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The concept of Relative Receiver Autonomous Integrity Monitoring (RRAIM) using time
differential carrier phase measurements is investigated in this paper. The precision of carrier
phase measurements allows for mitigation of integrity hazards by implementing RRAIM

monitors with tight thresholds without significantly affecting continuity. In order to avoid
the need for cycle ambiguity resolution, time differences in carrier phase measurements
are used as the basis for detection. In this work, we examine RRAIM within the context of

the GNSS Evolutionary Architecture Study (GEAS), which explores potential architectures
for aircraft navigation utilizing the satellite signals available in the mid-term future with
GPS III. The objectives of the GEAS are focused on system implementations providing
worldwide coverage to satisfy LPV-200 operations, and potentially beyond. In this work, we

study two different GEAS implementations of RRAIM. General formulas are derived for
positioning, fault detection, and protection level generation to meet a given set of integrity
and continuity requirements.
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1. INTRODUCTION. Carrier phase differential RAIM implementations have
been investigated in prior work to help detect specific navigation threats, including
ephemeris broadcast anomalies [1] and ionospheric storm fronts [2]. The great
precision of carrier phase measurements allowed for tight detection thresholds with-
out significantly affecting continuity. It also provided the sensitivity to detect a much
larger range of failure magnitudes than was possible using traditional code-based
RAIM. The need for cycle ambiguity estimation was eliminated by differencing
measurements in time, creating spatial baselines associated with the user’s trans-
lation over the time-difference interval. We refer globally to these time-differenced
carrier phase RAIM implementations as Relative RAIM (RRAIM) functions. The
results in [1, 2] showed that many troublesome ionospheric and ephemeris threats
could be detected with carrier phase RRAIM implementations, even for appli-
cations where positioning was based on code phase [2].

The current process of modernization of Global Navigation Satellite Systems
(GNSS) will improve navigation user capabilities in many ways. There will be
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additional civil use signals, which will be more powerful and easier to acquire by
receivers. They will also facilitate interoperability between different systems (GPS,
Galileo and GLONASS for example), by transmitting inter-system clock corrections.
There will be additional ground stations, and satellites will be able to communicate
with each other, allowing better ephemeris generation, failure monitoring, and a
faster alarm transmission in case a monitor triggers. Two of the predicted im-
provements are particularly relevant to this work: the additional civil signal, and the
ability to use a larger number of satellites in view at all times. This will translate
into more precise ranging (ionospheric delay is eliminated using dual frequency
measurements) and greater redundancy. Ranging precision and redundancy are
naturally two key elements affecting the efficiency of RAIM implementations.

The Federal Aviation Administration (FAA) has organized a GNSS Evolutionary
Architecture Study (GEAS) group to explore the different possibilities for aircraft
navigation utilizing the new satellite signals available in the mid-term future. The
objective of GEAS is to develop new navigation architectures for aviation to provide
worldwide coverage for aircraft precision approach, initially LPV-200 operations,
with minimal ground infrastructure. In response, the GEAS has focused its in-
vestigations on three different architectures, one of which is based on RRAIM. These
were first described in [3], and are summarized briefly below.

The first architecture most nearly resembles the existing Wide Area Augmentation
System (WAAS), which is already capable of achieving LPV-200 performance, but
not globally. The GEAS-equivalent concept is called the GNSS Integrity Channel
(GIC) architecture. It is WAAS-like in that it will use sparsely placed reference
stations to generate ranging corrections and perform integrity monitoring. However,
ionospheric corrections are not required because L5 Global Positioning System
(GPS) signals are assumed to be available to airborne users. This means that a global
network of GIC ground station can be widely spaced, requiring perhaps only 20
stations worldwide. Based onWAAS experience, one challenge for this architecture is
that it may be difficult to meet aircraft time-to-alert (TTA) requirements (6 seconds
for LPV 200) with an integrated global system.

The second concept is called the Absolute RAIM (ARAIM) architecture. This
approach is essentially a traditional RAIM architecture that uses carrier-smoothed
code measurements for both positioning and fault detection. In this concept, the
integrity burden is placed almost entirely at the aircraft. A simplified version of the
GIC fault detection function is needed only to ensure that the prior probability of
undetected multiple, simultaneous satellite faults is kept low. The ARAIM im-
plementation uses smoothed code in its RAIM test, and depends heavily on redun-
dancy, so it is very demanding on satellite constellations. Initial results suggest that
achieving good availability for worldwide LPV-200 with ARAIM requires con-
stellations of 30 or more satellites [3]. The choice of this architecture would therefore
presume a suitably expanded GPS constellation or a combined-constellation GNSS.

The final GEAS concept is called the RRAIM architecture. Like the previous
two concepts, this system uses carrier-smoothed code for positioning. However, fault
detection is performed using a combination of GIC ground based monitoring and a
carrier phase RRAIM function. This architecture represents a practical intermediate
solution between the GIC and ARAIM architectures. It assumes the same integrity
monitoring capabilities of the GIC architecture described above (a global WAAS-like
system without ionospheric corrections), but eliminates the resulting TTA concern by
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providing integrity for the latest segment of flight with a carrier phase RRAIM
function. Preliminary analysis in [3] showed that a RRAIM implementation could
potentially enable LPV-200 operations with worldwide coverage using a 27 SV con-
stellation [3].

In the RRAIM navigation architecture, an initial position estimate is obtained
using data whose integrity is validated by the GIC. Because there is a delay between
the epoch when corrections are computed by the GIC and the moment the user
receives them, the aircraft will first use stored carrier-smoothed code measurements,
corresponding to the time of generation of the last received GIC correction, to obtain
a reference position x0. The integrity of the reference position is therefore ensured by
the GIC. A relative vector is then computed using time-differential carrier phase
measurements and added to x0 to determine the current position. The integrity of this
relative vector is provided by a RRAIM test. The duration of the differential time
interval is often referred to as the carrier Coasting Time (CT).

As noted earlier, the principal advantage of RRAIM is that it allows for significant
relaxation of the GIC TTA requirement. This is true because the RRAIM function
ensures navigation integrity after the latest available GIC correction. In the airborne
realization of the concept, there are two interesting implications to consider : the
effect of increasing coasting time on differential ranging measurement errors (some
error sources will increase as the coasting time gets larger), and the potential ad-
vantages of looking for the best reference epoch rather than using the latest available
one (reference position error depends heavily on satellite geometry).

The focus of this paper is to provide a detailed mathematical development of the
GEAS RRAIM concept and to derive the associated algorithms for positioning, fault
detection, and position-domain protection level bounding. Lee in [4] discusses a
solution separation algorithm as a fault detection approach. In this work, the fault
detection function is based on the weighted least squares residual, and we develop
two fundamentally different approaches toward carrier phase coasting for RRAIM.
The implementation described in the previous paragraph will be referred to as the
position domain implementation. An alternative range domain implementation is also
presented in the paper, which differs in the way the available measurements at the
reference and current positions are merged. Each of these two implementations has
its own advantages, as will become obvious later on. The range domain implemen-
tation has more straightforward derivations, and its position estimation error is
independent of changes in geometry. The position domain implementation allows
the use of satellites visible in the initial position, even if tracking is lost during the
coasting time.

All the position error bounds derived in this work correspond to the case in which
the monitors do not trigger an alarm (which is the only case that an integrity threat
can be present). For this no-alarm case, two mutually exclusive and exhaustive
hypotheses are considered: (1) that there is no fault during carrier phase coasting, and
(2) that there is an undetected satellite fault during carrier coasting. In case of an
alarm, a failure is assumed to have occurred, and the approach is aborted with no
isolation being attempted. The monitor’s threshold is computed to guarantee that
continuity requirements are met (i.e., that the fault free alarm probability is lower
than the continuity risk requirement). The rare nature of the failures being monitored
implicitly guarantees that real alarms will not violate the continuity requirements of
the system.
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2. RRAIM ALGORITHMS. In general, before executing the approach or
landing operation, the aircraft must evaluate the capabilities of its monitors to
detect a significant position error if such error existed. When a position error big
enough to be a hazard is not detected by the monitors, the pilot (or autopilot) is
said to be using Hazardously Misleading Information (HMI). The possibility of
this happening is known as Integrity Risk and its likelihood is expressed as the
Probability of Hazardously Misleading Information (PHMI). If PHMI is bigger than
a certain required specification (PHMIreq), then the approach cannot be initiated.

For RRAIM, the necessary condition to start an operation can be written as

P{(jdxpj>AL) \ (r<T)}<PHMIreq (1)

where
dxp is the error in the user position estimation,
AL is the Alert Limit, which is the minimum position error magnitude con-

sidered hazardous,
r is the residual generated by the RRAIM monitor, and
T is the monitor threshold.

An equivalent way to implement inequality (1) is to derive a Protection Level (PL)
such that

P{(jdxpj>PL) \ (r<T)}=PHMIreq, (2)

and verify that

PL<AL: (3)

Potential contributors to PHMI, or equivalently PL, can include fault-free (FF)
errors (due for example, to an ‘unlucky’ combination of the nominal errors from all
ranging sources) or measurement faults. In this work, it is assumed that the GIC
provides a fault detection and removal rate sufficient to ensure that the probability
that a user is exposed to multiple, simultaneous failed ranging sources is negligible.

The RRAIM test is responsible for the integrity from the last GIC correction time
to the current time, which we have defined as the Coasting Time (CT). During the CT
interval, two situations (mentioned above) are possible: there is a Fault During
Coasting (FDC), or that there is Fault Free Coasting (FFC).

These two events are mutually exclusive and exhaustive. Because the random parts
of dxp and r are independent, (2) can be written as:

P(jdxpj>PL
��FFC)P(r<TjFFC)P(FFC)

+P(jdxpj>PL
��FDC)P(r<TjFDC)P(FDC)=PHMIreq

(4)

Ideally we would want to compute one PL that will satisfy (4). However, this is
difficult in practice because it typically requires an iterative process that can be very
time consuming. A more conservative but practical approach will be to find two PL
values, for each hypothesis separately. To do this, the overall risk requirement
PHMIreq can be sub-allocated into separate components for the two hypotheses,
PHMIreq(FFC) and PHMIreq(FDC), such that PHMIreq=PHMIreq(FFC)+PHMIreq(FDC). Then
the protection level under the FFC hypothesis is defined by

P(jdxpj>PLFFC

��FFC)P(r<TjFFC)P(FFC) � P(jdxpj>PLFFC

��FFC)=PHMIreq(FFC)

(5)

218 LIVIO GRATTON AND OTHERS VOL. 63

https://doi.org/10.1017/S0373463309990403 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463309990403


where it has been conservatively assumed that P(r<T|FFC)P(FFC)B1. Similarly, for
the FDC hypothesis,

P(jdxpj>PLFDCjFDC)P(r<TjFDC)P(FDC)=PHMIreq(FDC) (6)

(More mathematical detail on the meaning of FDC in equation (6) can be found in
Appendix A). Inequality (3) can then be re-expressed as:

PL=max (PLFFC,PLFDC)<AL (7)

Note that an incorrect allocation of PHMIreq between PHMIreq(FFC) and PHMIreq(FDC)

is not an integrity risk, but it might impact the availability of the system by con-
servatively making either PLFFC or PLFDC larger than needed.

In the following development, we will provide a conservative and practical way to
compute the PL. The right-hand sides of (5)–(7) are derived from system integrity
requirements, and the detection threshold T, on the left-hand side of (6) is derived
from the system continuity risk requirement. The necessary intermediate steps toward
computing the PL are to statistically describe the RRAIM residual r and the position
error dxp.

The RRAIM architecture uses two sets of user-satellite ranges (to be described in
detail shortly) : zw, which is composed of time-differenced carrier phase measurements
between two epochs of interest, and zC, which is composed of carrier smoothed code
measurements at a single time.

Based on these measurements, two different RRAIM architecture implementations
will be developed. The first adds zC0 (zC at time ‘0’) and zw (time difference carrier
ranges between the current time and time 0) in the Range Domain (RD) to produce a
current ranging measurement. This measurement is then used to obtain the current
user position and clock bias state estimate x̂x. [Note : throughout the paper, the ab-
sence of a time subscript implies current time.] The second implementation uses zC0 to
obtain an x̂x0, estimate of the state at time 0, and then uses zw to obtain a relative state
estimate Dx̂x. These two state estimates will then be added together to obtain x̂x, the
state estimate at the current time. In this case, the information is combined in the
Position Domain (PD).

3. RANGE DOMAIN IMPLEMENTATION. For each GNSS space
vehicle (SV) the user will have a GIC-corrected (carrier smoothed) code measure-
ment at a past epoch ‘0’. The corrected measurement for SV i can be expanded as:

z*iC0=l i0+t0+n*iC0+bi0=ei0
T

xiSV0xxp0
� �

+t0+n*iC0+bi0 (8)

where:
l0
i is the actual distance between the user and SV,
e0
i is the user-SV line of sight unit vector,

xSV0
i is the true SV position,
xp is the true user position,
t0 is the receiver clock bias (expressed in units of distance),

vC0
*i represents the sum of SV clock error (vsvt0

i ) after the GIC corrections
have been applied, residual tropospheric delay (vtrop0

i ) after model-based
correction, and multipath and receiver noise for carrier smoothed code
(vCmpn0

i ), and
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b0
i is included to account for two additional potential sources of measurement
error: (1) a satellite measurement fault small enough to go undetected by
the GIC, and (2) errors that cannot be easily modelled or bounded by
Gaussian distributions, and will instead be characterized by bounds on their
potential magnitudes.

Throughout the paper a superscript ‘T ’ indicates the matrix or vector is trans-
posed.

Note that even if there is a potential small fault in b0
i , it is a fault from the point of

view of the GIC, which is responsible for detecting it. In other words, only a failure
occurring during carrier coasting distinguishes between FFC and FDC events.
Nevertheless the effect of b0

i must be accounted for. To avoid allocating our tolerable
integrity risk between the GIC and RRAIM detection functions, we allocate PHMIreq

entirely to the RRAIM monitoring and introduce a bound bi on the magnitude of b0
i

such that the probability that |b0i |>bi is negligibly small compared with PHMIreq. The
choice of bound bi will depend primarily on the integrity monitoring capabilities of
the GIC.

We will now re-express our measurement in (8) as

ziC0=z*iC0xei0
T

x̂xiSV0=xei0
T

xp0+t0+niC0+bi0 (9)

where x̂xiSV0 is the ephemeris generated (and GIC corrected) position of the satellite.
The error in the term ei0

T

x̂xiSV0 is

nieph0=ei
T

0 dx
i
SV0, (10)

and, for compactness of notation, it is now included in vC0
i :

niC0=niCmpn0+nisvt0+nitrop0+nieph0 (11)

Note that terms in (11) are the errors after all GIC corrections have been applied.
The user will also have a stored carrier phase measurement from time 0 for any

SV i :

z**w0
i=li0+t0+Ni+v*iw0+f *0

i=ei0
T

(xiSV0xxp0)+t0+Ni+n*iw0+f *0
i (12)

where:
Ni is a bias that includes the carrier phase cycle ambiguity (expressed in units

of distance),
n*iw0 represents the sum of SV clock (vsvt0

i ) after the GIC corrections have been
applied, residual tropospheric delay (vtrop0

i ) after model-based correction,
and multipath and receiver noise for the carrier phase measurement
(vwmpn0

i ), and
f*0

i is a potential failure affecting the measurement.
As we did for the code measurement, we re-express our carrier phase measurement at
0 as

z*w0
i = z**w0

ixei0
T

x̂xiSV0=xei0
T

xp0+t0+Ni+niw0+f *0
i (13)

where, as in (10) and (11), the ephemeris error is now implicitly included in vw0. We
then do the same for the current time to obtain

z*w
i=xei

T

xp+t+Ni+n i
w +f *i, (14)
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where

niw=niwmpn+niw svt+niw trop+niw eph: (15)

Details on component error models for (11) and (15) can be found in [3].
The time-differential carrier phase measurement that will be used in the RRAIM

system is

ziw=z*iwxz*iw0=xei
T

xp+ei0
T

xp0+Dt+Dniw+f i (16)

where

Dt=txt0; Dniw=niwxniw0; f i=f *ixf *0
i: (17)

We can now define our RD basic measurement at the current time from (9) and
(16) as:

ziRD=ziC0+ziw=xei
T

xp+t+niC0+Dniw+bi0+f i=hi
T

x+niC0+Dniw+bi0+f i (18)

where

x=[ xp t ]T; hi=[xei
T

1 ]
T: (19)

The state vector (position and time) estimate will then be obtained from

x̂xRD=(HTRx1
RDH)x1HTRx1

RDzRD, (20)

where

H= h1 � � � hn½ �T, zRD= z1RD � � � znRD
� �T

, (21)

n is the number of SVs whose signals have been continuously tracked by the user
between time 0 and the current time. RRD is the covariance matrix of the errors in (18)
that can be bounded by Gaussian distributions : vC0

i +Dvw
i (i=1, … , n). Distributions

of b0
i are unlikely to be available, so the Gaussian weighting is used here.

Nevertheless, the effects of b0
i on position error must be accounted for, and this will be

addressed shortly.
The RRAIM residual r will be identical for both the RD and the PD im-

plementations, and, as will become obvious shortly, it is more practical to present it in
the PD section that follows.

4. POSITION DOMAIN IMPLEMENTATION. From (9) and (19), we
may write

ziC0=hi
T

0 x0+niC0+bi0, (22)

and the initial position and clock bias estimate can then be obtained as:

x̂x0=(HT
0R

x1
C0 H0)

x1HT
0R

x1
C0 zC0 (23)

where

zC0= z1C0 � � � zmC0

� �T
, (24)
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m is the number of SVs available at time 0, and the rows ofH0 are h
iT

0 for each satellite
i. RC0 is the covariance matrix of the Gaussian errors in (18) : vC0

i (i=1, … , m).
From (16), (17) and (19) :

ziw=hi
T

xxhi
T

0 x0+Dniw+f i=Dhi
T

x0+hi
T

Dx+Dniw+f i (25)

where

Dx=xxx0; Dhi=hixhi0: (26)

Using (25) and the initial state estimate from (23), we now define the time-differenced
carrier phase measurement for the PD implementation:

ziPDw=ziwxDhi
T

x̂x0=hi
T

Dx+DniPDw+f i (27)

where the error in the initial state estimate, dx0, contributes through satellite Line Of
Sight (LOS) changes as :

niDLOS=xDhi
T

dx0, (28)

and is included in DvPDw
i in (27) :

DniPDw=Dniw+niDLOS (29)

We can now estimate the relative position vector as :

Dx̂x=(HTRx1
PDwH)x1HTRx1

PDwzPDw (30)

where

zPDw= z1PDw � � � znPDw

� �T
, (31)

n is the number of SVs continuously tracked between time 0 and the current time, and
the rows ofH are hi

T

for each satellite i. RPDw is the covariance matrix of the Gaussian
errors in (29) : DnPDw

i (i=1, … , n).
Using the results of (23) and (30), we obtain the PD implementation state vector

estimate as:

x̂xPD=x̂x0+Dx̂x: (32)

Note that x̂xPD and x̂xRD are two different estimates of the same state true vector x.
The most notable source of difference is that in the RD implementation SVs that are
not present at the current time are not used at all, while in the PD implementation all
SVs present at epoch 0 are used to obtain x̂x0. A second point of difference is that the
error terms nDLOS

i do not appear in the RD implementation.
The RRAIM test statistic (in both implementations) will be computed to detect a

potential failure [ f i in (17) and (27)] occurring during the coasting period:

r2=(zPDwxHDx̂x)TRx1
PDw(zPDwxHDx̂x) (33)

If all the errors in zPDw (i.e., DnPDw
i =Dnw

i +nDLOS
i ) were Gaussian, r2 would be x2

distributed with nx4 Degrees Of Freedom (DOF). However, the non-Gaussian term
b0
i , defined in (8), can lead to a non-Gaussian contribution through nDLOS

i . The effect
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is accounted for later in the paper, where it will be shown that the actual distribution
of r2 can be bounded by a non-central x2 distribution.

5. COVARIANCE MATRICES. In this section we will explicitly define the
elements of the measurement error covariance matrices RC0, RRD and RPDw. These
are needed for the RD and PD positioning algorithms defined above, as well as for
RRAIM residual generation.

To obtain the elements of RC0 from (11), we assume that all ranging sources and
component sources have independent errors :

RC0(i, i)=E[niC0
2

]=(si
C0)

2, RC0(i, j)=0 (34)

(si
C0)

2=(si
Cmpn0)

2+(si
Ct0)

2+(si
CTropo0)

2+(si
Ceph0)

2 (35)

Representative values for the standard deviations in (35) can be found in [3].
Similarly, the elements of RRD, from (11), (15), (17) and (18) can be expressed as

RRD(i, i)=E[(niC0+Dniw)
2]

=(si
Cmpn0)

2+(si
Dwmpn)

2+(si
svt)

2+(si
trop)

2+(si
eph)

2x2E[niCnpm0n
i
wnpm0]

�(si
Cmpn0)

2+(si
Dwmpn)

2+(si
svt)

2+(si
trop)

2+(si
eph)

2

(36)

where the last term has been conservatively eliminated assuming a positive corre-
lation between the multipath and noise terms for code and carrier ; and

RRD(i, j)=0 (37)

For the position domain implementation, from (28) and (29) :

RPDw(i, i)=E[(Dniw+niDLOSg)
2]=(si

Dw)
2+E[(niDLOSg)

2]=(si
Dw)

2+Dhi
T

QC0Dh
i (38)

where ‘g’ in the nDLOSg
i subscript means that only the Gaussian components of the

error term are considered, and

(si
Dw)

2=(si
Dwmpn)

2+(si
Dsvt)

2+(si
Dtrop)

2+(si
Deph)

2 (39)

Again typical values for the standard deviations in (36) and (39) can be found in [3],
but it is important to note that in contrast to the values in (35), some of the standard
deviations in (38) and (39), those with subscript D, will be a function of CT.

Finally,QC0 in (38) is the covariance matrix of the initial state estimate error due to
the Gaussian measurement error components at time 0. In general, for QC0 as well as
other state covariance matrices in the remainder of this paper, we define for a certain
time t and weighting matrix Ryt

x1 :

Qyt=(HT
t R

x1
yt Ht)

x1: (40)

For the non-diagonal elements RPDw(i,j) we can assume error sources for different
SVs are independent, except for the nDLOS term, as the error in x̂x0 affects all SVs:

RPDw(i, j)=Dhi
T

QC0Dh
j (41)
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6. ESTIMATION ERRORS. For the RD implementation, from (20) :

dxRD=QRDH
TRx1

RDdzRD (42)

Now defining the vectors

bV= b1 � � � bn½ �T, nC0= n1C0 � � � nnC0

� �T
,Dnw= Dn1w � � �Dnnw

h iT
, f= f 1 � � � f n½ �T (43)

and using (18), equation (42) can be expanded as:

dxRD=QRDH
TRx1

RD[nC0+Dnw+bV+f ]=SRD[nC0+Dnw+bV+f ] (44)

where SRD=QRDH
TRRD

x1.
For the PD implementation from (22)-(24) and (27)-(32) :

dxPD=dx0+dDx=SC0dzC0+SPDw dzPDw

=(SC0+SPDwDHSC0) nC0+SPDwDnPDw

+(SC0+SPDwDHSC0) bV+SPDwf

=BnC0+SPDwDnPDw+BbV+SPDwf

(45)

where SC0=QRDH
TRC0

x1, SPDw=QPDwH
TRPDw

x1 , and DH=–[Dh1 … Dhn]T. The
matrix B has been introduced for the sole purpose of simplifying the notation in the
following section, and its definition is obvious from equation (45).

7. PROTECTION LEVELS. We will now develop the algorithms to obtain
four protection levels, satisfying equations (5) and (6) for the FFC and FDC
hypotheses and each of the two implementations presented: PLFFC(RD), PLFFC(PD),
PLFDC(RD) and PLFDC(PD).

The starting point to generate the protection levels are the position error formulas
(44) and (45). Each of these formulas has terms originated by errors that can be
modelled as Gaussian, terms originated by non-Gaussian errors bV, and for the FDC
cases, a term caused by failure f.

The distribution of bV is unknown, but it is assumed known that the probability of
any |bi|>bi is negligible. Assuming further that each bi is independent of any other
error source from the same (or different) satellite, we can conservatively bound the
effect of non Gaussian errors in the RD case (44) by

SRD bVf SRDj j bVj jj SRDj jbV (46)

where

bV= b1 � � � bn
� �T

(47)

and the notation |’| denotes element-wise absolute value operations for the vector bv
and matrix A (not a determinant). Similarly, for the PD case (45) :

BbVf Bj j bVj jf Bj jbV (48)

To compute the FFC protection levels we must then add the effect of Gaussian
errors terms. For a hypothetical zero mean Gaussian random variable y with stan-
dard deviation s, we first compute an integrity factor kint such that

P(jyj>kints)=PHMIreq(FFC): (49)
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Then we compute the position error standard deviation for the Gaussian errors
terms. For the RD implementation:

E[dxRDgdx
T
RDg]=QRD (50)

We will write the final results in terms of the Vertical Protection Level (VPL); from
(44), (46), (49) and (50) :

VPLFFC(RD)=kint
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QRD(3,3)

p
+(jSRDjbV)(3,1) (51)

Computing the position error standard deviation for the Gaussian errors terms in
the PD implementation is slightly more complicated. For the PD implementation,
from (45) :

QPD �E dxPDgdx
T
PDg

h i

=E dx0g+dDxg
� �

dx0g+dDxg
� �Th i

=E SC0+SPDwDHSC0
� �

nC0g+SPDwDnPDwg

� ��
SC0+SPDwDHSC0
� �

nC0g+SPDwDnPDwg

� �Ti

=QC0+SC0E vC0gDv
T
PDwg

h i
ST
PDw+SPDwE DvPDwgv

T
C0g

h i
ST
C0+QPDw

(52)

We assume that the change in carrier phase measurement errors over the CT is
uncorrelated from the initial code phase errors at time 0. Therefore, using equations
(27) through (29), we know that

E DvPDwgv
T

C0g

h i
=E DHdx0g

� �
vTC0g

h i
=E DHQC0H

T
0R

x1
C0 vC0gv

T
C0g

h i

=DHQC0H
T
0R

x1
C0 E vC0gv

T
C0g

h i
=DHQC0H

T
0

(53)

Substituting this result into (52), we obtain the covariance matrix for the Gaussian
position error for the PD implementation:

QPD=QC0+QC0DH
T ST

PDw+SPDwDHQC0+QPDw (54)

Using the results from (48) and (54) the resulting FFC VPL equation is :

VPLFFC(PD)=kint
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QPD (3,3)

p
+ Bj jbVð Þ 3,1ð Þ (55)

To generate the FDC protection levels, we need to identify the worst failure size
and SV combination. Doing this precisely is a time consuming iterative process. A
conservative but more practical approach is used here instead. For each SV i, a fault
magnitude f+

i is found such that

P r<Tj f i
+

� �
P(FDC)=PHMIreq(FDC) (56)

where

r2= z+PDwxHDx̂x+
� �T

Rx1
zPDw

z+PDwxHDx̂x+
� �

, (57)

z+PDw=zPDw+f i
V, (58)
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where fV
i is a vector, that has as its only non-zero element the value of f+

i for that
satellite :

f i
V= 0 � � � f i

+ � � � 0
� �T

(59)

and Dx̂x+ is the estimate Dx̂x obtained using z+PDw.
The resulting VPL must account for the impact in the position domain of the

various fault vectors fV
i and also the nominal measurement errors. Furthermore, a

fault on the worst case SV, (i.e., the satellite fault causing the worst integrity impact)
is used to define the FDC protection levels. The method for obtaining the associated
worst-case fault magnitude f+

i will be discussed shortly. The protection levels for the
RD and PD implementations are, respectively,

VPLFDC(RD)=max
i

SRD f i
V

� �
(3,3)+kintFDC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QRD(3,3)

p
+ SRDj j bVð Þ(3,1) (60)

VPLFDC(PD)=max
i

SPDw f
i
V

� �
(3,3)+kintFDC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QPD 3,3ð Þ

q
+ Bj j bVð Þ(3,1) (61)

where kintFDC is a multiplier such that, for a zero mean Gaussian distributed random
variable y with standard deviation s :

P yj j>kintFDCsð Þ=PHMIreq(FDC)

P(FDC)
(62)

The RRAIM detection threshold T is set such that the fault-free alarm probability
meets the allocated system continuity requirement (PCreq) and is obtained for a fault
free non-central x2 distribution:

P r>TjlFFCð Þ=PCreq (63)

The non-centrality parameter, lFFC, is obtained using equation (33), together with
(27–29) and (45) by treating the non-Gaussian term bV as a bias:

lFFC=(VCbV)
TRx1

zPDw
VCbV (64)

where

V=IxHSPDw (65)

and

C=DHSC0 (66)

Although bV is unknown, we can obtain an upper bound on lFFC,

lFFCfmjjbVjj
2 (67)

where m is the maximum eigenvalue of (VC)TRPDw
x1 VC and ||bV|| is the magnitude of

the bounding vector bV.
Note that for short CT, the geometry change effect DH is generally small, and

therefore m will also be small. In these cases, depending on the magnitude of bV, it
may be acceptable to use a (central) x2 distribution to compute T.
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Under the fault hypothesis (FDC), with a fault on arbitrary satellite i, the RRAIM
residual is non-centrally x2 distributed with non-centrality parameter

liFDC=(CbV+f i
V)

TVTRx1
PDwV(CbV+f i

V): (68)

To determine the worst-case fault for satellite i, we choose lFDC
i (same for all

satellites) such that

P(r<TjliFDC)=
PHMIreq(FDC)

P(FDC)
, (69)

and then find fV
i with the largest magnitude that satisfies (69). For convenience in

notation, we define a matrix

F=R
x1=2
PDw V: (70)

Then from (68), we know that ffiffiffiffiffiffiffiffiffiffi
liFDC

q
= F(CbV+f i

V)
		 		: (71)

From (64) and (67), we also know that the largest possible magnitude for FCbV isffiffiffiffiffiffiffiffiffiffi
lFFC

p
, where lFFC is assigned the bounding value on the right-hand side of (67).

Therefore, the vector fV
i with the largest magnitude that is consistent with (71) must

satisfy ffiffiffiffiffiffiffiffiffiffi
liFDC

q
= Ff i

V

		 		x ffiffiffiffiffiffiffiffiffiffi
lFFC

p
: (72)

Recall from (59) that fV
i describes a fault on satellite i with magnitude f+

i .
Substituting (59) into (72), the worst-case fault magnitude for satellite i is then

f i
+=

ffiffiffiffiffiffiffiffiffiffi
liFDC

q
+

ffiffiffiffiffiffiffiffiffiffi
lFFC

p

jjF:,ijj
, (73)

where F :,i is the i-th column of the matrix F. The result (73), when reincorporated into
(59), provides the input vector fV

i for the protection level equations (60) and (61).

8. EXAMPLE RESULTS. An example of results for a sample location
(Chicago) and the nominal 24 SV GPS constellation is presented next. The specifi-
cations used, inputs to determine measurement error standard deviations, and va-
lues for the biases can be found in Appendix B. Figure 1 shows VPLRD and VPLPD

at each epoch for one whole day. The result using traditional RAIM (ARAIM
architecture) is also plotted to show the significant improvement in availability
when using an RRAIM implementation. The overall availability is obtained div-
iding available/total epochs, where ‘available ’ corresponds to a VPL<35 m. For
the RD implementation, the coasting time was one minute, which also served as the
minimum allowable coasting time for the PD implementation.

Figure 1 shows VPL values are very similar for both implementations. However
there is a slight availability gain from using the PD implementation. This gain is due
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to the fact that the PD implementation allows reaching back in time to find a better
reference geometry. However, the acceptable CT is limited by the rapid growth of
differential SV clock and tropospheric delay errors. Reference times were searched up
to one hour before the current epoch, but the smallest VPLPD was never found to be
one using a reference epoch more than 3 minutes old. This can be seen in Figure 2,
where the CT that gives the smallest VPLPD for each epoch is shown.

9. CONCLUSION. The use of Relative Receiver Autonomous Integrity
Monitoring (RRAIM) for aircraft precision approach navigation was investigated
in this paper. In the concept investigated, the responsibility for detecting
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Figure 1. VPL with PD and RD implementations.
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Figure 2. CT for smallest VPLPD at each epoch.
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Hazardously Misleading Information is divided between the RRAIM-equipped user
and the navigation system provider, whose space and ground systems provide the
basis for a GNSS Integrity Channel (GIC). The GIC performs ranging source
integrity screening, generates corrections, and then broadcasts this information to
users worldwide via a space based communication channel. During the correction
processing and communication interval, there will be a latent period during which
the user must rely on past GIC information. This latency can be a few seconds
to several minutes, depending on the implementation. The user is continuously
positioning in real time, and integrity against threats occurring during the latency
period can be provided by RRAIM.

In this paper two versions of RRAIM were studied: a Range Domain (RD) and a
Position Domain (PD) implementation. In both cases the user stores past carrier
smoothed code and carrier phase measurements, and selects from those a reference
epoch for which it has already received the GIC corrections. In both cases the user
has three sets of measurements to use: the stored code measurements with corrections
from the reference epoch (whose integrity is ensured by the GIC), a stored carrier
phase measurement from the same reference epoch, and the current carrier phase
measurement.

In the RD implementation the user creates a set of projected measurements by
adding time-differential carrier phase measurements (current minus reference) to the
reference GIC-corrected code measurements. The user position is obtained directly
using these projected measurements. This implementation and corresponding co-
variance analysis is relatively straightforward. However, it requires use of only those
ranging sources that are continuously available between the current and reference
epochs.

The PD implementation generates an initial user position at the reference epoch
using the corrected code measurements, and then adds to it a differential position
vector, generated with the differential carrier phase measurements. The PD im-
plementation allows for the use of all ranging sources available at the reference time
to generate the initial position. The disadvantage is that the covariance analysis is
significantly more complicated, and the corresponding bounding protection levels are
more difficult to define. This is true because the carrier differential position error
includes the effects of changes in user-SV lines of sight. These geometry changes
introduce a correlation between the differential (current minus reference) carrier
phase position error and the initial code-based reference position error. When
latencies of several minutes are considered, these effects cannot be neglected, and
have therefore been carefully analyzed and modelled in this paper.

The RRAIM detection function described in this paper is the same for both the RD
and the PD implementations, as it needs only detect hazardous measurement errors
during the latency period (because for the initial position integrity is provided by the
GIC). When general error models for the corrected code measurement errors are
considered, including potential unknown biases and Gaussian errors, the geometry
change effects introduce a non centrality parameter in the fault free x2 distribution of
the RRAIM residual. This effect is carefully taken into account in this work.

In summary, this work provides the general formulas and derivations for pos-
itioning, fault detection, and protection level generation to meet a given set of in-
tegrity and continuity requirements. The mathematical justification of assumptions
and models is provided, along with practical algorithms that pave the way toward
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real time implementation. An example of VPL results using the two algorithms was
also provided.

The RRAIM architectures described in this paper have the advantage of not being
excessively demanding on satellite constellation size, and they also allow the GIC
segment to significantly relax requirements on time to alarm. They provide an im-
provement in worldwide navigation using methods that are straightforward enough
to not pose serious obstacles in certification or installation on the user’s end.
However, the actual implementation of this architecture will depend on strategic non-
technical decisions, like the future size of the constellations, the ability to install
ground stations world-wide, and/or the willingness to use satellites not operated by
the user’s own country.
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APPENDIX A.

In equations (4) and (6) we introduced the concept of FDC, and its corresponding probability of occur-

rence. But for compactness of development in the main text, neither equation explicitly addresses the

magnitude of the fault nor which particular satellite is faulted. For example, a more precise way of writing

(6) is :

Xn
i=1

Z1

x1

P jdxpj>PLf

��f *
i

� �
P r<Tjf *

i

� �
p(f *

i )df
*
i P(FDC)=PHMIreq(FDC) (A1)

where p(fi
*) is the probability density function of the fault magnitude fi

* for satellite i. Assigning an equal

budget of the FDC integrity risk allocation to each satellite in view, we can obtain an expression for the

protection level PLf
i assuming a fault fi

* for any given SV i. :

Z1

x1

P jdxpj>PLi
f

���f *i
� �

P r<Tjf *
i

� �
p(f *

i ) df
*
i P(FDC)=

PHMIreq(FDC)

n
(A2)
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Because the fault magnitude density function p(fi
*) is not known, to be conservative, we must assume that

p(fi
*)=1 for all values of fi

*, and find the magnitude of fi
* and the satellite i for which PLf

i is maximized.

APPENDIX B.

The detailed error models for GEAS simulations can be found in [3] and [5]. Below we provide specific

parameter values used to generate the numerical results in this paper.

PHMIreq=PHMIreq(FFC)+PHMIreq(FDC):=4 �35r10x8+4 �35r10x8

A-priori failure rate: 10x4 per SV per hour

PCreq=4r10x6 per approach

0 �11m2<s2
Cmpn<1 �37m2 (function of elevation in [3])

s2
Ct+s2

Ceph=0 �5625m2

0 �01 m2<s2
CTropo<1 �5 m2 (function of elevation in [3])

s2
Dwmpn=0 �0016 m2

s2
Dw svt+s2

Dw eph= 8 �5r10x4 m

s

� �2
r(CT )2

0<s2
Dw trop<0 �408m2 (function of elevation and CT in [3]))

b=1 �125 m
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