yi 6xi !

f ~ yi 6xi ,u0 !
�� � E� p~ yi 6xi !

f ~ yi 6xi ,u0 !
� 1�

� E� p~ yi 6xi !� f ~ yi 6xi ,u0 !

f ~ yi 6xi ,u0 !
� + (2)

Weighting ~2! by the marginal density p1~x! of the conditional variable x
leads to the following measure:

I1~ p, f ! � E� p~ yi , xi !� f ~ yi 6xi ,u0 !p1~xi !

f ~ yi 6xi ,u0 !
� + (3)

Zheng ~2000! has shown that I1~ p, f ! � 0 and the equality holds if and only if
H0 is true+ Therefore, I1~ p, f ! also serves as a proper measure to test for H0+
For continuous random variables y and x, Zheng ~2000! proposed estimating
p~ yi , xi ! by a standard kernel density estimator and estimating f ~ yi 6xi ,u0!p1~xi !
by a smoothed density estimator Ip~ yi , xi ! given by
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Ip~ yi , xi ! �
1

n (j�1

n �w2, hy� yi � y

hy
�Wh� xi � xj

h
� f ~ y 6xj , Zu! dy, (4)

where w2, hy
~{! � hy

�1 w2~{! , w2~{! is a ~specially defined! univariate kernel
function,Wh~{! is a product kernel Wh~~xi � xj !0h!�)s�1

q hs
�1 w~~xis � xjs!0hs!

with w~{! being a standard ~second-order! univariate kernel, hy and hs’s are the
smoothing parameters, and Zu is an estimator of u0 under the null model+ The
measure I1~ p, f ! is then estimated by

Tn, h
c �

1

n~n � 1!

�(
i�1

n

(
j�1, j�i

n 	 w2, hy� yi � yj

hy
�Wh� xi � xj

h
���w2, hy� yi � y

hy
�Wh� xi � xj

h
� f ~ y 6xj , Zu! dy

f ~ yi 6xi , Zu!

 +
(5)

To establish the null asymptotic distribution of Tn, h
c , Zheng ~2000! sug-

gested transforming the dependent variable such that it takes values in @0,1#
and then choosing a special kernel function for w2~{! with the property that
hy

�1*0
1 w2~~ yi � y!0hy!

2 dy r 1 as n r `+ The use of the smoothed estimator
Ip~ y, x! eliminates the bias of the kernel estimator of p~ yi , xi ! under H0 such

that the test statistic is appropriately centered for a wide range of smoothing
parameter values+ Under some regularity conditions, Zheng ~2000! showed that
the asymptotic null distribution of Tn, h

c is normal and provided a consistent esti-
mator of its asymptotic variance+

2.2. Our Framework

We now extend Zheng’s test to include both continuous and discrete explana-
tory variables ~x is a mixed variable!, where the dependent variable y can be
discrete or continuous+

We first consider the case that y is a discrete variable+ In this case, we show
that the smoothed estimator Ip~ y, x! reduces to an average estimator+ Thus, the
resulting test statistic only involves summations and hence avoids the need for
numerical integration+

Let x � ~x c, x d!, where x c is a q � 1 continuous variable and x d is an r � 1
discrete variable+ We use xis

c ~xis
d ! to denote the sth component of xi

c ~xi
d!+ We

further assume that xis
d takes the values in $0,1, + + + , cs � 1% ~it takes cs different

values!+
In constructing the kernel density estimate, we use different kernel functions

for the discrete and continuous variables+ For the discrete variable x d , we use
the Aitchison and Aitken ~1976! kernel: l~xis

d , xjs
d ,ls ! � 1 � ls if xis

d � xjs
d , and
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l~xis
d , xjs

d ,ls ! � ls0~cs � 1! if xis
d � xjs

d+ Hence, the product kernel for the dis-
crete variable is

L~xi
d , xj

d ,l! � )
s�1

r

l~xis
d , xjs

d ,ls !�)
s�1

r

$ls 0~cs � 1!%Nis~x! ~1 � ls !
1�Nis~x!,

where Nis~x! � I ~xis
d � xjs

d !, in which I ~{! is the usual indicator function and
l1, + + + ,lr are the smoothing parameters for the discrete components and are
constrained by 0 � ls � ~cs � 1!0cs+ Note that when ls assumes the upper
extreme value, ~cs � 1!0cs, l~xis

d , xjs
d ,ls � ~cs � 1!0cs! [ 10cs becomes unrelated

to ~xis
d , xjs

d !, i+e+, the sth component of x d is completely smoothed out when
ls � ~cs � 1!0cs+

For the continuous component x c , we still use the standard ~second-order!
product kernel function as discussed earlier+ Therefore, for the mixed type vari-
able x � ~x c, x d!, the kernel function is defined by

Kg, ij � Kg~xi , xj ! �
def

Wh� xi
c � xj

c

h
�L~xi

d , xj
d ,l!, (6)

where g � ~h,l! [ ~h1, + + + , hq,l1, + + + ,lr !+
We now discuss how to estimate p~ yi , xi ! and p1~xi !+ Assume that yi is a

discrete variable; then we estimate p~ yi , xi ! and p1~xi ! by the following leave-
one-out kernel estimators:

[p�i ~ yi , xi ! �
1

n (j�i

n

I ~ yi � yj !Kg~xi , xj !, (7)

[p1,�i ~xi ! �
1

n (j�i

n

Kg~xi , xj !+ (8)

To construct the smoothed estimator of f ~ yi 6xi ,u0!, we replace Wh~{! in ~4!
by Kg~xi , xj ! and *w2, hy

~~ yi � y!0hy! dy by (y I ~ yi � y!+ Taking into account
these modifications, we obtain

Ip~ yi , xi ! �
1

n (j�1

n

(
y

I ~ yi � y!Kg~xi , xj ! f ~ y 6xj , Zu!

�
1

n (j�1

n

Kg~xi , xj ! f ~ yi 6xj , Zu!+ (9)

Using [p�i~ yi , xi !, [p1,�i~xi !, and Ip~ yi , xi ! just introduced, we define our test
statistic as

Tn,g �
1

n~n � 1! (i�1

n

(
j�1, j�i

n � Kg~xi , xj !

f ~ yi 6xi , Zu!
@I ~ yi � yj !� f ~ yi 6xj , Zu!#� + (10)

592 YANQIN FAN ET AL.

https://doi.org/10.1017/S0266466606060294 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060294


Note that the double summation in Tn,g does not include j � i terms because
we have used the leave-one-out estimators for estimating p~ yi , xi ! and p1~xi !+
The reason for using these leave-one-out estimators is that, under H0, the asymp-
totic distribution of Tn,g will be centered at zero ~there is no center term!+

The smoothing parameters h1, + + + , hq ~corresponding to the continuous vari-
able x c! can be selected by several commonly used procedures, including the
cross-validation method, the plug-in method, and some ad hoc methods+ How-
ever, for l1, + + + ,lr , the plug-in or even an ad hoc formula is not available+
Hall et al+ ~2004! have shown that using the cross-validation method to select
l1, + + + ,lr and h1, + + + , hq has some nice properties: when xs

c ~xs
d! is a relevant

variable, the cross-validation method will select a small hs~ls! that converges
to zero at an optimal rate; when xs

c ~xs
d! is an irrelevant variable,1 the cross-

validation method will select an extremely large value for hs ~upper bound value
for ls! so that the irrelevant variables are ~asymptotically! automatically removed
~smoothed out!+ Indeed in the problem of nonparametric estimation of a condi-
tional density, cross-validation comes into its own as a method with no obvious
peers+ Therefore, we will choose l1, + + + ,lr , h1, + + + , hq by the cross-validation
method suggested in Hall et al+ ~2004!+

Let ~h,l! � ~h1, + + + , hq,l1, + + + ,lr !+ Hall et al+ propose choosing ~h,l! by
minimizing the following objective function:2

CV~h,l! �
1

n (i�1

n ZG�i ~xi !m~xi
c!

[p1,�i ~xi !
2

�
2

n (i�1

n [p�i ~xi , yi !m~xi
c!

[p1,�i ~xi !
, (11)

where

ZG�i ~Xi ! �
1

~n � 1!2 (i1�i

n

(
i2�i

n

Kg~xi , xi1 !Kg~xi , xi2 !I ~ yi1 � yi2 !,

in which [p1,�i~xi ! and [p�i~xi , yi ! are the leave-one-out kernel estimators of p1~xi !
and p~xi , yi !, respectively, and m~xi

c! is a weight function introduced to deal
with the small random denominator problem; see Hall et al+ ~2004!+

We will use Zh1, + + + , Zhq and Zl1, + + + , Zlr to denote the resulting smoothing
parameters+ Assuming that all the x variables are relevant variables, Hall et al+
~2004! showed that Zhs � as

0 n�10~q�4! � op~n�10~q�4! ! for s � 1, + + + ,q, and Zls �
bs

0 n�20~q�4! � op~n�20~q�4! ! for s � 1, + + + , r, where as
0 and bs

0 are some finite
constants+

THEOREM 2+1+ Under conditions (C1)–(C3) given in the Appendix, we have
under H0

Jn, [g �
def

n~ Zh1 + + + Zhq !
102Tn, [g��M ZVn, [g r N~0,1! in distribution,

BOOTSTRAP TEST OF CONDITIONAL DISTRIBUTIONS 593

https://doi.org/10.1017/S0266466606060294 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060294


where [g � ~ Zh1, + + + , Zhq, Zl1, + + + , Zlr ! and ZVn, [g � 2@n~n � 1!#�1(i(j�i

$K [g~xi , xj !@I ~ yi � yj ! � f ~ yi 6xj , Zu!#0 Zf ~ yi 6xi , Zu!%2 is a consistent estimator of
s0

2 � @*W 2~v! dv#E @~1 � f ~ yi 6xi ,u0!! f �1~ yi 6xi ,u0!p1~xi !# , the asymptotic
variance of n~ Zh1 + + + Zhq!

102Tn, [g.

It can be shown that under H1, Jn, [g diverges to �`+ Hence, the Jn, [g test is a
consistent test+Moreover, the Jn, [g test can detect local alternatives that approach
the null at a rate of Op~n

�102~h1 + + + hq!
�104!� Op~n

�~102!~~8�q!0~8�2q!! !, which is
slower than Op~n�102! ~because hj � Op~n�10~4�q! ! for all j � 1, + + + ,q!+

We now briefly discuss the case where the dependent variable y is continu-
ous+ In this case, one can still use Zheng’s test statistic given in ~5! but with
w2, hy

~~ yi � yj !0hy! and Wh~~xi
c � xj

c!0h! being replaced by w2, Zhy
~~ yi � yj !0 Zhy!

and K [g, ij � W Zh~~xi
c � xj

c!0 Zh!L~xi
d , xj

d , Zl!, respectively, where ~ Zhy, Zh, Zl! �
~ Zhy, Zh1, + + + , Zhq, Zl1, + + + , Zlr ! denote the cross-validation selected smoothing param-
eters suggested by Hall et al+ ~2004!; i+e+, one chooses ~hy, h,l! by minimizing
~11!, but now G�i~xi ! is defined as

G�i ~xi ! �
1

~n � 1!2 (i1�i

n

(
i2�i

n

Kg~xi , xi1 !Kg~xi , xi2 ! Uw2, hy� yi1 � yi2

hy
�,

where Uw2, hy
~v! � hy

�1 Uw2~v! and Uw2~v! � *w2~u!w2~v � u! du is the twofold
convolution kernel derived from w2~{!+

With a slight abuse of notation, the resulting test statistic becomes

Tn, [g
c �

1

n~n � 1!

�(
i�1

n

(
j�1, j�i

n 	 w2, Zhy� yi � yj

Zhy
�K [g, ij ��w2, Zhy� yi � y

Zhy
�K [g, ij f ~ y 6xj , Zu! dy

f ~ yi 6xi , Zu!

 ,

(12)

where [g � ~ Zhy, Zh1, + + + , Zhq, Zl1, + + + , Zlr ! contains the extra smoothing parameter
Zhy because yi is continuous+

The asymptotic distribution of Tn, [g
c is given in the following theorem+

THEOREM 2+2+ Under conditions (C1)–(C3) given in the Appendix, we have
under H0,

Jn, [g
c �

def

n~ Zhy Zh1 + + + Zhq !
102Tn, [g

c ��M ZVn, [g
c r N~0,1! in distribution,

where ZVn, [g
c � ~2 Zh1 + + + Zhq!0n~n � 1!(i (j�i K [g, ij

2 is a consistent esti-
mator of s0, c

2 � 2@*W 2~v! dv#E @ p1~xi !# , the asymptotic variance of
n~ Zhy Zh1 + + + Zhq !

102Tn, [g
c .
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The proof of Theorem 2+2 is similar to that of Theorem 1 in Zheng ~2000!
and is omitted here+

2.3. A Parametric Bootstrap Test

Theorems 2+1 and 2+2 provide, respectively, the asymptotic null distribution of
Jn, [g and Jn, [g

c + Consequently, one can perform tests for H0 by comparing the
value of Jn, [g ~or Jn, [g

c ! with its asymptotic critical value+ However, it is well
known that consistent nonparametric tests often suffer from substantial finite-
sample size distortions+ Our simulations reveal that the Jn, [g ~Jn, [g

c ! shares this
drawback+ To overcome this problem, we propose a bootstrap procedure to
more accurately approximate the finite-sample null distribution of Jn, [g ~Jn, [g

c !+ It
involves the following steps+

Step (i)+ Generate the ith bootstrap value of the dependent variable y from
the parametric conditional distribution f ~{6xi , Zu!+ Denote this value by yi

*

~i � 1, + + + , n!+ We have the complete bootstrap sample $xi , yi
*%i�1

n +
Step (ii)+ Based on the parametric null model, estimate u using the bootstrap

sample+ Let Zu* denote the resulting estimator+ Compute the bootstrap sta-
tistic Jn, [g

* ~Jn, [g
c* ! in the same way as Jn, [g ~Jn, [g

c ! except that $ yi %i�1
n and Zu are

replaced by $ yi
*%i�1

n and Zu*, respectively+ Note that we use the same cross-
validation selected smoothing parameter [g in computing the bootstrap sta-
tistics+ There is no re-cross-validation in computing Tn, [g

* ~Tn, [g
c* !+

Step (iii)+ Repeat steps ~i! and ~ii! a large number of times, say, B times,
and use the empirical distribution of the B bootstrap statistics $Jn, [g

* %j�1
B

~$Jn, [g
c* %j�1

B ! to approximate the null distribution of Jn, [g ~Jn, [g
c !+

Step (iv)+ The bootstrap test rejects H0 at significance level a if Jn, [g ~Jn, [g
c !

exceeds the empirical ath percentile of $Jn, [g
* %j�1

B ~$Jn, [g
c* %j�1

B !+

The following theorem justifies the asymptotic validity of the bootstrap test+

THEOREM 2+3+ Assume the same conditions as in Theorem 2.1 (Theo-
rem 2.2) except the null hypothesis. We have

sup
z�R
6P~Jn, [g

* � z 6$xi , yi %i�1
n !�F~z!6� op~1!, (13)

where F~{! is the cumulative distribution function of a standard normal ran-
dom variable.

The proof of Theorem 2+3 is given in the Appendix+
In words, Theorem 2+3 states that Jn, [g

* converges to N~0,1! in distribution in
probability+ Other authors show that some bootstrap method works using the
concept of convergence with probability one, where one states that the left-
hand side of ~13! is o~1! with probability one ~i+e+, convergence in distribution
with probability one!+ Here we choose to use the concept of convergence in
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distribution in probability because our test statistic involves nonparametric esti-
mation and it is easier to work with “convergence in probability” than “conver-
gence with probability one+”

Note that Theorem 2+3 holds true regardless of whether the null hypothesis
is true or not+ Therefore, ~i! when the null hypothesis is true, the bootstrap pro-
cedure will lead to ~asymptotically! correct size of the test, because Jn, [g con-
verges in distribution to the same N~0,1! limiting distribution under H0; ~ii!
when the null hypothesis is false, because the test statistic Tn, [g will converge to
�` in probability, whereas asymptotically the bootstrap critical value is still
finite ~say, the 95th quantile from the N~0,1! distribution!, the bootstrap proce-
dure leads to a consistent test+

3. MONTE CARLO SIMULATION RESULTS

In this section, we present Monte Carlo simulation results to examine the finite-
sample performance of our Jn, [g ~Jn, [g

c ! test+

3.1. Discrete Dependent Variable

In this simulation experiment, the dependent variable y is a $0,1% binary vari-
able+ We use a slightly different notation in this section; x denotes x c and z
denotes x d + The data generating process ~DGP! for the null model is given by

DGP0
a : yi � 1 if b0 � b1 xi � b2 zi � ui � 0,

yi � 0 otherwise,

where $xi %i�1
n is a random sample from N~0,1!, zi takes binary values $0,1%

with case ~i! Pr @zi � 1# � 1
2
_ and Pr @zi � 0# � 1

2
_ and case ~ii! Pr @zi � 1# � 0+8

and Pr @zi � 0# � 0+2, and the error term $ui % is i+i+d+ N~0,1!+ Moreover, xi , zi ,
and ui are all independent of each other+ The true parameters are $b0,b1% �
$1,1% and b2 � $1, 0+3, 0% ; b2 � 0 corresponds to the case that zi is in fact an
irrelevant variable+ This leads to the following null hypothesis:

H0 : p~ y 6x, z,u! � yF~b0 � b1 x � b2 z!� ~1 � y!@1 �F~b0 � b1 x � b2 z!# ,

where F~{! is the standard normal cumulative distribution function+ The para-
metric conditional density of the null model is estimated by the maximum like-
lihood ~ML! method+

The following two alternative DGPs are constructed to examine the power
of the Jn, [g test; one has a nonlinear term in the index, and the other has a con-
ditional heteroskedastic error:

DGP1
a : yi � 1 if b0 � b1 xi � b2 zi � b3 xi

2 � ui � 0,

yi � 0 otherwise;

DGP2
a : yi � 1 if b0 � b1 xi � b2 zi � xi ui � 0,

yi � 0 otherwise,
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where xi , zi , and ui are all generated in the same way as before+Also, b0,b1,b2

take the same values as previously, whereas b3 �1+We use the parametric boot-
strap described earlier to approximate the null distribution of the test statistic Jn, [g+

Our test will be compared with the CK test of Andrews ~1997! with test sta-
tistic ~CKn! defined as

CKn � max
1�j�n �

1

Mn
(
i�1

n

@I ~ yi � yj !� F~ yj 6xi , zi , Zu!# I ~xi � xj !I ~zi � zj !�, (14)

where F~{6{,{,u! is the parametric conditional distribution function and Zu is
the ML estimator of u0+

The sample sizes considered are n � 100 and 200, the numbers of simula-
tions are 5,000 for size estimation and 2,000 for power estimation, and the num-
ber of bootstraps is B � 1,000 for all cases+ The simulation results for discrete
yi with relevant covariates only are reported in Table 1+

From Table 1 we observe that for different values of b2 ~with b2 � 1, 0+3!
and different values of Pr~zi � 1! ~0+5, 0+8!, the performances of the Jn, [g and
Andrews’ tests are qualitatively the same+ Overall the estimated sizes are quite
close to their nominal sizes for both tests+ The power performances are mixed
for the two alternative models+ For the alternative DGP1

a with an extra qua-
dratic term, our test Jn, [g shows higher power than Andrews’ test for the sample
sizes considered+ However, for some cases of DGP2

a with a heteroskedastic
error term, Andrews’ test is slightly more powerful than ours+ The simulation
results show that our Jn, [g test complements Andrews’ test+

Next we consider the case with an irrelevant covariate+We use the same DGP
as before except that now we choose b2 � 0 so that the binary discrete vari-
able z becomes an irrelevant covariate+ Because this information is unknown a
priori, we still compute the conditional probability of y conditional on both x
and z+ In this case we expect that the cross-validation method tends to select
the upper bound value of l � 1

2
_ so that the irrelevant covariate z is smoothed

out automatically, resulting in a finite-sample power gain for the Jn, [g test+
From Table 2 we observe that the power of the Jn, [g test improves substan-

tially compared with those reported in Table 1+ It is interesting to observe that
for DGP2

a , the power performance of the Jn, [g test is quite comparable to that of
Andrews’ test+ Thus, the simulation results confirm that our cross-validation-
based test indeed has the ability to remove irrelevant covariates and enjoys supe-
rior finite-sample power performance+

3.2. Continuous Dependent Variable

In this section we consider the case where both y and x are continuous vari-
ables, and we compare the finite-sample performance of Zheng’s original test
with our Jn, [g test+ The first DGP we use is the same as that in Zheng+ The null
model is a linear regression model with normal homoskedastic errors:
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DGP0
b : yi � b0 � b1 xi � ui ,

where $xi %i�1
n is a random sample from N~0,1! and the error term $ui % is i+i+d+

N~0,s 2!+ Moreover, xi and ui are independent of each other+ The true param-
eters are $b0,b1,s% � $1,1,1% + This leads to the following null hypothesis:

H0 : p~ y 6x,u! � f@~ y � b0 � b1 x!0s#0s,

Table 1. DGP a : The case of discrete yi with relevant covariates

Jn, [g Andrews ~1997!

1% 5% 10% 1% 5% 10%

a+ zi is relevant ~b2 � 1! with Pr @zi � 1# � 0+5
DGP0 ~size!

N � 100 0+9 4+3 9+2 0+7 4+1 10+1
N � 200 1+1 5+5 11+2 1+1 4+7 9+5

DGP1
a ~power!

N � 100 9+2 31+2 45+2 4+5 18+4 29+4
N � 200 31+2 57+2 70+8 12+2 34+8 53+2

DGP2
a ~power!

N � 100 28+2 48+7 60+4 23+2 51+2 62+4
N � 200 56+8 77+2 84+4 50+2 78+3 85+7

b+ zi is relevant ~b2 � 1! with Pr @zi � 1# � 0+8
DGP0 ~size!

N � 100 0+8 5+2 9+5 0+8 4+8 9+4
N � 200 1+2 5+6 10+0 1+3 5+8 11+0

DGP1
a ~power!

N � 100 23+0 46+3 60+3 7+5 27+7 44+2
N � 200 57+7 80+2 89+8 27+3 66+0 80+5

DGP2
a ~power!

N � 100 31+4 55+8 70+9 31+3 55+0 70+0
N � 200 63+7 82+5 91+7 62+2 83+7 91+5

c+ zi is relevant ~b2 � 0+3! with Pr @zi � 1# � 0+8
DGP0 ~size!

N � 100 0+8 5+5 10+7 0+8 5+3 9+8
N � 200 1+4 5+3 10+0 1+5 6+1 11+2

DGP1
a ~power!

N � 100 23+2 51+7 63+2 6+1 20+3 34+2
N � 200 53+7 75+2 87+5 17+5 46+7 68+8

DGP2
a ~power!

N � 100 31+6 59+1 67+5 30+1 54+2 60+8
N � 200 60+8 78+5 89+1 56+0 76+2 83+7
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where f~{! is the standard normal density function+ The parameter u is esti-
mated by the ML estimation method+

Two alternative models are considered: one is designed to test misspecifica-
tion in the regression ~DGP1

b!, and the second is to test homoskedasticity of
the error term ~DGP2

b!:

DGP1
b : yi � b0 � b1 xi � b2 xi

2 � ui ,

DGP2
b : yi � b0 � b1 xi � xi ui ,

where b2 is set to be 1 in the experiment+ We also report Andrews’ test for
comparison purposes+ The simulation results are reported in Table 3a+

We observe from Table 3a that the parametric bootstrap method successfully
overcomes the size distortion of Zheng’s test+ The estimated sizes of the boot-
strap test are all close to their nominal values, whereas Zheng’s test based on
the asymptotic normal approximation is significantly undersized+ For the alter-
natives DGP1

b and DGP2
b , we observe that the bootstrap test Jn, [g

c is much more
powerful than Zheng’s test+ There are two reasons for this: the first is that the

Table 2. The case of discrete yi with irrelevant covariates

Jn, [g Andrews ~1997!

1% 5% 10% 1% 5% 10%

a+ zi is irrelevant ~b2 � 0! with Pr @zi � 1# � 0+5
DGP0 ~size!

N � 100 0+8 5+8 11+5 1+2 5+7 11+2
N � 200 1+3 5+6 10+9 1+3 5+6 11+0

DGP1
a ~power!

N � 100 30+0 53+2 66+4 14+5 28+8 43+6
N � 200 71+6 89+6 94+4 36+4 70+0 83+2

DGP2
a ~power!

N � 100 47+6 71+2 79+2 42+4 60+8 70+2
N � 200 78+9 89+0 94+7 76+8 88+4 92+4

b+ zi is irrelevant ~b2 � 0! with Pr @zi � 1# � 0+8
DGP0 ~size!

N � 100 0+8 5+9 11+2 1+2 5+8 11+5
N � 200 1+2 5+7 11+0 1+5 5+9 10+8

DGP1
a ~power!

N � 100 35+3 61+8 72+3 12+5 27+8 44+0
N � 200 69+5 90+0 92+0 34+8 68+7 81+5

DGP2
a ~power!

N � 100 45+8 70+8 78+8 42+4 60+8 70+2
N � 200 81+5 93+0 97+0 67+8 85+8 89+8
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bootstrap test corrects the undersize problem of Zheng’s test and hence improves
the finite-sample power performance; the second reason is that we use the data-
driven cross-validation method to select the smoothing parameters that lead to
optimal smoothing in estimating the unknown conditional density functions,
whereas Zheng suggested using some ad hoc method to select the smoothing
parameters+ It turns out that the use of optimal smoothing also enhances the
finite-sample power of the test+ For DGP1

b , Andrews’ test has similar power
as the Jn, [g test, whereas for DGP2

b, Andrews’ test is less powerful than the
Jn, [g test+

Finally we consider a case that there exists an irrelevant continuous variable+
We will use basically the same setup as in DGP b except that we set b2 � 0
now+ Therefore, x2i becomes an irrelevant variable+ However, this informa-
tion is not used in the estimation+ That is, all estimation methods still use the
full data set $ yi , x1i , x2i %i�1

n + Because our cross-validation-based Jn, [g has the

Table 3. DGP b : The case of continuous yi

Jn, [g
c Zheng ~2000! Andrews ~1997!

1% 5% 10% 1% 5% 10% 1% 5% 10%

a+ Continuous variable case without irrelevant covariates ~b2 � 1!
DGP0

b ~size!
N � 50 1+4 5+2 10+5 1+3 1+9 2+7 0+8 4+5 9+0
N � 100 1+2 5+5 10+9 1+5 2+7 3+9 0+9 4+2 10+6
N � 200 0+9 4+5 8+9 1+7 2+5 4+0 1+2 4+0 9+8

DGP1
b ~power!

N � 50 84+8 96+0 98+4 56+3 75+6 84+0 72+7 92+2 96+7
N � 100 99+6 99+8 100+0 93+3 96+9 97+5 96+5 99+0 100
N � 200 100 100 100+0 100 100 100 99+7 100 100

DGP2
b ~power!

N � 50 48+0 73+2 82+4 28+4 44+3 56+8 19+8 29+0 35+8
N � 100 96+4 100 100 81+0 88+8 91+2 25+0 41+8 58+0
N � 200 100 100 100 96+3 96+6 96+7 32+0 51+3 69+6

b+ Continuous variable case with an irrelevant covariate ~b2 � 0!
DGP0

c ~size!
N � 100 0+07 4+8 10+0 1+6 4+2 5+8 0+05 3+0 6+5
N � 200 0+08 4+9 9+6 2+4 3+8 6+4 0+06 3+1 6+9

DGP1
c ~power!

N � 50 36+4 71+0 83+0 25+6 36+4 43+4 20+8 38+2 57+6
N � 100 75+2 93+6 97+8 50+4 65+4 71+8 41+2 65+0 78+4

DGP2
c ~power!

N � 50 73+4 93+6 97+8 50+4 65+2 71+8 24+8 39+0 48+7
N � 100 97+6 99+6 100 87+2 93+2 95+8 35+0 46+8 68+0
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advantage of ~asymptotically! removing the irrelevant variable x2, we expect
that the Jn, [g test will enjoy further power gains+ The simulation results are
reported in Table 3b+

From Table 3b we observe that the Jn, [g test has good estimated sizes+ Zheng’s
test still underestimates the sizes at the 5% and 10% levels+ Andrews’ test is
also somewhat undersized when an irrelevant variable exists+ From the esti-
mated power results, we see substantial power gain of the Jn, [g test over Zheng’s
test+ Essentially, Zheng’s test is based on a two-dimensional nonparametric con-
ditional density estimate because the smoothing parameters in Zheng’s test are
selected by some ad hoc rules that cannot detect the irrelevant variable x2,
whereas our Jn, [g test estimates, asymptotically, a one-dimensional conditional
density function because x2i will be smoothed out asymptotically+ The Jn, [g test
is also more powerful than Andrews’ test for this DGP ~when there is an irrel-
evant continuous variable!+ Of course here we only report a limited simulation
result, from the local power analysis; we expect that there exist data generating
processes for which Andrews’ test will be more powerful than the Jn, [g test+ Our
simulation results show that the Jn, [g test can serve as a useful complement
to Andrews’ test when one is interested in testing a parametric conditional
distribution+

4. CONCLUSIONS

This paper proposes a kernel-based bootstrap test for parametric conditional
distribution functions+ We separately consider the case where y is a discrete
variable and where y is a continuous variable+ In either case, the conditional
variables can contain both discrete and continuous variables+ By automatically
smoothing both the discrete and continuous variables via the method of cross-
validation, our test has the advantage of automatically removing irrelevant
variables from the estimate of the conditional density function and, as a conse-
quence, enjoys substantial power gains in finite-sample applications, as con-
firmed by our simulation results+ The test is potentially applicable in a wide
variety of applications and should prove useful to applied researchers+

NOTES

1+ We say that xs is an irrelevant variable if p~ y 6x! is independent of xs+
2+ Hall et al+ ~2004! show that, up to an additive constant term that does not depend on

~h,l!, CV~h,l! is a consistent estimator of the weighted integrated squared error: *$ [p~ y 6x! �
p~ y 6x!%2p1~x!w~x c! dxdy, where * dxdy �(x d * dx c dy if y is a continuous variable and * dxdy �

(x d(y * dx c if y is a discrete variable+
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APPENDIX

We first state conditions that are used to prove Theorem 2+1+

(C1) $ yi , xi %i�1
n are i+i+d+ data with a joint density p~ y, x!+ The first-order derivatives

of p~+ , +! with respect to its continuous arguments are uniformly bounded+ The marginal
density p1~x! of xi and its first-order derivatives with respect to its continuous argu-
ments are uniformly bounded+
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(C2) ~i! The parameter space Q is a compact and convex subset of Rk + Let 7{7 denote
the euclidean norm of {; then f ~ y 6x,u0!�1 , 7~]f ~ y 6x,u!!0]u7, 7~]2 log f ~ y 6x,u!!0]u]u ' 7,
and 7~] log f ~ y 6x,u!!0]u � ~] log f ~ y 6x,u!!0]u ' 7 are all bounded by a nonnegative func-
tion b~x, y! with * b~x, y!s � ` ~s � 1,2!, where * denotes integration for the continu-
ous variable and summation for the discrete variable+ ~ii! Zu� u0 � Op~n�102! under H0+

(C3) w~{! is a nonnegative, bounded, symmetric function with * w~v! dv � 1 and
* w~v!v 2 dv � c~� `!+

The preceding conditions are basically the same as those used in Zheng ~2000!+
We give the central limit theorem ~CLT! of Hall ~1984, Thm+ 3+1! for degenerate

U-statistics as a lemma here+
LEMMA A+1+ Let

Un �
2

n~n � 1! (i�1

n

(
j�i

n

Hn~zi , zj !

be a second-order U-statistic, where $zi %i�1
n is i.i.d. Suppose E @Hn~zi , zj !6zi # � 0

( for i � j, Un is a degenerate U-statistic) and define Gn~z1, z2! � E @Hn~z3 , z1!
Hn~z3, z2!6z1, z2# . If

E @Gn
2~zi , zj !#� n�1E @Hn

4~zi , zj !#

$E @Hn
2~zi , zj !#%

2
r 0 as nr `, (A.1)

then

Un�� 2E @Hn
2~zi , zj !#

n2 � r N~0,1! in distribution.

In the proof presented subsequently, we will replace Zh1, + + + , Zhq , Zl1, + + + , Zlr by
their nonstochastic leading terms: ~h1, + + + , hq! � ~a1

0 n�10~q�4!, + + + ,aq
0 n�10~q�4! ! and

~l1, + + + ,lr ! � ~b1
0 n�20~q�4!, + + + ,br

0 n�20~q�4! !+ This will greatly simplify the arguments
in the proof+ By the stochastic equicontinuity result of Ichimura ~2000! ~see Lemma
A+4, which follows!, we know that the conclusion holds provided Zhs � hs � op~hs!
~s � 1, + + + ,q! and Zls � ls � op~ls! ~s � 1, + + + , r!, which are true by Theorem 3+1 of
Hall et al+ ~2004!+

Using the shorthand notations Iij � I ~ yi � yj !, Zfi � f ~ yi 6xi , Zu!, fi � f ~ yi 6xi ,u0!, Zfij �
f ~ yi 6xj , Zu!, fij � f ~ yi 6xj ,u0!, and the identity

1

Zfi

�
1

fi

�
fi � Zfi

fi
2

�
~ fi � Zfi !

2

fi
2 Zfi

, (A.2)

we can write Tn,g � Tn1 � Tn2 � T3n, where

Tn1 �
1

n~n � 1! (i (j�i

Kg, ij

fi

@Iij � Zfij # ,

Tn2 �
1

n~n � 1! (i (j�i

Kg, ij

fi
2
@Iij � Zfij # ~ fi � Zfi !,

Tn3 �
1

n~n � 1! (i (j�i

Kg, ij

fi
2 Zfi

@Iij � Zfij # ~ fi � Zfi !
2+
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Let fij
~1! � @~]0]u! f ~ yi 6xj ,u!#6u�u0 and Dfij

~2! � @~]20]u]u '! f ~ yi 6xj ,u!#6u� Du, where Du is
between the line segment of Zu and u0+ By Taylor expansion, we have

Tn1 �
1

n~n � 1! (i (j�i

Kg, ij

fi

@Iij � fij #�
1

n~n � 1! (i (j�i

Kg, ij

fi

fij
~1!~ Zu� u0 !

� ~ Zu� u0 !
'

1

2n~n � 1! (i (j�i

Kg, ij

fi

Dfij
~2!~ Zu� u0 !

[ Tn1,1 � Tn1,2~ Zu� u0 !� ~ Zu� u0 !Tn1,3~ Zu� u0 !,

where the definitions of Tn1, j ~ j � 1,2,3! should be apparent+
The term Tn1,1 can be written as a second-order U-statistic ~zi � ~xi , yi !!:

Tn1,1 �
2

n~n � 1! (i (j�i

Hn~zi , zj !,

where

Hn~zi , zj ! � �1

2
�� Kg, ij

fi

@Iij � fij #�
Kg, ij

fj

@Iij � fji #�
[ �1

2
�$Jn~zi , zj !� Jn~zj , zi !%+

It is easy to check that

E @Jn~zi , zj !6zi # � E $Kg, ij @Iij � f ~ yi 6xj !# fi
�1 6zi %

� fi
�1 $E @Kg, ij Iij 6zi #� E @Kg, ij f ~ yi 6xj !6zi #%

� fi
�1�(

yj

�p~ yj , xj !Kg, ij Iij dxj ��Kg, ij p1~xj ! f ~ yi 6xj ! dxj�
� fi

�1��Kg, ij @ p~ yi , xj !� p1~xj ! f ~ yi 6xj !# dxj� � 0

because p~ yi , xj !� p1~xj ! f ~ yi 6xj !� 0+

Similarly,

E @Jn~zj , zi !6zi # � E $Kg, ij @Iij � fji # fj
�1 6zi %� E @Kg, ij Iij fj

�1 6zi #� E @Kg, ij fji fj
�1 6zi #

�(
yj

�p~ yj , xj !Kg, ij Iij f ~ yj 6xj !
�1 dxj �(

yj

�Kg, ij fj
�1 fji dxj

��p~ yi , xj !Kg, ij f ~ yi 6xj !
�1 dxj ��Kg, ij p1~xj ! dxj(

yj

f ~ yj 6xi !

~because fij
�1 p~ yi , xj !� p1~xj !!

��Kg, ij @ p~ yi , xj ! f ~ yi 6xj !
�1 � p1~xj !# dxj � 0

�because (
yj

f ~ yj 6xi !� 1 and p~ yi , xj ! f ~ yi 6xj !� p1~xj !�+
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Thus, E @Hn~zi , zj !6zi # � 0 and Tn1,1 is a degenerate U-statistic+

E @Hn~zi , zj !
2 # � E @Jn~zi , zj !

2 #� E @Kg, ij
2 ~Iij � fij !

20fi
2#

� E $E @Kg, ij
2 ~Iij � fij

2 � 2Iij fij !0fi
2 6zi , xj #%

� E @Kg, ij
2 ~ fij � fij

2 � 2fij
2!0fi

2#� E @Kg, ij
2 fij ~1 � fij !0fi

2#

�(
yi

(
yj

(
xi

d
(
xj

d

��Kn, ij
2 fij ~1 � fij ! fi

�2 p~ yi , xi !p~ yj , xj ! dxi
c dxj

c

�(
yi

(
yj

(
xi

d

��Kn, ij
2 fij ~1 � fij ! fi

�2 p~ yi , xi !p~ yj , xj ! dxi
c dxj

c

�(
yi

(
yj

(
xi

d
(

xj
d�xi

d

��Kn, ij
2 fij ~1 � fij ! fi

�2 p~ yi , xi !p~ yj , xj ! dxi
c dxj

c

� ~h1 + + + hq !
�1(

yi

(
yj

(
xi

d

��W 2~v!~1 � fi ! fi
�1 p~ yi , xi !p~ yj , xi ! dxi

c dv

� O�~h1 + + + hq !
�1�(

j�1

q

hj
2 �(

j�1

r

lj��
� ~h1 + + + hq !

�1 ���W 2~v! dv�E @~1 � fi ! fi
�1 p1~xi !#� Op~hn !�

� ~h1 + + + hq !
�1��1

2
�s0

2 � Op~hn !� ,
where hn � (j�1

q hj
2 � (j�1

r lj , we have used (yj
p~ yj , xi ! � p1~xi !, Kg, ij � Wh, ij Ll, ij ,

and Ll, ij � O~(s�1
r ls ! if xi

d � xj
d+

Therefore, we have

Vn,g �
def

E $@n~n � 1!~h1 + + + hq !#
102Tn1%

2 �
2~h1 + + + hq !

n~n � 1! (i (j�i

E @Hn
2~zi , zj !#� s0

2 � o~1!+

(A.3)

Equation ~A+3! implies that $E @Hn
2~zi , zj !#%

�1 � O~h1 + + + hq!+ Similarly, one can
show that E @Hn

4~zi , zj !# � O~~h1 + + + hq!
�3!+ Define Gn~z1, z2! � E @Hn~z3, z2!

Hn~z3, z1!6z1, z2# + One can show that E @Gn
2~zi , zj !# � O~~h1 + + + hq!

�1!+ Thus, equa-
tion ~A+1! becomes

O~~h1 + + + hq !
2 !$O~~h1 + + + hq !

�1 !� n�1O~~h1 + + + hq !
�3 !%

� O~~h1 + + + hq !� n�1~h1 + + + hq !
�1 !� o~1!+

Thus by Lemma A+1 we know that

n~h1 + + + hq !
102Tn1,1 ��MVn,g r N~0,1! in distribution+ (A.4)
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Define

ZVn,g �
2~h1 + + + hq !

n~n � 1! (i (j�i

ZHn~zi , zj !
2, (A.5)

where ZHn~zi , zj ! is defined in the same way as Hn~zi , zj ! except that u0 is replaced by Zu+
Applying Lemma 3+1 of Powell, Stock, and Stoker ~1989! or Lemma 1 of Zheng ~2000!,
it is straightforward to show that ZVn, [g � Vn,g � op~1!+ Thus, we have

n~h1 + + + hq !
102Tn1,1 ��M ZVn,g r N~0,1! in distribution+ (A.6)

Applying Taylor expansion to Tn2, i+e+, using Zfij � fij � Dfij~ Zu � u0! and Zfi � fi �
fi
~1!~ Zu � u0! � ~

1
2
_ !~ Zu � u0 !

' Dfi
~2!~ Zu � u0!, we obtain

Tn2 � �
1

n~n � 1! (i (j�i

Kg, ij

fi
2
@Iij � fij # fi

~1!~ Zu� u0 !

� ~ Zu� u0 !
' � 1

2n~n � 1! (i (j�i

Kg, ij

fi
2
@~Iij � fij ! Dfi

~2!� ~ fi
~1! !' Dfij

~1! #� ~ Zu� u0 !

[ �Tn2,1~ Zu� u0 !� ~ Zu� u0 !
'Tn2,2~ Zu� u0 !, (A.7)

where Tn2,1 � 10~n~n � 1!!(i(j�i Kg, ij~Iij � fij ! fi
~1!0fi

2 and Tn2,2 � 10~2n~n � 1!!

(i (j�i ~Kg, ij 0fi
2!@~Iij � fij ! Dfi

~2! � ~ fi
~1! !' Dfij

~1! # +
Lemma A+2, which follows, shows that Tn1,2 � Op~n�102! and Tn2,1 � Op~n�102!, and

Lemma A+3 shows that Tn1,3 � Op~1!, Tn2,2 � Op~1!, and Tn3 � Op~n�1!+ These results
together with Zu � u0 � Op~n�102! lead to

Tn,g � Tn1,1 � Op~n
�1 !+ (A.8)

Expressions ~A+6! and ~A+8! together complete the proof of Theorem 2+1+ �

LEMMA A+2+

(i) Tn1,2 � Op~n�102! .
(ii) Tn2,1 � Op~n�102! .

Proof of (i).

Tn1,2 � �
1

n~n � 1! (i (j�i

Kg, ij fij
~1!0fi +

First note that E @Tn1,2# � 0 because

E @Kg, ij fij
~1!0fi # � E $Kg, ij E~ fij

~1!0fi 6xi , xj !%

� E�Kg, ij
]

]u (yj

f ~ yi 6xj ,u!� � E�Kg, ij
]

]u
@1#� � 0+

Hence,

E $@Tn1,2 #
2 % �

1

n2~n � 1!2 (i (j�i
(
i '
(

j '�i '
E @Kg, ij fij

~1! fi
�1 Kg, i 'j ' fi 'j '

~1!
fi '

�1# +
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The preceding expression is zero if i, j, i ', j ' all take different values ~because
E @Kg, ij fij

~1!0fi # � 0!+ Therefore, for E $@Tn1,2#
2% to be nonzero, we must have either

~i! i, j, i ', j ' take three different values or ~ii! i, j, i ', j ' take two different values+ For these
two cases it is easy to show that

E $@Tn1,2, ~i ! #
2 % �

1

n2~n � 1!2
O~n3 !� O~n�1 !;

E $@Tn1,2, ~ii ! #
2 % �

1

n2~n � 1!2
O~n2~h1 + + + hq !

�1 !� o~n�1 !+

Hence, E $@Tn1,2#
2% � O~n�1!, and consequently, Tn1,2 � Op~n�102!+ �

Proof of (ii).

Tn2,1 �
1

n~n � 1! (i (j�i

Kg, ij ~Iij � fij ! fij
~1!0fi �

1

n~n � 1! (i (j�i

A1n~zi , zj !,

where

A1n~zi , zj ! � Kg, ij fij
~1!~Iij � fij !0fi[ A1n,1~zi , zj !� A1n,2~zi , zj !+

E @A1n,1~zi , zj !6zi , xj # � E @Kg, ij fij
~1! Iij 0fi 6zi , zj #�(

yi

Kg, ij fij
~1! I ~ yi � yj ! f ~ yj 6xj !0fi

� Kg, ij fij
~1! f ~ yi 6xj !0fi[ A1n,2~zi , zj !+

Hence, E @A1n~zi , zj !# � E @A1n,1~zi , zj !# � E @A1n,2~zi , zj !# � 0+
One can write Tn2,1 � @20n~n � 1!#(i(j�i V1n~zi , zj ! as a second-order U-statistic,

where V1n~zi , zj ! � ~
1
2
_ !@A1n~zi , zj ! � A1n~zj , zi !# +

E @V1n~zi , zj !6zi # � �1

2
�$E @A1n~zi , zj !6zi #� E @A1n~zj , zi !6zi #%

� 0 � �1

2
�E @Kg, ij fji

~1!~Iij � fji !0fj 6zi #

� �1

2
�(

yj

�Kg, ij fji
~1!~Iij � fji !p~ yj , xj ! fj

�1 dxj

� �1

2
��Kg, ij fi

~1!p1~xj ! dxj � �1

2
�(

yj

�Kg, ij fji
~1! fji p1~xj ! dxj

� �1

2
� fi
~1!p1~xi !� �1

2
�(

yj

fji
~1! fji p1~xi !� ~s+o+!

� �1

2
� p1~xi !@ fi

~1!� E~ fji
~1! 6xi !#� ~s+o+!

� �1

2
� p1~xi !@ fi

~1!� E~ fi
~1! 6xi !#� ~s+o+! [ v1i � ~s+o+!,
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where in the preceding expression, Ai � Bi � ~s+o+! means that (i Ai �(i Bi � op~(i Bi !,
i+e+, (i Bi is the leading term of (i Ai + Here v1i � ~ 12

_ !p1~xi !@ fi
~1!� E~ fi

~1! 6xi !# , and we
have used E @ fji

~1! 6xi # � E @ fi
~1! 6xi # � (y f ~ y 6xi !

2 +
Using the H-decomposition, we have

Tn2,1 � 0 �
2

n (i
E @H1n~zi , zj !6zi #� ~s+o+!

�
2

n (i
v1i � ~s+o+!� Op~n

�102 ! because E~v1i !� 0+
�

LEMMA A+3+

(i) Tn1,3 � Op~1! .
(ii) Tn2,2 � Op~1! .

(iii) Tn3 � Op~n�1! .

Proof of (i). Here Tn1,3 � @102n~n � 1!#(i(j�i Kg, ij Dfij
~2!0fi + By assumption ~C2!

~b~+ , +! is the bound function for f ~2!~{!!:

E @7Tn1,37# � CE @Kg, ij b~xi , yj !#

� C(
yj

��Kg, ij b~ yi , xj !p~ yi , xi !p1~xj ! dxi dxj

� C(
xi

d
(
xj

d
(
yi

��W~v!L~xi
d , xj

d ,l!b~ yi , xi
c � hv, xj

d!

� p~ yi , xi !p1~xi
c � hv, xj

d! dxi
c dv

� C(
xi

d
(
yi

�b~ yi , xi !p~ yi , xi !p1~xi ! dxi
c � op~1!

� CE @ p1~xi !b~ yi , xi !#� o~1!� O~1!,

which implies that Tn1,3 � Op~1!+ �

Proof of (ii). It is similar to the proof of ~i! and is thus omitted here+

Proof of (iii). Using Zfi � fi � f ~1!~ yi 6xi , Du!~ Zu � u0!, where Du is between the line
segment of Zu and u0, we have Tn3 � ~ Zu � u0!

'Tn3,1~ Zu � u0!, where

Tn3,1 �
1

n~n � 1! (i (j�i

Kg, ij Iij @Iij � Zfij # Dfi
~1!~ Dfi

~1! !'0~ fi
2 Zfi !

�
1

n~n � 1! (i (j�i

Kg, ij Iij @Iij � fij # fi
~1!~ fi

~1! !'0~ fi
3!� ~s+o+!

[ Tn3,1,0 � ~s+o+!+

608 YANQIN FAN ET AL.

https://doi.org/10.1017/S0266466606060294 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060294


It is easy to show that E @7T3n,1,07# � O~1!+ Hence, T3n,1,0 � Op~1!, which implies
T3n,1 � Op~1! and T3n � Op~n�1! because Zu � u0 � Op~n�102!+ �

LEMMA A+4+ (Ichimura).

Jn, [g� Jn,g � op~1!,

where g� ~h1, + + + , hq,l1, + + + ,lr ! with hs � as
0 n�10~q�4! ~s � 1, + + + ,q!, ls � bs

0 n�20~q�4!

~s � 1, + + + , r! , and as
0 � 0 and bs

0 � 0 are uniquely defined constants as given in Hall
et al. (2004).

Ichimura ~2000! has proved a general result that includes Lemma A+4 as a special
case+ Here, we provide an alternative proof for Lemma A+4 using a simple tightness
argument ~e+g+, Mammen, 1992!+ Our proof consists of two parts: ~i! ~n Zh1, + + + , Zhq!

102

Tn, [g� ~nh1, + + + , hq!
102Tn,g� op~1! under H0; ~ii! ZVn, [g� ZVn,g� op~1!+ Because the proofs

are similar, we only provide the proof for ~i!+

Proof of (i). Writing Zhs � [as n�10~q�4! and Zls � Zbs n�20~q�4! , by Theorem 3+1 of Hall
et al+ ~2004!, we know that Zhs 0hs

0 � 1 r 0 and Zls 0ls
0 � 1 r 0 ~in probability!+ This

implies that [as r as
0 and Zbs r bs

0 in probability+ Let C � )s�1
q @a1s ,a2s # �

) t�1
r @b1t ,b2 t # , where ajs and bjt ~ j � 1,2! are some positive constants with a1s � as

0 �
a2s ~s � 1, + + + ,q! and b1t � bt

0 � b2 t ~t � 1, + + + , r!+ Denote c � ~a1, + + + ,aq,b1, + + + ,br !,
c0 � ~a1

0 , + + + ,aq
0 ,b1

0 , + + + ,br
0!, [c � ~ [a1, + + + , [aq, Zb1, + + + , Zbr !+ Then Lemma A+5, which

follows, shows that An~c! [ n~h1 + + + hq!
102Tn,g ~with hs � as n�10~q�4! and ls �

bs n�20~q�4! ! is tight in c � C+
Define Bn~c! � An~c! � An~c0!+ Then ~i! becomes Bn~ [c! � op~1!; i+e+, we want to

show that, for all e � 0

lim
nr`

Pr @6Bn~ [c!6 � e#� 1+ (A.9)

For any d � 0, denote the d-ball centered at c0 by Cd� $c : 7c � c07 � d% , where 7{7
denotes the euclidean norm of a vector+ By Lemma A+5 we know that An~{! is tight+ By
the Arzela–Ascoli theorem ~see Billingsley, 1968, Thm+ 8+2, p+ 55! we know that tight-
ness implies the following stochastic equicontinuous condition: for all e � 0, h1 � 0,
there exist a d ~0 � d � 1! and an N1 such that

Pr� sup
7c '�c7�d

6An~c
' !� An~c!6 � e� � h1 (A.10)

for all n � N1+
Expression ~A+10! implies that

Pr @6Bn~ [c!6 � e, [c � Cd #� Pr� sup
c�Cd

6Bn~c!6 � e� � h1 (A.11)

for all n � N1+
Also, from [c r c0 in probability we know that for all h2 � 0, and for the d given

previously, there exists an N2 such that

Pr @ [c � Cd # [ Pr @7 [c � c07 � d# � h2 (A.12)

for all n � N2+
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Therefore,

Pr @6Bn~ [c!6 � e# � Pr @6Bn~ [c!6 � e, [c � Cd #� Pr @6Bn~ [c!6 � e, [c � Cd # (A.13)

� h1 � h2

for all n � max$N1,N2% by ~A+11! and ~A+12!, where we have also used the fact that
$6Bn~ [c!6 � e, [c � Cd% is a subset of $ [c � Cd% +

Equation ~A+13! is equivalent to ~A+9!+ This completes the proof of ~i!+ �
LEMMA A+5+ Let An~c! � n~h1 + + + hq!

102Tn,g, where g � ~h,l! , hs � as n�10~q�4!,
ls � bs n�20~q�4!, c � ~a1, + + + ,aq,b1, + + + ,br ! , cs � @C1s,C2s# with 0 � C1s � C2s � `
~s � 1, + + + ,q � r! .

Then the stochastic process An~c! indexed by c is tight under the sup-norm.

Proof. Write Kg, ij as ~h1 + + + hq!
�1Kc, ij with hs � as n10~q�4! and ls � bs n�20~q�4! ,

where Kc, ij � W~~Xj � Xi !0h!L~Xj
d , Xi

d ,l!+ Also, denote by d � q0~4 � q!, C1 �
~a1, + + + ,aq!

' and C2 � ~b1, + + + ,br !
' , OC1 � )s�1

q as and OC2 � )s�1
r bs + Then we have

~h1 + + + hq!
�1Kc, ij � OC1 ndWC1, ij LC2 , ij + Also note that 6LC2

' , ij � LC2 , ij 6 � (s�1
r 6bs � bs

' 6 �
r7C2 � C2

' 7; we have

6~h1
' + + + hq

' !102Kg ', ij � ~h1 + + + hq !
102Kg, ij 6

� 6~h1
' + + + hq

' !�102KC ', ij � ~h1 + + + hq !
�102KC, ij 6

� 6nd$~ OC1
' !�1WC1

' , ij LC2
' , ij � OC1

�1 WC1, ij LC2 , ij %6

� 6nd$~ OC1
' !�1WC1

' , ij @LC2
' , ij � LC2 , ij #� @~ OC1

' !�1WC1
' , ij � OC1

�1 WC1, ij #LC2 , ij %6

� D1�~h1
' + + + hq

' !�1WC1
' , ij7C2

'� C27� ~h1 + + + hq !
�1G� xj � xi

h
�7C1

'� C17� , (A.14)

where D1 � 0 is a finite constant+ In the last equality we used 6LC2 , ij 6 � 1 and assump-
tion ~C3!+ Also, we replaced one of the ~ OC1

' !�102 by OC1
�102 because as � @C1s,C2s# are

all bounded from above and below+ The difference can be absorbed into D1+
By noting that An~c '!� An~c! is a degenerate U-statistic, and using ~A+14!, we have

E $@An~c
' !� An~c!#

2 %

� E $~Iij � fij !
2 fi

�2 @~h1
' + + + hq

' !�102Kc ', ij � ~h1 + + + hq !
�102Kc, ij #

2 %

; E $@~h1
' + + + hq

' !�102Kc ', ij � ~h1 + + + hq !
�102Kc, ij #

2 %

� 4E��~h1
' + + + hq

' !�1W 2� xj � xi

h '
�7C2

'� C272

� ~h1 + + + hq !
�1G� xj � xi

h
�7C1

'� C172��
� 4D1���� f ~xi ! f ~xi � hv!W 2~v! dxi dv�7C2

'� C272

� ��� f ~xi ! f ~xi � w!G~w!2 dxi dw�7C1
'� C172�

� 4D1supx f ~x!���W 2~v! dv�7C2
'� C272 ���G~w!2 dw�7C1

'� C172�
� D7C ' � C72, (A.15)
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where in the preceding expression A ; B means A and B having the same order of
magnitude and D is a finite positive constant+ Therefore, An~{! ~hence, Bn~{!! is tight by
Theorem 3+1 of Ossiander ~1987!+ �

Proof of Theorem 2.3. We will provide a proof for the discrete dependent variable
case+ The continuous case is similar+ To prove ~13!, similar to the decomposition of
Tn,g, we decompose Tn, [g

* as Tn, [g
* � Tn1

* � Tn2
* � Tn3

* , where the definitions of Tnj
* are

similar to those of Tnj with the proper changes; i+e+, yi , Zu,g need to be changed to
yi
*, Zu*, [g+We further decompose Tn1

* to Tn1
* �Tn1,1

* � Tn1,2
* ~ Zu*� Zu!� ~ Zu*� Zu!'Tn1,3

* ~ Zu*� Zu!,
where the definitions of Tn1, j

* are similar to Tn1, j with the proper changes ~ j � 1,2,3!+
The term Tn1,1

* can be written as a second-order U-statistic ~zi
*� ~xi

*, yi
*!� ~xi , yi

*!!:

Tn1,1
* �

2

n~n � 1! (i (j�i

Hn
*~zi
*, zj
*!,

where

Hn
*~zi
*, zj
*! � �1

2
�� K [g, ij

fi
* @Iij

*� fij
*#�

K [g, ij

fj
* @Iij

*� fji
*#�

[ �1

2
�$Jn

*~zi
*, zj
*!� Jn

*~zj
*, zi
*!%

with fi
* � f ~ yi

* 6xi , Zu!, fij
* � f ~ yi

* 6xj , Zu!, and Iij
* � I ~ yi

* � yj
*!+

It is easy to check that

E * @Jn
*~zi
*, zj
*!6zi

*# � K [g, ij fi
*�1 E *$@Iij

*� f ~ yi
* 6xj !#6zi

*%

� fi
*�1 K [g, ij�(

yj
*

f ~ yj
* 6xj , Zu!I ~ yi

*� yj
*!� f ~ yi

* 6xj , Zu!�
� fi

*�1 K [g, ij $ f ~ yi
* 6xj , Zu!� f ~ yi

* 6xj , Zu!%� 0+

Similarly,

E * @Jn
*~zj
*, zi
*!6zi

*# � K [g, ij E *$@Iij
*� fji

*# fj
*�1 6zi

*%

� K [g, ij $E
* @Iij
* fj
*�1 6zi

*#� E * @ fji
* fj
*�1 6zi

*#%

� K [g, ij�(
yj
*

I ~ yi
*� yj

*!�(
yj
*

f *~ yj
* 6xi , Zu!� � K [g, ij $1 � 1%� 0+

Hence, E * @Hn
*~zi
*, zj
*!6zi

*#� 0+ Thus, conditional on the random sample $xi , yi %i�1
n , Tn1,1

*

is a degenerate U-statistic+
Denote Un, ij

* � @20~n~n � 1!!#Hn
*~zi
*, zj
*! and define Un

* � @20~n~n � 1!!#
(i (j�i Hn

*~zi
*, zj
*! [ Tn1,1

* + We apply the CLT of de Jong ~1996! for generalized
quadratic forms to derive the asymptotic distribution of Un

* 6$xi , yi %i�1
n + The reason for

using de Jong’s central CLT instead of the one in Hall ~1984! is that in the bootstrap
world, the function Hn

*~zi
*, zj
*! depends on i and j, because zi

* � ~xi , yi
*!+ By de Jong

~1996, Prop+ 3+2! we know that Un
*0Sn

* r N~0,1! in distribution in probability if
GI
*, GII

* , and GIV
* are all op~Sn

*4!, where Sn
*2 � E * @Un

*2# , GI
* � (i (j�i E * @Un, ij

*4 # ,
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GII
* � (i (j�i (l�j�i @E

*~Un, ij
*2 Un, il

*2 ! � E *~Un, ji
*2 Un, jl

*2 ! � E *~Un, li
*2 Un, lj

*2 !# , and GIV
* �

~ 12
_ !(i (j�i (s(t�s E *~Un, is

*2 Un, sj
*2 Un, ti

*2 Un, js
*2 !+

Now,

E * @Hn
*2~zi

*, zj
*!# � E * @Jn

*2~zi
*, zj
*!#� K [g, ij

2 E * @~Iij
*� fij

*!20fi
*2#

� K [g, ij
2 E *$ fi

*�2 E * @~Iij
*� fij

*2 � 2Iij
* fij
*!6yi

*#%

� K [g, ij
2 E *$ fi

*�2~ fij
*� fij

*2 � 2fij
*2!%

� K [g, ij
2 E *$@ fij

*~1 � fij
*!#0fi

*2%� K [g, ij
2 (

yi
*

$@ fij
*~1 � fij

*!#0fi
*2%+

Hence, Sn
*2 � @40n2~n � 1!2 #(i (j�i E * @Hn~zi

*, zj
*!2 # � @40n2~n � 1!2 #

(i (j�i K [g, ij
2 (yi

*$@ fij
*~1 � fij

*!#0fi
*2% + By using a proof similar to the proof of

Lemma A+4, one can show that Sn
*2 has the same order as NSn

*2 where NSn
*2 is the same as

Sn
*2 except that [g is replaced by g+ Hence we only need to establish the order of NSn

*2+
Because discrete regressors do not affect its order, for clarity, we will establish the order
of NSn

*2 for the case with continuous regressors only+ We have

E6 NSn
*2 6 � n�2~ Zh1 + + + Zhq !

�2�(
yi
*
��W 2� xi � xj

Zh � f ~ yi
* 6xj ,u0 !@1 � f ~ yi

* 6xj ,u0 !#

f 2~ yi
* 6xi ,u0 !

� p1~xi !p1~xj ! dxi dxj � o~1!�
� n�2~ Zh1 + + + Zhq !

�1��W 2~u! du(
yi
*
� @1 � f ~ yi

* 6xi ,u0 !#p1
2~xi !

f ~ yi
* 6xi ,u0 !

dxi � o~1!�
� n�2~ Zh1 + + + Zhq !

�1 @C � o~1!# ,

where C � 0 is a constant, which implies that ~ NSn
*2!�1 � Op~n2~ Zh1 + + + Zhq!!+ Hence,

10Sn
*2 � Op~n2~ Zh1 + + + Zhq!! and 10Sn

*4 � Op~n4~ Zh1 + + + Zhq!
2!+

Next, E * @Hn
*4~zi

*, zj
*!# � E @Jn

*4~zi
*, zj
*!# � K [g, ij

4 E * @~Iij
* � fij

*!40fi
*4# + Similar to Sn

*2 ,
one can show that

GI
* �

16

n4~n � 1!4 (i (j�i

E * @Un, ij
*4 #�

16

n4~n �1!4 (i (j�i

K [g, ij
4 E * @~Iij

*� fij
*!40fi

*4#

� Op~n
�6~ Zh1 + + + Zhq !

�3 !,

given that n�8 (i(j�i K [g, ij
4 � Op~n�6~ Zh1 + + + Zhq!

�3!+
From the preceding calculation it should be apparent that the probability orders of

GI
*, GII

* , and GIV
* are solely determined by the factor of n’s and ~ Zh1 + + + Zhp!’s through

Kij, [g+ Therefore, tedious but straightforward calculations show that
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GII
* ; n�8(

i
(
j�i
(

s�j�i

@Kij, [g
2 Kis, [g

2 � Kjs, [g
2 Kji, [g

2 � Ksi, [g
2 Ksj, [g

2 #� Op~n
�5~n Zh1 + + + Zhq !

�2 !,

GIV
* ; n�8(

i
(
j�i
(

s
(
t�s

@Ksi, [gKsj, [gKti, [gKtj, [g#� Op~n
�4~ Zh1 + + + Zhq !

�1 !+

Therefore, Gk
*0Sn

*4 � op~1! for all k � I, II, IV, and we know that

Un
*0Sn

*r N~0,1! in distribution in probability+ (A.16)

Next, define

Vn, [g
* �

def

E *$@n~n � 1!~ Zh1 + + + Zhq !#
102Tn1,1

* %2 �
2~ Zh1 + + + Zhq !

n~n � 1! (i (j�i

E * @Hn
*2~zi

*, zj
*!#

and

ZVn, [g
* �

def 2~ Zh1 + + + Zhq !

n~n � 1! (i (j�i

ZHn
*2~zi

*, zj
*!,

where ZHn
*~zi
*, zj
*! is defined in the same way as Hn

*~zi
*, zj
*! except that Zu is replaced by

Zu*+ Similar to the analysis of Sn
*2 , one can show that ZVn, [g

* � Vn, [g
* � op~1! and that Vn, [g

* �
~n2 Zh1 + + + Zhq !Sn

*2 � op~1!+ These results together with ~A+16! lead to

n~ Zh1 + + + Zhq !
102Tn1,1

* ��M ZVn, [g
* r N~0,1! in distribution in probability+

The analysis of Tn1,2
* , Tn1,3

* , Tn2
* , and Tn3

* is similar to that of their counterparts in the
proof of Theorem 2+1+ One can show that Tn1,1

* is the leading term of Tn
*+ For example,

in Lemma A+2~i! we have shown that Tn1,2 � Op~n�102! by proving that E @Tn1,2
2 # �

O~n�1!+ By similar arguments one can show that E * @Tn1,2
*2 # � Op~n�1!+ The details are

omitted here to save space+ Therefore, we conclude that n~ Zh1 + + + Zhq !102Tn
*��M ZVn, [g

* has

the same asymptotic distribution as that of n~ Zh1 + + + Zhq !
102Tn1,1

* ��M ZVn, [g
* + Hence,

n~ Zh1 + + + Zhq !
102Tn

*��M ZVn, [g
* r N~0,1! in distribution in probability+

Because N~0,1! is a continuous distribution, by Polyā’s theorem ~Bhattacharya and Rao,
1986!, we obtain Theorem 2+3+ �
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