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In recent years, several gauge-symmetric particle-in-cell (PIC) methods have been
developed whose simulations of particles and electromagnetic fields exactly conserve
charge. While it is rightly observed that these methods’ gauge symmetry gives rise
to their charge conservation, this causal relationship has generally been asserted via
ad hoc derivations of the associated conservation laws. In this work, we develop
a comprehensive theoretical grounding for charge conservation in gauge-symmetric
Lagrangian and Hamiltonian PIC algorithms. For Lagrangian variational PIC methods,
we apply Noether’s second theorem to demonstrate that gauge symmetry gives rise
to a local charge conservation law as an off-shell identity. For Hamiltonian splitting
methods, we show that the momentum map establishes their charge conservation laws.
We define a new class of algorithms – gauge-compatible splitting methods – that
exactly preserve the momentum map associated with a Hamiltonian system’s gauge
symmetry – even after time discretization. This class of algorithms affords splitting
schemes a decided advantage over alternative Hamiltonian integrators. We apply this
general technique to design a novel, explicit, symplectic, gauge-compatible splitting
PIC method, whose momentum map yields an exact local charge conservation law.
Our study clarifies the appropriate initial conditions for such schemes and examines
their symplectic reduction.

Key words: plasma simulation

1. Introduction

Particle-in-cell (PIC) methods have long been an indispensable tool in studies of
theoretical plasma physics, with many algorithmic efforts tailored toward specific
applications (Okuda 1972; Cohen, Langdon & Friedman 1982; Dawson 1983;
Langdon, Cohen & Friedman 1983; Lee 1983; Hockney & Eastwood 1988; Cohen
et al. 1989; Liewer & Decyk 1989; Birdsall & Langdon 1991; Eastwood 1991;
Friedman et al. 1991; Cary & Doxas 1993; Parker, Lee & Santoro 1993; Decyk
1995; Grote et al. 1998; Qiang et al. 2000; Qin, Davidson & Lee 2000a,b; Qin et al.
2001; Vay et al. 2002; Chen & Parker 2003; Nieter & Cary 2004; Huang et al. 2006).
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The literature counts several examples, in particular, of PIC methods that have been
engineered to exactly conserve charge – to machine precision – by the use of various
sophisticated numerical techniques (Villasenor & Buneman 1992; Esirkepov 2001;
Chen, Chacón & Barnes 2011; Pukhov 2016).

In recent years, elegant PIC methods have been developed that preserve the gauge
symmetry of the plasmas they simulate. Such gauge-symmetric methods exactly
conserve charge, not as the result of bespoke numerical methods, but as a natural
consequence of preserving their systems’ geometric structure. It was Squire, Qin &
Tang (2012) that first derived an exactly charge-conserving variational PIC scheme by
imposing gauge symmetry on a discrete action. Several gauge-symmetric algorithms
have since followed, especially in the form of Hamiltonian PIC schemes (He et al.
2015, 2016; Xiao et al. 2015; Qin et al. 2016; Kraus et al. 2017; Xiao, Qin & Liu
2018; Xiao & Qin 2019).

Many of these references note that the gauge symmetry of their algorithms
guarantees exact charge conservation, but this fact is often unproven; the associated
conservation laws are not always stated, let alone systematically derived. The absence
of such derivations motivates a rigorous study of algorithmic conservation laws in
PIC methods. In the present paper, we study Lagrangian variational and Hamiltonian
splitting algorithms and derive their charge conservation laws from first principles.
In so doing, we elucidate the requirements for gauge-symmetric codes to be charge
conserving, and provide a general template for the derivation of conservation laws
from the gauge symmetry of Lagrangian and Hamiltonian algorithms.

Our study of Hamiltonian systems, in particular, identifies a new and quite general
class of algorithms – gauge-compatible splitting methods – which guarantee the exact
preservation of the momentum map associated with gauge symmetries in Hamiltonian
systems – even after time discretization. We leverage this general classification in
our present study and construct a novel gauge-compatible splitting PIC method.
Our effort highlights the practical importance of solving for the momentum map in
Hamiltonian algorithms, especially in determining the correct specification of their
initial conditions.

This paper is presented in two parts (§§ 2–3 and 4–6, respectively), each of which
may be read independently. In §§ 2–3, we demonstrate the systematic derivation
of an exact charge conservation law for the Lagrangian variational PIC method of
Squire et al. (2012). We discover this conservation law from the system’s local gauge
symmetry using Noether’s second theorem (N2T) in a discrete setting, leveraging the
formalism of Hydon & Mansfield (2011). Our effort draws upon the tools of discrete
exterior calculus (DEC) (Hirani 2003; Desbrun et al. 2005), and studies the subtleties
involved in deriving conservation laws for degenerate Lagrangian systems.

In §§ 4–6, we study the Hamiltonian formulation of the Vlasov–Maxwell system,
its momentum map and its Poisson reduction (Marsden & Weinstein 1974, 1982;
Marsden & Ratiu 1986). We provide an introduction (Souriau 1970; Marsden &
Ratiu 1999) to the momentum map µ that arises from the gauge symmetry of
the Vlasov–Maxwell system, and we demonstrate how µ̇= {µ,H} = 0 defines a
continuous-time charge conservation law. We then define the class of gauge-compatible
splitting methods, demonstrating their exact conservation laws in discrete time via
the momentum map. In so doing, we highlight a significant advantage of such
methods over alternative Hamiltonian integrators. We apply this general classification
to design a new, explicit, symplectic, gauge-compatible splitting PIC algorithm for
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the Vlasov–Maxwell system, whose exact charge conservation law, initial conditions
and symplectic reduction are systematically derived.

2. A constructive review of Noether’s second theorem

Noether’s first theorem (N1T) famously establishes a one-to-one correspondence
between the symmetries of a Lagrangian and conservation laws satisfied by its Euler–
Lagrange equations. However, in instances of degenerate Lagrangians (specifically,
Lagrangians whose equations of motion are underdetermined) this correspondence,
while true, is nevertheless weakened. In particular, in underdetermined systems there
is no guarantee that non-trivial symmetries are in one-to-one correspondence with
non-trivial conservation laws (Olver 1986). Such degenerate Lagrangians may be
investigated using N2T, which describes the interdependence of equations of motion
in Lagrangian systems with local gauge symmetry.

For present purposes, we regard a trivial conservation law as a conservation law
that holds whether or not the equations of motion (EOM) are satisfied. Such a
conservation law is said to hold off-shell. (A dynamical field is said to be on-shell
when it obeys the equations of motion defining a system of interest; it is said to be
off-shell otherwise. A conservation law is said to hold on-shell if it is satisfied when
restricted to on-shell fields; it is said to hold off-shell if satisfied even by off-shell
fields.) In this way, trivial conservation laws are mathematical identities; they hold
true regardless of any particular system dynamics.

N2T establishes a one-to-one correspondence between local gauge symmetries of
a degenerate Lagrangian and off-shell differential identities of its Euler–Lagrange
equations. Off-shell identities may at first appear to capture little information.
Nevertheless, we will show that in variational PIC methods, the local charge
conservation law ∂tρ +∇ · J= 0 is just such an identity – a trivial conservation law
that is independent of the dynamics of ρ and J. Applying N2T, we will systematically
derive this charge conservation law from the local gauge symmetry of a discrete
Lagrangian.

N2T demonstrates that the redundancy of physical variables in a degenerate
Lagrangian manifests in the interdependence of its EOM. In particular, N2T states
that a general Lagrangian system admits a local gauge symmetry if and only if its
EOM satisfy a differential identity of the form

D1Eα1(L)+ · · · +DqEαq(L)= 0. (2.1)

Here, Di represents an arbitrary differential operator (e.g. the Klein–Gordon operator:
Di
= ∂2
−m2), and Eαi(L) denotes the Euler–Lagrange equation for the variable αi

(e.g. Maxwell’s equation for Aν : EAν (L)= ∂µFµν
+ Jν).

N1T can discover conservation laws that hold dynamically (on-shell), while N2T
discovers differential identities that hold kinematically (off-shell). Although (2.1) is an
off-shell identity, it may nonetheless reveal valuable information for some Lagrangian
systems. For discrete systems in particular, whose kinematics are sometimes less
apparent or less studied, these differential identities can be especially enlightening.

In the following section, we briefly describe the formalism of Hydon & Mansfield
(2011), which derives N2T’s differential identities in the form of (2.1) from the local
gauge symmetries of a general Lagrangian system. As we shall see, this formalism is
extensible to both continuous and discrete systems.
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To begin, we recall the variation of an arbitrary action S=
∫

d4xL[φ, ∂µφ, . . .] for
a field φ in flat space–time with coordinates xµ

δS =
∫

d4x
[
δφ
∂L
∂φ
+ δ(∂µφ)

∂L
∂(∂µφ)

+ · · ·

]
=

∫
d4x
[
δφEφ(L)+ Dµ

(
δφ

∂L
∂(∂µφ)

)
+ · · ·

]
. (2.2)

In the above, we have employed the Euler operator (Olver 1986)

Eφ :=

∑
J

(−D)J
∂

∂(∂Jφ)

=

(
∂

∂φ
− Dµ

∂

∂(∂µφ)
+ Dµν

∂

∂(∂µνφ)
− · · ·

)
, (2.3)

which discovers a Lagrangian’s EOM by implementing a variational derivative with
respect to a dynamical variable. The sum in (2.3) is taken over all multi-indices
J of space–time variables – e.g. J ∈ {∅, x, tt, yzz, . . .} – and Dµν ≡ DµDν , where
Dµ ≡ d/dxµ = ∂µ + φµ∂φ + φµν∂φν + · · · denotes a total derivative. (The notations
φµ ≡ ∂µφ ≡ ∂φ/∂xµ, φµν ≡ ∂µνφ ≡ ∂2φ/∂xµ∂xν , etc. are to be used interchangeably.)
For a Lagrangian with only first-order derivatives, the EOM of the field φ is thus
given by its familiar form

0= Eφ(L)=
∂L
∂φ
− Dµ

(
∂L
∂φµ

)
. (2.4)

We now consider a Lagrangian L[uα, uαµ, . . .] that depends on multiple fields
{uα(x)} and their derivatives. We suppose that S=

∫
d4xL is invariant under an

(infinite) group of local gauge transformations, each labelled by an arbitrary smooth
function g(x) over space–time. Such a gauge transformation may be envisioned as
parametrizing a Lie group action on dynamical variables at each point of space–time
individually, with the local transformation at each point determined by g(x). (In the
U(1) gauge theory of electromagnetism, for example, the function g(x)= θ(x) may
be associated with the local phase rotation of a matter field, φ(x)→ eiθ(x)φ(x) at each
point x ∈R4.)

We next define the infinitesimal generator vg of a gauge symmetry as a vector field
on the product manifold X ×U = {(xµ, uα)} (where X represents space–time and U
the space of dynamical fields). Such a vector field may be realized as a differential
operator

vg =
∑
α

Qα
[g]∂uα . (2.5)

Here, Qα
[g] are the so-called characteristics of vg, which generally depend on

{g(x), ∂µg(x), . . .} and are defined for each dynamical variable uα. The symbol ∂uα

defines a vector field on X ×U, which acts as a partial derivative with respect
to uα on functions of xµ and uα. (We will clarify this with a concrete example
momentarily.) We emphasize that the freedom to independently specify g(x) at each
point in space–time is what makes vg a local symmetry. A global symmetry, by
contrast, would transform the fields at each point of space–time identically, such that
g(x)= const.
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Referring the reader to Hydon & Mansfield (2011) for greater detail, we have now
assembled the minimal formalism necessary to construct N2T’s differential identity
from a system’s local gauge symmetry. Given an action S[uα, uαµ, . . .] =

∫
d4xL that

is invariant under the symmetry generator vg of (2.5), N2T guarantees the following
differential identity of its EOM:

Eg

[∑
α

Qα
[g]Euα (L)

]
= 0. (2.6)

In this equation, g(x) is treated as a dynamical variable, and its Euler operator Eg is
applied to an expression involving each dynamical variable’s EOM – Euα (L) – and its
corresponding characteristic in vg – Qα

[g].
Assuming that the characteristics Qα

[g] of vg are linear in g and its derivatives,
the final expression of (2.6) is independent of g (as we soon show by example),
and correspondingly takes the form of (2.1). Equation (2.6) is therefore an off-shell
differential identity of the equations of motion; nowhere in this construction is the
dynamical equation Euα (L)= 0 enforced. Accordingly, using the characteristics of
a Lagrangian system’s local gauge symmetry, N2T’s off-shell differential identity is
easily discovered via (2.6).

Before applying this method to the Vlasov–Maxwell system of interest in § 3, we
make the preceding N2T formalism more concrete with a brief example from the
vacuum Maxwell action

S=
∫

d4xL=−
1
4

∫
d4x FµνFµν, (2.7)

where Fµν ≡ ∂µAν − ∂νAµ. This action yields the familiar EOM

0= EAσ (L)=
[
∂

∂Aσ
− Dτ

∂

∂(∂τAσ )
+ · · ·

]
L= ∂τFτσ . (2.8)

We now observe that, for arbitrary smooth λ(x), S is invariant under the local
gauge transformation Aµ(x)→ Aµ(x)− ∂µλ(x). The infinitesimal generator of this
gauge transformation is given by the following vector field with characteristics
QAµ[λ] =−∂µλ:

vλ =−(∂µλ)∂Aµ . (2.9)

Here, as above, the Einstein summation convention over µ is implicit. To see that this
vector field is correct, note that the flow generated by vλ on the product manifold
X × {Aµ} transforms Aµ appropriately

exp[vλ](xρ, Aσ ) =
[
1+ vλ +

1
2!

v2
λ + · · ·

]
(xρ, Aσ )

=

[
1− (∂µλ)∂Aµ +

1
2!
(∂µλ)

2∂2
Aµ + · · ·

]
(xρ, Aσ )

= (xρ, Aσ − ∂σλ). (2.10)

(We note that ∂Aµ acts as a partial derivative, as expected. The space–time X itself is
invariant under such an ‘internal’ gauge transformation, since vλ – like vg in (2.5) –
has no components of the form ∂xµ . This is in contrast to a space–time translation ∂t
or rotation y∂x − x∂y, for example.)
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Given the EOM in (2.8) and the symmetry characteristics in (2.9), we now simply
plug in for Euα (L) and Qα

[λ] in (2.6) to derive this system’s N2T differential identity

0 = Eλ[−(∂σλ)∂τFτσ
]

= ∂σ∂τFτσ . (2.11)

As expected, because of the linearity of λ(x) in QAµ[λ], λ(x) vanishes from (2.11).
Equation (2.11) is the resultant N2T differential identity. Due to the antisymmetry

of Fµν , this identity appears rather trivial, and conveys the appropriate sense that N2T
produces off-shell identities independent of a system’s dynamics. Nevertheless, merely
from the gauge symmetry of S, the above N2T procedure sheds light on the kinematics
of the Maxwell action. In the next section, we will find that the same procedure
derives the local charge conservation law of the Vlasov–Maxwell system.

3. Noether’s second theorem for Vlasov–Maxwell systems
3.1. The continuous space–time Klimontovich–Maxwell model

We now use the preceding N2T procedure to systematically derive a charge
conservation law for the continuous space–time Klimontovich–Maxwell system. This
system specializes a Vlasov–Maxwell system to the following distribution function
defined by N point particles

f (t, x, v)=
N∑

j=1

δ(3)(x−Xj(t))δ(3)(v − Ẋj(t)). (3.1)

The Klimontovich–Maxwell system is accordingly described by the following action:

S=
∫

d4x L[φ,A,Xi] =

∫
d4x
[

1
2
(∇φ + ∂tA)2 −

1
2
(∇×A)2

+

N∑
j=1

δj ·

(
1
2

mjẊ
2
j − qjφ + qjA · Ẋj

)]
. (3.2)

Here, A=A(t, x) is the vector potential, φ = φ(t, x) is the electric potential, Xi =Xi(t)
are particle positions and particle mass and charge are denoted by mi and qi,
respectively. We have also used the following shorthand for the delta function:

δj := δ
(3)(x−Xj(t)). (3.3)

We apply Euler operators to derive the Euler–Lagrange equations of each field

Eφ(L)=∇ ·E− ρ,
EA(L)= ∂tE−∇×B+ J,

EXi(L)= δi · [−miẌi + qi(E+ Ẋi ×B)],

 (3.4)

where we have used the distributional derivative∫
f (η)δ′(η) dη=−

∫
f ′(η)δ(η) dη, (3.5)
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with η ∈ {t, x}, and where

E(t, x) :=−∇φ(t, x)− ∂tA(t, x),
B(t, x) :=∇×A(t, x),

ρ(t, x) :=
N∑

j=1

qjδj,

J(t, x) :=
N∑

j=1

qjẊj(t)δj.


(3.6)

As noted in (2.2), an Euler operator Eu for an arbitrary field u is essentially defined to
accommodate integration by parts, such as that in (3.5). In particular, total derivatives
in L – e.g. ( f δ)′ – that contribute to boundary terms of the action integral S=

∫
L d4x

– e.g. f δ|∞
−∞

– lie in the kernel of Eu, such that Eu(L+Div γ )= Eu(L). Indeed, the
operator relation Eu ◦Div= 0 always holds (see the ‘variational complex’ of Olver
(1986)), where Div denotes a divergence.

We now note that the action of (3.2) is invariant under the following gauge
transformation:

φ→ φ′ = φ + ∂tλ,

A→A′ =A−∇λ.

}
(3.7)

In particular, the electromagnetic terms of the Lagrangian are invariant, while
the coupled particle terms pick up a divergence – namely, L→L+ ∂µγ µ, where
γ µ =−

∑
j qjδjλ · (1, Ẋj) – that vanishes on the boundary of S. The vector field

corresponding to this transformation – equivalent to (2.9) – is given by

vλ =
∑
α

Qα
[λ]∂uα = (∂tλ)∂φ − (∇λ) · ∂A (3.8)

for an arbitrary smooth function λ(x).
Finally, given EOM in (3.4) and the characteristics of our gauge symmetry in (3.8),

we may derive the differential identity of N2T using the construction of (2.6)∑
α

Qα
[λ]Euα (L) = Qφ

[λ] · Eφ(L)+QA
[λ] · EA(L)

= (∂tλ)[∇ ·E− ρ] −∇λ · [∂tE−∇×B+ J] (3.9)

such that

0 = Eλ

[∑
α

Qα
[λ]Euα (L)

]
= −∂t[∇ ·E− ρ] +∇ · [∂tE−∇×B+ J]
= ∂tρ +∇ · J. (3.10)

In the final line, we have noted the equality of mixed partials and the vanishing
divergence of the curl.

The N2T differential identity arising from the Klimontovich–Maxwell Lagrangian’s
local gauge symmetry evidently discovers the charge conservation law itself. By
construction, this conservation law must hold off-shell and identically; in particular,
equation (3.10) does not require the equations of motion in order to hold true. It is
a trivial conservation law – also referred to as a ‘strong’ or ‘improper’ conservation
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law (Brading & Brown 2000) – an often-overlooked fact that is immediately verified
upon examining the definitions of ρ and J in (3.6).

3.2. The geometric PIC method of Squire et al. (2012)
We now derive an analogous charge conservation law for the discrete, gauge-
symmetric Vlasov–Maxwell PIC method defined by Squire et al. (2012). In this
PIC scheme, space–time is discretized by a d-dimensional spatial simplicial complex
(comprised of triangles in two dimensions or tetrahedra in three dimensions) whose
structure is held constant throughout a uniformly discretized time. The time dimension
may be envisaged as forming temporal edges that extend orthogonally from the spatial
simplices, as in a triangular prism. We denote this (d+1)-dimensional prismal complex
PC. We use DEC (Desbrun et al. 2005) to define fields on PC that are single valued
on its k-cells (or their circumcentric duals) for 0 6 k 6 d+ 1. In the present paper, we
shall assume a spatial dimensionality d= 3, such that PC is four-dimensional, with
three-dimensional spatial tetrahedra comprising each time slice.

We first review some elements of DEC formalism that are necessary in the present
study. It will be useful to distinguish the spatial edges from the temporal edges of PC,
so we denote a vertex of PC by

[
i
n

]
, where i is the spatial index of the vertex and n

is its temporal index. A discrete 0-form α is then defined by its values at each vertex,
and a discrete 1-form β by its values on each edge

α =
∑[

i
n

] αi
n∆

i
n,

β =
∑

i,n

β i
n−1/2∆

i
n−1/2 +

∑
[ij],n

β ij
n∆

ij
n .

 (3.11)

Here, we have expressed the discrete forms (equivalently, cochains) α and β in terms
of their cochain bases, where ∆i

n is an element of the 0-cochain basis that maps
[

i
n

]
to 1 and all other vertices to 0; ∆ij

n is similarly an element of the 1-cochain basis that
maps the oriented edge [ij] to 1 and all others to 0. (A temporal edge is understood to
be oriented in the positive time direction, and its cochain is denoted ∆i

n−1/2.) Discrete
k-forms of higher degree may be constructed with cochain bases in essentially the
same way. The formalism of cochain bases will prove especially useful when we
derive EOM for the dynamical fields on PC – that is, when we define a DEC Euler
operator.

Let us denote the set of all vertices in PC by {v}, the set of spatial and temporal
edges by {e} = {es} t {et}, and the set of spatial and ‘spatio-temporal’ faces by
{ f } = { fs} t { ft}. The DEC exterior derivative d, satisfying d2

= 0, may be defined
(Elcott & Schröder 2005; Desbrun, Kanso & Tong 2006) by a matrix multiplication
in the cochain basis. For a 1-form β, we see this as follows:

dβ = d(βe∆
e)= βe d∆e

= βeWe
f ∆

f , (3.12)

where the matrix entry We
f stores the weight – {±1, 0} – of the 1-cochain ∆e in

the 2-cochain ∆f . (We recall that the boundary operator on chains – ∂ – is similarly
determined by W f

e = (W
e
f )

T .) We adopt the Einstein summation convention in (3.12)
and hereafter for prismal complex indices: {v}, {e}, and { f }.

For example, the electromagnetic gauge field A – a discrete 1-form defined on all
edges of PC – neatly splits in into an electric potential φi

n−1/2 :=−Ai
n−1/2 and a vector
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potential Aij
n := Aij

n , as follows:

A = −
∑

i,n

φi
n−1/2∆

i
n−1/2 +

∑
[ij],n

Aij
n∆

ij
n

= −φet∆
et +Aes∆

es . (3.13)

Using (3.12), we may correspondingly express dA as

dA = −φet d∆et +Aes d∆es,

= (−φet W
et
ft +AesW

es
ft )∆

ft +AesW
es
fs ∆

fs

= E ∧ dt+ B
= F, (3.14)

where we have made use of the 1-form dt :=
∑

et
∆et and wedge product to implicitly

define the spatial 1- and 2-forms E and B, respectively, and the Faraday 2-form F
(Stern et al. 2015). (As a note of caution, we emphasize that the preceding vector
potential A is a single number on each spatial edge, and its bold notation is only
suggestive. On the other hand, the Whitney interpolant of A will coordinatize R3 and
thereby extend the single valued A from the spatial edges of PC to a 3-component
vector field, as we shall see.)

The map from primal k-forms to dual (4− k)-forms on PC is effected via the
metric-dependent Hodge star operator, ?. The Hodge star is defined (Abraham,
Marsden & Ratiu 1988; Desbrun et al. 2005) such that the symmetric, metric-induced
inner product (·, ·) on k-forms satisfies

(ω, ν)µ=ω ∧ ?ν (3.15)

for primal k-forms ω and ν and volume top form µ. For a k-form ω on an
n-dimensional cell complex (n= 4 on PC), it can therefore be shown that

? (?ω)= (−1)k(n−k)+Ind(g)ω. (3.16)

Here, Ind(g) = #{eig[g] < 0} represents the index of the metric g. In the present
context, we adopt a (−+++) convention for our Lorentzian metric g= η, such that
Ind(g)= 1 on PC. The dual (4− k)-form ?α is thus defined on a dual chain (?σ )4−k

as follows:
〈?α, ?σ 〉 = ε(σ )

|? σ |

|σ |
〈α, σ 〉, (3.17)

where

ε(σ )=

{
+1 if σ is entirely spacelike
−1 otherwise.

(3.18)

Here, |σ k
| denotes the k-volume of the k-dimensional σ k (where |σ 0

| = 1 for a single
vertex), and 〈·, ·〉 denotes a k-cochain evaluated on a k-chain in (3.17).

Integration by parts on PC – which is necessary for the derivation of EOM, as
in (2.2) – may be facilitated via the codifferential operator, δ. Up to boundary
contributions, δ is a formal adjoint to d, that is

(dα, β)µ= (α, δβ)µ+ d(α ∧ ?β). (3.19)

When acting on a k-form defined on an n-dimensional complex, δ is given by
(Abraham et al. 1988; Desbrun et al. 2005)

δ = (−1)n(k−1)+1+Ind(g) ? d ? . (3.20)
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10 A. S. Glasser and H. Qin

We observe that, whereas d maps a k-form to a (k+ 1)-form, δ reduces its degree to
a (k− 1) form.

Having briefly reviewed relevant elements of DEC, we may now restate the discrete
action of Squire et al. (2012), defined on PC

S =
∑
V
σ2

−
1
2

dA∧ ? dA+
∑
p,n

{
h
2

mp

∣∣∣∣Xp
n+1/2 −Xp

n−1/2

h

∣∣∣∣2 − qp

∑
i

φi
n−1/2ϕ

i(Xp
n−1/2)

+ qp

(
Xp

n+1/2 −Xp
n−1/2

h

)
·
∑
[ij]

Aij
n

∫ tn+1/2

tn−1/2

dt ϕij(Xp(t))

}
. (3.21)

In (3.21), we have denoted a sum over support volumes Vσ 2 for the primal-dual
4-form dA ∧ ?dA, with A defined as in (3.13). Vσ 2 represents the convex hull of
the 2-chain σ 2 and its dual ?σ 2 on which 〈dA, σ 2

〉 and 〈?dA, ?σ 2
〉 are respectively

defined. The symbol h denotes the time step, n the time index and p the particle index.
Xp(t) is defined as the constant velocity path between the particle’s staggered-time
positions Xp

n−1/2 and Xp
n+1/2. In particular, particle paths are chosen to have straight

line trajectories between the staggered times t ∈ [(n− 1/2)h, (n+ 1/2)h], ∀n ∈Z.
The Whitney 0-form ϕi(x) and 1-form ϕij(x) interpolate φ and A to an arbitrary

point x ∈ PC (Bossavit 1988). In effect, ϕi and ϕij complete the spatial components
of the cochain bases ∆i

n and ∆ij
n adopted in (3.11) by extending DEC forms to

the convex hull of PC. In the continuous space–time of the Klimontovich–Maxwell
system, the everywhere-defined gauge fields φ(t, x) and A(t, x) were ‘attached’ to
point particles by the delta function, δ(3)(x−Xj(t)). In the prismal complex PC,
Whitney forms play this role by interpolating the gauge fields to the locations of
point particles. Likewise, while we continue to avoid ascribing any geometric notion
to point particles themselves, we see that Whitney forms on PC attach geometry
to the charge densities and currents of the particles, as did the delta function in
(3.6). For example, the spatial dot product in (3.21) composes Xp

n+1/2 with the
Whitney-interpolated 3-component vector field Aij

nϕ
ij(Xp(t)), (where Aij

n represents a
single number and ϕij a 3-component vector).

We now follow the continuous space–time N2T procedure of (3.4)–(3.10) by
examining the equations of motion and gauge symmetry of S in (3.21). As we have
already seen, the differential structure of space–time has been replaced in the discrete
setting by the prismal complex PC, its DEC operators and Whitney forms. To derive
the Euler–Lagrange equations of S, therefore, we must define an Euler operator for
fields defined on this discrete structure. By analogy with (2.3), such an operator must
implement a variational derivative on the space of fields defined on PC.

Consider, for example, a k-form α defined by its expansion in k-cochain basis
elements: α =

∑
σ ασ∆

σ , where σ ranges over all k-cells on PC. Since each
component ασ of α can be varied independently, the variational derivative of ασ
takes the simple form of a partial derivative. We therefore define the Euler operator
Eασ on the action S as follows:

Eασ (S) :=
∂S
∂ασ

=
∂

∂ασ

∑
L. (3.22)
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The geometric theory of charge conservation in particle-in-cell simulations 11

(We note that in a discrete setting, variational derivatives are made to act on the entire
action S, rather than on the Lagrangian, because discrete Lagrangians are necessarily
non-local.) As usual we will assume that all fields and their variations have compact
support, such that any divergence term in L – which contributes to S=

∑
L only at

the boundary – vanishes under Eασ . Equation (3.22) is the DEC counterpart to the
continuous Euler operator defined in (2.3), and is now applied to derive our EOM.

To calculate Eφet
(S) and EAes

(S), we first re-express dA∧ ?dA in S using (3.15)–
(3.20) and the invariance of S under the addition of a divergence (L→ L+ dγ )

dA∧ ?dA (3.15)
= (dA, dA)µ

(3.19)
≈ (A, δ dA)µ
(3.15)
= A∧ ?δ dA (3.20)

= A∧ ? ? d ? dA (3.16)
= A∧ d ? dA, (3.23)

where ≈ indicates equality up to an (ignorable) divergence. Then, using (3.13) and
noting the symmetry of the intermediate expression (dA, dA)µ above, we apply the
Euler operator of (3.22) to derive the EOM for A as follows:

0= Eφet
(S)=∆et ∧ d ? dA− ρet , (3.24a)

0= EAes
(S)=−∆es ∧ d ? dA+ Jes, (3.24b)

where

ρet :=

∑
p

qpϕ
i(Xp

t(et)
), (3.25a)

Jes :=

∑
p

qp

(
Xp

tf (es)
−Xp

ti(es)

h

)
·

∫ tf (es)

ti(es)

dt ϕes(Xp(t)). (3.25b)

In (3.25a), i denotes the spatial vertex associated with et, and Xp
t(et)

denotes the
position of particle p at the time coincident with the midpoint

[ i
n− 1

2

]
of et. In (3.25b),

Xp
ti(es)

and Xp
tf (es)

denote the initial and final particle positions, respectively, coincident
with the midpoints

[ i
n− 1

2

]
and

[ i
n+ 1

2

]
that bookend the t= n time slice containing es.

It is worth pausing to interpret these EOM. We first observe that the primal-dual
wedge product in (3.24a) is only non-vanishing on the spatial (?∆et) component of
d ? dA. This follows from the definition of the primal-dual wedge product, which is
only non-zero on the convex hulls of a cell and its dual: CH(σ , ?σ ). Reading off from
(3.14), therefore, equation (3.24a) becomes

ρet =∆et ∧ d ? (E ∧ dt)= dD∧∆et , (3.26)

Gauss’s law for the electric displacement dual 2-form D, as expected. An analogous
interpretation of (3.24b) yields a discrete Ampère–Maxwell law. We have omitted the
EXp(S) EOM for particle trajectories, as they will not be necessary for the derivation
of charge conservation via N2T – just as they were unnecessary in (3.9)–(3.10). These
implicit time-step particle EOM are derived in Squire et al. (2012).

Having derived our field equations of motion, we must now examine the gauge
symmetry of the action S in (3.21). In particular, S is invariant under the local gauge
transformation A→ A− df , defined by

φi
n+1/2→ φi

n+1/2 + δφ
i
n+1/2 = φ

i
n+1/2 + ( f i

n+1 − f i
n),

Aij
n→Aij

n + δA
ij
n =Aij

n − ( f j
n − f i

n),

}
(3.27)

where f = fv∆v is an arbitrary primal 0-form on PC.
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12 A. S. Glasser and H. Qin

After all, the electromagnetic term of S – dA ∧ ?dA – is clearly invariant under
A → A − df , since d2

= 0. Furthermore, as noted in Squire et al. (2012), the
gauge invariance of the particle terms of S follows from a defining property of
Whitney interpolation: dc((α)interp)= (ddα)interp, where dc and dd denote continuous
and discrete exterior derivatives, respectively and (·)interp denotes Whitney interpolation.
Equation (3.27) therefore transforms L→L+dcγ , adding a divergence term analogous
to the transformation of (3.7) for the continuous space–time Vlasov–Maxwell system.

Following (3.8), the gauge transformation of (3.27) is seen to be generated by a
vector field

vf =
∑
α

Qα
[ f ]∂uα =

∑
et

(det f )∂φet
−

∑
es

(des f )∂Aes
, (3.28)

where the coefficient def = fv2 − fv1 corresponds to the oriented edge e= [v1v2], and
where the sums are taken over all temporal and spatial edges, respectively.

We have thus gathered the necessary data to complete the N2T construction of (2.6)
for our DEC system. As in (3.9), we note∑

α

Qα
[ f ]Euα (S) =

∑
et

Qφet [ f ] · Eφet
(S)+

∑
es

QAes [ f ] · EAes
(S)

=

∑
et

(det f ) · (∆et ∧ d ? dA− ρet)

+

∑
es

(−des f ) · (−∆es ∧ d ? dA+ Jes). (3.29)

We now observe that
(def )∆e

= d( fv∆v)= df , (3.30)

so applying the Euler operator for fv at vertex v =
[

i
n

]
to (3.29) yields

0 = E fv

[∑
α

Qα
[ f ]Euα (S)

]

= E fv

∑
V
σ1

df ∧ d ? dA−
∑

et

(
det f

)
· ρet −

∑
es

(des f ) · Jes


= ∆v

∧ ?δ ? d ? dA+ (ρ i
n+1/2 − ρ

i
n−1/2)+

∑
j

J[ij]

= (ρ i
n+1/2 − ρ

i
n−1/2)+

∑
j

J[ij] (3.31)

since up to a sign, (δ ? d)= (? d ? ? d)= ?d2
= 0. The sum of J[ij] over j captures all

spatial edges that terminate on vertex v =
[

i
n

]
. The last equality of (3.31) reveals the

desired charge conservation law on PC. By its very construction through N2T, this
conservation law is guaranteed to be an off-shell differential identity, as was (3.10).
We readily verify this fact as follows.

First, we restrict our sources ρ and J to a particle of charge q whose path over one
time step remains within a single spatial tetrahedron; the general case follows without
significant alteration. We then recall (Bossavit 1988) that the Whitney 0-form ϕi
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interpolates from vertex i via barycentric coordinates such that, over the tetrahedron
[ijk`],

ϕi
+ ϕ j
+ ϕk
+ ϕ` = 1. (3.32)

In vector form, the 1-form ϕij is then given by

ϕij
= ϕi
∇ϕ j
− ϕ j
∇ϕi. (3.33)

Summing over the three spatial edges terminating on vertex i of the tetrahedron
containing the particle, therefore

∑
j6=i

ϕij
= ϕi
∇

(∑
j6=i

ϕ j

)
−

(∑
j6=i

ϕ j

)
∇ϕi

= ϕi
∇(1− ϕi)− (1− ϕi)∇ϕi

= −∇ϕi. (3.34)

It follows, then, that∑
j6=i

J[ij] = q
(

Xf −Xi

h

)
·

∫ tf

ti

dt
∑
j6=i

ϕij(X(t))

= −q
(

Xf −Xi

h

)
·

∫ tf

ti

dt∇ϕi(X(t))

= −q
∫ f

i
v y dϕi

= −q[ϕi(Xf )− ϕ
i(Xi)], (3.35)

where v y dϕi is the interior product of the exact form dϕi with respect to the velocity
v := (1/h)(Xf −Xi), which is constant over a single time step of the particle. Upon
comparison with the definition for ρ in (3.25a), it is clear that (3.31) holds off-shell,
as desired. The N2T formalism of Hydon & Mansfield (2011) has succeeded in
deriving the off-shell, discrete conservation law.

Before we depart from the Lagrangian formalism, we note that an alternative
approach to deriving the conservation laws of the continuous space–time and DEC
Vlasov–Maxwell actions – equations (3.2) and (3.21) – entails gauge fixing these
actions by setting φ(x)= 0 and φi

n+1/2 = 0, respectively. Such a gauge fixing removes
these systems’ degeneracy and uniquely determines solutions to their equations of
motion. In such an approach, N1T is applied to the time-independent symmetry
transformation A(t, x)→A(t, x)−∇ψ(x), thereby deriving a non-trivial conservation
law in the form of a time evolution of Gauss’s law. In the ensuing sections, we
pursue an analogous gauge-fixing approach for the Hamiltonian Vlasov–Maxwell
system, employing the Hamiltonian formalism’s counterpart to N1T – the momentum
map.

4. The momentum map and reduction of the Vlasov–Maxwell system
Having derived the N2T charge conservation laws of continuous and discrete

Vlasov–Maxwell Lagrangian systems, we now explore the conservation laws of
these gauge-symmetric systems in the Hamiltonian formalism. We first develop the
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necessary technical background for §§ 5–6, which study gauge-compatible splitting
methods and their application to PIC algorithms. In this section, we review the
Poisson structure of the Vlasov–Maxwell system, derived in Morrison (1980) and
independently in Iwinski & Turski (1976), and later presented in its complete, correct
form in Marsden & Weinstein (1982). Closely following this last reference, we
review the Poisson reduction (Marsden & Weinstein 1974; Marsden & Ratiu 1986)
of the Vlasov–Maxwell system, which ‘spends’ the system’s gauge symmetries in
order to eliminate their associated redundant (gauge) degrees of freedom. As we
will discuss at length, this Poisson reduction is achieved via the momentum map,
which in turn determines the local charge conservation law of the Vlasov–Maxwell
system. The following section serves as a concise pedagogical summary of Marsden
& Weinstein (1982), with additional discussion relevant to the more recent plasma
physics literature.

4.1. The Poisson structure of the Vlasov–Maxwell system
We first recall the Poisson bracket of Marsden & Weinstein (1982) for the Vlasov–
Maxwell system,

{{F,G}}[ f ,A, Y] =
∫

dx dp f
{
δF
δf
,
δG
δf

}
xp
+

∫
dx
(
δF
δA
·
δG
δY
−
δG
δA
·
δF
δY

)
, (4.1)

with time evolution defined by the Hamiltonian

H[ f ,A, Y] =
1
2

∫
f · |p−A|2 dx dp+

1
2

∫
[|Y|2 + |∇×A|2] dx. (4.2)

Here, F and G represent arbitrary functionals of the distribution function f (x, p), the
3-component vector potential A(x) and its conjugate momentum Y(x). As we shall
see momentarily, Y can be readily identified as negative the electric field strength –
(i.e. Y =−E). We note that our system is rendered in the temporal gauge, wherein the
electric potential satisfies φ(x)= 0. As in Marsden & Weinstein (1982), we denote
the Poisson bracket in (4.1) by {{·, ·}} merely to distinguish it from other Poisson
structures.

The
∫

dx dp f {δf ·, δf ·}xp operator in the first line of (4.1) is a Lie–Poisson bracket
(Marsden & Ratiu 1999), which defines a Poisson structure for functions on a dual
Lie algebra g∗. In general, the Lie–Poisson bracket on an arbitrary dual Lie algebra
g∗ is defined to inherit the bracket [·, ·] of its underlying Lie algebra g as follows:

{F,G}(α) :=−
〈
α,

[
δF
δα
,
δG
δα

]〉
. (4.3)

The bracket of (4.3) is defined ∀ F,G ∈C∞(g∗) with respect to some fixed α ∈ g∗,
where 〈·, ·〉 represents the linear pairing of elements of g∗ and g. The functional
derivative δF/δα ∈ g∗∗ can be seen to define a linear function on g∗, in that it acts
as a directional derivative on the functional F at the ‘point’ α ∈ g∗. In particular, for
arbitrary β ∈ g∗ 〈

β,
δF
δα

〉
=DαF · β =

d
dε

∣∣∣∣
ε=0

F(α + εβ). (4.4)
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Since g∗∗ ∼= g, the functional derivative may be interpreted as an element of the Lie
algebra.

In the present context, the Lie algebra g corresponds to infinitesimal transformations
of (x, p)∼=R6, the position–momentum phase space. Such transformations can be
regarded as Hamiltonian vector fields on R6, which map via anti-homomorphism to
their corresponding generating functions, i.e.

[Xh,Xk] =−{h, k}xp. (4.5)

The bracket {·, ·}xp therefore serves as a Lie bracket, defined pointwise on R6

{h, k}xp := (∂xh · ∂pk− ∂xk · ∂ph). (4.6)

The dual Lie algebra g∗ is similarly identified by distribution densities on R6, which
pair linearly to Hamiltonian functions via integration

〈 f , h〉 :=
∫

fh dx dp (4.7)

for f ∈ g∗, h ∈ g.
In this way, the operator

∫
dx dp f {δf ·, δf ·}xp comprising the first term of (4.1) is

seen to be a Lie–Poisson bracket of the form in (4.3). We note that the negative sign
of (4.3) cancels with the negative sign of the anti-homomorphism of (4.5) to produce
this operator.

The second term of (4.1) represents the electromagnetic ‘sector’ of our Poisson
structure, and derives from the canonical symplectic structure on the cotangent space –
T∗Q= {(A, Y)} – of the configuration space Q= {A}. Therefore, the complete setting
of the Vlasov–Maxwell system is a Poisson manifold, given by

M = g∗ × T∗Q, (4.8)

with its bracket defined in (4.1).
We now consider dynamics on this Poisson manifold M. To derive our Hamiltonian

EOM, it is convenient to define functionals

F(u) :=
∫

du′ F(u′)δ(u− u′) (4.9)

for F ∈ { f ,A, Y} as in Kraus et al. (2017), where u= (x, p) or u= x, as appropriate.
Plugging such functionals into (4.1)–(4.2), we find

ḟ (x, p)= {{ f ,H}} =−[∂x f + ∂pf · (∇A)] · (p−A),
Ȧ(x)= {{A,H}} = Y,

Ẏ(x)= {{Y,H}} =
∫

f · (p−A) dp−∇×∇×A.

 (4.10)

We observe that Y plays the role of −E, as expected. For convenience, we note
that the familiar form of the Vlasov equation may be recovered from the first line of
(4.10) by defining a distribution density f̄ on (x, v) space where v = p−A, i.e.

f (x, p)= f̄ (x, p−A)= f̄ (x, v), (4.11)
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such that ∂x f = ∂x f̄ − (∇A) · ∂v f̄ ; ∂pf = ∂v f̄ ; and ḟ = ∂t f̄ − Ȧ · ∂v f̄ . Here, we use
∇≡ ∂x interchangeably, and adopt the dyad convention

v ·AB ·w= viAiBjwj (4.12)

in Einstein notation.

4.2. Gauge symmetry and the momentum map
With our Poisson and Hamiltonian structure in hand, we now examine the gauge
symmetry of the Vlasov–Maxwell system. Continuing to follow Marsden & Weinstein
(1982), we define a group action Φψ :M→M on our Poisson manifold M = g∗ × T∗Q
of the form

Φψ : ( f ,A, Y) 7→ ( f ◦ τψ ,A−∇ψ, Y), (4.13)

where
τψ(x, p) := (x, p+∇ψ). (4.14)

We emphasize that Φψ transforms f , and not p itself. It is straightforward to check
that Φψ is a canonical group action, i.e. that the Poisson bracket is preserved by the
pullback of Φψ , namely Φ∗ψ{{F,G}} = {{Φ∗ψF, Φ∗ψG}}.

We define such an arbitrary function ψ ∈F as belonging to the abelian group
F :=C∞(R3) of smooth functions on R3, with the group composition law of addition.
Its Lie algebra f is also identifiable as the smooth functions on R3, while its dual
f∗ is the set of densities over R3 that pair to elements of f via integration over R3 –
analogous to the R6 integration of (4.7).

Now let φ ∈ f denote an arbitrary Lie algebra element, such that exp(εφ) ∈F ∀
ε ∈R. By differentiating the group action Φexp(εφ) on M, we may associate to any such
φ ∈ f the corresponding vector field φM on M, namely

φM :=
d
dε

∣∣∣∣
ε=0

Φexp(εφ). (4.15)

The vector field φM is therefore the infinitesimal generator of the group action on M
corresponding to φ ∈ f.

For any canonical group action on Poisson manifold M, we may seek a corresponding
momentum map. The momentum map µ :M→ f∗ of a group action is defined such
that, ∀ φ ∈ f and m ∈M, the induced function

µφ :M→R
m 7→ 〈µ(m), φ〉

}
(4.16)

satisfies
{{F, µφ}} = φM(F) (4.17)

for arbitrary F ∈C∞(M). Here, φM(F) is the Lie derivative of F along the vector
field φM. In particular, the momentum map µ assigns a dual element of f∗ to each
point of M such that, when µ is everywhere paired with an element φ ∈ f of the Lie
algebra, the resulting function µφ on M is a generating function of the associated
vector field φM.

The preceding definition of µ is general to arbitrary Poisson systems with canonical
group actions, and we now apply it to find µ for the Vlasov–Maxwell system of
interest. We first note that a single point m ∈M = g∗ × T∗Q specifies ( f , A, Y) over
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the entire (x, p) phase space. Given the group action defined in (4.13)–(4.14), it is
immediately seen that φM can be expressed as the following infinitesimal operator on
M corresponding to φ(x) ∈ f:

{{·, µφ}} =

∫
dx dp∇φ ·

∂f
∂p

δ

δf
−

∫
dx∇φ ·

δ

δA
. (4.18)

Upon inspection, it is evident that to generate the operator of (4.18), the Poisson
bracket of (4.1) requires that µφ be given by

µφ(m) := 〈µ(m), φ〉

=

∫
dx
[∫

dp f (x, p)+∇ · Y
]
φ(x), (4.19)

where 〈·, ·〉 =
∫

dx. Therefore, the momentum map must be

µ(m) =
∫

dp f (x, p)+∇ · Y

:= ρ +∇ · Y, (4.20)

where ρ(x) :=
∫

dp f (x, p). We note that µφ :M→R is a real-valued function while
µ(m) ∈ f∗ is a density on R3, as desired.

For later use, we further observe that µ is group equivariant

µ ◦Φψ =Ad∗ψ−1 ◦µ, (4.21)

where Ad∗ψ−1 represents the coadjoint action (Marsden & Ratiu 1999) of ψ ∈ F on
an element of f∗. In particular, it is clear by inspection of (4.20) that µ is invariant
under F transformations, and since F is abelian, its coadjoint action on f∗ is simply
the identity map.

4.3. Deriving the conservation law
The momentum map µ is defined as above – equations (4.15)–(4.17) – for any Poisson
manifold M with a canonical group action Φ. If it should happen that a Hamiltonian
H is furthermore defined on M such that H is invariant under Φ, then the momentum
map µ so-constructed further guarantees a conservation law for the system.

Let us show this for our Vlasov–Maxwell system. We first note that Φψ leaves the
Hamiltonian invariant, Φ∗ψH =H. By differentiating this expression with respect to ψ
as in (4.15), it is seen that, infinitesimally

0= φM(H)= {{H, µφ}} =−{{µφ,H}} =−µ̇φ. (4.22)

Each linearly independent φ ∈ f therefore determines a unique first integral of the
system – i.e. µφ .

We can make a stronger observation as well. Since µ̇φ = 0 holds for arbitrary φ ∈ f,
the entire momentum map is invariant under the flow of H, that is

µ̇= {{µ,H}} = 0. (4.23)

This follows rigorously from the fundamental lemma of variational calculus applied
to µ̇φ via (4.19). As a result, we can apply the definition of (4.20) to derive

0= µ̇= ρ̇ +∇ · Ẏ. (4.24)
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This completes the canonical derivation of the Vlasov–Maxwell local conservation law
– µ̇= 0 – in the continuous Hamiltonian formalism. We note that, setting Y =−E,
equation (4.24) is the time evolution of Gauss’s law.

With an additional substitution to (4.24) from the EOM for Ẏ in (4.10), we may
re-express this canonical conservation law in the form

0= ρ̇ +∇ · J, (4.25)

where J :=
∫

f · (p−A) dp. Here ρ and J are (scalar and vector) densities over R3 and
functionals in the sense of (4.9). This charge conservation law may be immediately
checked by substituting the expression for ḟ from (4.10). In the present Hamiltonian
context, it is evident that (4.25) can no longer be regarded as an off-shell identity.
(After all, time evolution itself is only ‘dynamically defined’, so to speak, by the
Hamiltonian.)

4.4. Reduction of the Vlasov–Maxwell system
Finally, we undertake the Poisson reduction (Marsden & Weinstein 1974; Marsden &
Ratiu 1986) of the Vlasov–Maxwell system. Given a Poisson manifold (M, {·, ·}M)
on which a Lie group G acts by Poisson diffeomorphisms, the Poisson reduction
of M is the unique quotient map π : (M, {·, ·}M)→ (M/G, {·, ·}M/G) satisfying
π∗{ f , g}M/G = {π∗f ,π∗g}M. For a Poisson system equipped with a group-equivariant
momentum map µ satisfying (4.21) – as in the Vlasov–Maxwell system of interest –
such a quotient map may be defined on level sets of µ, as we now describe.

Consider the preimage of an arbitrary α ∈ f∗ under µ :M→ f∗, that is, the level set
µ−1(α)⊂M. We may take equivalence classes of this preimage under the full action
of Φψ ∀ ψ ∈F . That is, we reduce µ−1(α) to the quotient manifold µ−1(α)/F , and
thereby take a ‘slice’ of the orbit of µ−1(α) under the action of F . Because µ is
equivariant in the sense of (4.21), this quotient is well defined. The reduced manifold
µ−1(α)/F will again be a Poisson manifold, as we now show.

Let us consider the particular case α = 0, and define M0 :=µ
−1(0). By (4.20), M0

corresponds to the submanifold of M on which ρ =−∇ · Y. We now take equivalence
classes of M0 under the orbit of F by defining new phase space coordinates that are
invariant under the action of (4.13), namely

f̄ (x, v)= f (x, p= v +A),
B=∇×A,

E=−Y.

 (4.26)

We therefore identify the manifold of equivalence classes M̃0 :=M0/F with the
manifold (f̄ , B, E) of densities f̄ defined on (x, v) space, vector fields B that satisfy
∇ ·B= 0, and vector fields E that satisfy ρ̄ =∇ ·E, where now ρ̄ :=

∫
f̄ dv. (We

note that the choice to constrain M to {m∈M |µ(m)= 0} evidently corresponds to the
physical case ∇ ·E− ρ̄ = 0, in which no ‘external’ charges are present in the system.
Such a choice must be made when determining the Vlasov–Maxwell system’s initial
conditions, as we shall see.) Our reduction map is therefore summarized by

πred :
µ−1(0)⊂M −→ M̃0 :=µ

−1(0)/F
( f (x, p),A, Y) 7−→ (f̄ (x, v),B,E).

(4.27)

https://doi.org/10.1017/S0022377820000434 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000434


The geometric theory of charge conservation in particle-in-cell simulations 19

As calculated in Marsden & Weinstein (1982) § 7, the substitution of (4.26) into the
bracket of (4.1) yields the following reduced Poisson bracket on M̃0:

{{F,G}}red
[f̄ ,B,E] =

∫
dx dv

[
f̄
{
δF
δf̄
,
δG
δf̄

}
xv

+ f̄ B ·
(
∂

∂v

δF
δf̄
×
∂

∂v

δG
δf̄

)
+

(
δF
δE
·
∂ f̄
∂v

δG
δf̄
−
δG
δE
·
∂ f̄
∂v

δF
δf̄

)]

+

∫
dx
(
δF
δE
· ∇×

δG
δB
−
δG
δE
· ∇×

δF
δB

)
. (4.28)

We note that this process of Poisson reduction preserves the µ̇= 0 conservation
law associated with the unreduced Poisson manifold M. After all, the image of πred
restricts M to (quotients of) a submanifold M0 ⊂M on which µ is constant – in
particular, level sets of a single value of µ. The conservation law of (4.24) is clearly
respected by this reduction, and may simply be re-expressed in the phase space
variables of the reduced manifold M̃0, along with its form in (4.25), i.e.

0= ˙̄µ = ˙̄ρ −∇ · Ė
= ˙̄ρ +∇ · J̄, (4.29)

where

µ̄ =

∫
dv f̄ (x, v)−∇ ·E

= ρ̄ −∇ ·E, (4.30)

and where ρ̄ :=
∫

f̄ dv and J̄ :=
∫

f̄ v dv.
We note that the reduced bracket of (4.28) is a well-defined Poisson bracket

specifically on the quotient submanifold M̃0. Some of the plasma physics literature
(e.g. Morrison 1982, 2013; Kraus et al. 2017) notes that (4.28) generally fails
to satisfy a Jacobi identity, however, so we pause to elucidate the source of this
contrasting point of view.

In particular, the aforementioned literature defines the Vlasov–Maxwell system on
an augmented manifold that includes all unconstrained vector fields E,B ∈R3:

M̃+0 := M̃0 t {E,B |∇ ·E 6= ρ̄,∇ ·B 6= 0}. (4.31)

When the bracket of (4.28) is defined on M̃+0 and not on M̃0, it no longer everywhere
obeys the Jacobi identity (Morrison 1982; Chandre et al. 2013); in particular, the
Jacobi identity is satisfied on M̃+0 only when ∇ ·B= 0. Indeed, the constraint
∇ ·B= 0 appears as an exogenous defect that must be satisfied for (M̃+0 , {{·, ·}}red)

to be considered a Poisson manifold. On M̃+0 , the bracket of (4.28) also acquires
additional Casimirs,

{{·, ρ̄ −∇ ·E}} = 0
{{·,∇ ·B}} = 0,

}
(4.32)

in much the same way that a Poisson structure on R2
= {(x, y)} acquires a z Casimir

when the system is embedded in R3.

https://doi.org/10.1017/S0022377820000434 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000434


20 A. S. Glasser and H. Qin

We adopt the point of view that it is more natural to regard the bracket of (4.28) as
a Poisson bracket defined on the submanifold of physical interest – M̃0 =µ

−1(0)/F –
rather than a defected bracket defined on the larger manifold including arbitrary vector
fields E and B. In a sense, it is merely a lack of economical notation that leads us to
coordinatize M̃0 with vector symbols E and B that are more commonly defined over
all of R3.

It is clear from this discussion, however, that care must be taken in any numerical
implementation of the reduced Vlasov–Maxwell bracket to constrain one’s fields to the
phase space of M̃0; generic, unconstrained vector fields E,B ∈R3 are to be avoided.

5. The momentum map in Hamiltonian splitting methods
We now reconsider the momentum map – and its associated conservation laws –

in the context of Hamiltonian splitting algorithms. Due to their ease of computation,
splitting methods offer an appealing algorithmic implementation of many Hamiltonian
systems (for example, see He et al. (2016)). In effect, a splitting method splits a
system’s Hamiltonian H into some finite number of ‘sub-Hamiltonians’ {Hi} such that

H =
N∑

i=1

Hi. (5.1)

The system’s dynamical variables u are then evolved by each subsystem individually,
arranged in a sequence chosen to minimize discretization error, e.g.

u(t+1t) = exp(1tH)u(t)

≈ exp
(
1t
2

H1

)
exp(1tH2) exp

(
1t
2

H1

)
u(t), (5.2)

where we have schematically represented two subsystems, H =H1 +H2, arranged in
a second-order Strang splitting (Hairer, Lubich & Wanner 2006).

The advantage afforded by this subdivision of the Hamiltonian is that its subsystems
{Hi} are often more easily integrated individually than the full system H. In fact,
each sub-Hamiltonian Hi can at times be made sufficiently simple to allow its exact
integration, without any discrete approximation. We will see examples of this exact
evolution in the Vlasov–Maxwell splitting methods detailed in § 6.

Our interest concerns the status of the momentum map µ in such algorithms. A
sufficient condition for the exact preservation of µ in splitting methods is, in fact,
quite straightforward to state. In particular, let us suppose that each sub-Hamiltonian
is gauge invariant – that is, invariant under the group action of some group G

Φ∗g Hi =Hi ∀i and g ∈G. (5.3)

Then, differentiating with respect to g – as in (4.15) – we find by the same argument
of (4.22)–(4.23) that µ̇= 0 in each Hamiltonian subsystem, where µ is the total
system’s momentum map associated with the group action Φg.

This claim follows simply from the observation that µ is an object defined by
its Poisson manifold (M, {·, ·}), separate and apart from the Hamiltonian defined on
that manifold. (One might say that µ is defined kinematically (Morrison 1993) on
M, independently of dynamics.) µ is therefore preserved along the flow generated by
any gauge-invariant function. Consequently, if each sub-Hamiltonian is gauge invariant
and its flow is exactly integrated, then the momentum map is exactly preserved by its
evolution during each discrete time step. We summarize this result as a theorem.
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THEOREM. Let Φ be a canonical group action of a Lie group G on Poisson manifold
M with momentum map µ, and let H :M→R satisfy Φ∗g H =H, ∀ g ∈G. Suppose a
splitting method H =

∑N
i=1 Hi satisfies:

(i) Φ∗g Hi =Hi, ∀ i and g ∈G;
(ii) subsystem Hi is solved exactly ∀ i.

Then µ is exactly preserved by the splitting method – that is, µ̇= 0.

We refer to such an algorithm as a gauge-compatible splitting method. Gauge-
compatible splitting methods have a distinct advantage over other time discretizations
of Hamiltonian systems, in that they preserve the geometric structure of the
systems they simulate (in particular, the momentum map) and therefore obey exact
conservation laws.

6. Conservation laws in Hamiltonian PIC splitting methods
6.1. An ‘unreduced’ Hamiltonian PIC method

With the formalism we have developed, we proceed to explore PIC methods in
the Hamiltonian setting, by defining a PIC splitting method adapted from Xiao
et al. (2015) and Qin et al. (2016). The latter of these references implements a
symplectic-Euler integrator for the unreduced Poisson bracket of (4.1), while the
former implements a splitting method for the reduced bracket of (4.28). We shall
synthesize the two, defining a gauge-compatible splitting method for the unreduced
bracket of (4.1) and, in so doing, demonstrate the merit of this new class of splitting
methods. The result is an explicit-time-advance, canonical, locally charge-conserving
PIC method, whose momentum map and conservation law we shall systematically
derive.

In Qin et al. (2016), a Klimontovich–Maxwell PIC method is derived from the
unreduced bracket of (4.1) by specifying the following form for the distribution
function f (x, p) of L particles, analogous to (3.1)

f (x, p)=
L∑

i=1

δ(3)(x−Xi)δ
(3)(p− Pi). (6.1)

Here, (Xi, Pi) denotes the dynamical coordinates of particle i in phase space. The
fields A and Y are also discretized on a (three-dimensional) spatial lattice and are
denoted (An, Yn) at lattice site n. We shall further require the interpolation of A

A(x)=
N∑

n=1

AnWσ1(x− xn), (6.2)

where n is an index over all N lattice sites and Wσ1 is an (as yet unspecified)
interpolation function for A.

A Poisson bracket for this discrete system simply follows from the canonical
symplectic structure of its variables. In particular, we define the symplectic manifold

Md = T∗X × T∗Q, (6.3)

where X =R3L is the space of particle position coordinates and Q=R3N is the space
of vector potentials on the lattice, such that T∗X = {(Xi, Pi)} and T∗Q= {(An, Yn)}.
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A point m ∈Md correspondingly specifies (Xi, Pi,An, Yn) ∀ i, n (where the subscript
d denotes discretization).

The Poisson bracket for this symplectic manifold therefore takes its usual Darboux-
coordinate form

{{F,G}}d[Xi, Pi,An, Yn] =

L∑
i=1

(
∂F
∂Xi
·
∂G
∂Pi
−
∂G
∂Xi
·
∂F
∂Pi

)

+

N∑
n=1

(
∂F
∂An
·
∂G
∂Yn
−
∂G
∂An
·
∂F
∂Yn

)
. (6.4)

We observe that, unlike its continuous counterpart in (4.1), the bracket of (6.4) is
non-degenerate; it defines Md not only as a Poisson manifold, but as a symplectic
manifold.

The discrete Hamiltonian of Qin et al. (2016) is derived from (4.2) by substituting
the Klimontovich distribution of (6.1) and expanding terms of the form |Pi −A(Xi)|

2

using (6.2)

Hd[Xi, Pi,An, Yn] =
1
2

L∑
i=1

[
P2

i − 2Pi ·

N∑
n=1

AnWσ1(Xi − xn)

+

N∑
m,n=1

Am ·AnWσ1(Xi − xm)Wσ1(Xi − xn)

]
+

1
2

N∑
n=1

[Y2
n + |∇

+

d ×A|2n]. (6.5)

Here, the operator (∇±d×)n represents a discrete curl, defined by

(∇±d ×A)n :=±



A3
i,j±1,k − A3

i,j,k

1y
−

A2
i,j,k±1 − A2

i,j,k

1z
A1

i,j,k±1 − A1
i,j,k

1z
−

A3
i±1,j,k − A3

i,j,k

1x
A2

i±1,j,k − A2
i,j,k

1x
−

A1
i,j±1,k − A1

i,j,k

1y


(6.6)

for n= (i, j, k).
We now describe the gauge symmetry of this discrete Hamiltonian system. We

define the group action Φf on Md by analogy with (4.13)

Φf (Xi, Pi,An, Yn)= (Xi, [Pi −∇
+

d f (Xi)], [An − (∇
+

d f )n], Yn), (6.7)

where

∇
+

d f (x)=
N∑

n=1

(∇+d f )nWσ1(x− xn) (6.8)

and where (∇±d )n is a discrete gradient defined by

(∇±d f )n :=±



fi±1,j,k − fi,j,k

1x
fi,j±1,k − fi,j,k

1y
fi,j,k±1 − fi,j,k

1z

 . (6.9)
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We note that ∇±d ×∇
±

d = 0 as an operator. (If the ± signs agree, this relation holds
identically; if they disagree, it holds only after a summation over lattice points,

∑
n.)

We also note that – in contrast with (4.13)–(4.14) – Pi and An are shifted in the same
direction in (6.7), reflecting the fact that p and Pi have opposite signs in (6.1) when
we reinterpret the transformation of (4.14) as a transformation of Pi.

The function f appearing in the group action of (6.7) is to be understood as a scalar
function defined only at lattice points. In particular, f ∈Fd is a group element of the
set Fd of discrete scalar functions with an abelian composition law of addition. Its
Lie algebra fd is also the set of discrete scalar functions on the lattice, while its dual
f∗d is the set of densities, which pair to elements of fd by summing over pointwise
products

〈α, φ〉 :=

N∑
n=1

αnφn ∀ α ∈ f
∗

d, φ ∈ fd. (6.10)

We must verify that the group action is canonical, a task most easily approached
infinitesimally. In particular, we ask whether the following infinitesimal form of
{{Φ∗f F, Φ∗f G}}d =Φ∗f {{F,G}}d holds:{{

−∇
+

d φ(Xi) ·
∂F
∂Pi
−∇

+

d φn ·
∂F
∂An

,G
}}

d

− (F↔G)

=−∇
+

d φ(Xi) ·
∂{{F,G}}d

∂Pi
−∇

+

d φn ·
∂{{F,G}}d
∂An

, (6.11)

where summation over repeated indices is implicit. After applying (6.4) to evaluate
each bracket, equation (6.11) is seen to be true only when ∇ × ∇+d φ(Xi) = 0. This
requires the operator relation

∇×∇
+

d = 0. (6.12)

Here, ∇≡ ∂Xi is a continuous spatial gradient.
Equation (6.12) therefore necessitates the following condition on the interpolation

function Wσ1 :

N∑
n=1

(∇+d φ)nWσ1(x− xn)=∇

N∑
n=1

φnWσ0(x− xn) (6.13)

for some interpolation function Wσ0 . This condition was already discovered in Xiao
et al. (2015), and is analogous to a property of the simplicial Whitney forms described
earlier (Bossavit 1988). Our discussion of this condition merely contributes that, in a
Hamiltonian context, the motivation for the constraint in (6.13) is the canonicality of
the group action.

We now solve for µd, the momentum map on Md associated with the group action
of (6.7), using the symplectic structure of (6.4). First, we must find the infinitesimal
generator φMd of our group action on Md, defined analogously to (4.15). Given the
group action of (6.7) we expect φMd to take the form (already implicitly used in (6.11))

{{·, µ
φ

d }}d =−

L∑
i=1

∇
+

d φ(Xi) ·
∂

∂Pi
−

N∑
n=1

(∇+d φ)n ·
∂

∂An
, (6.14)
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where we denote the pairing of the momentum map with φ by 〈µd, φ〉 = µ
φ

d . The
Poisson bracket of (6.4) therefore requires that µφd be given by

µ
φ

d (m) =
N∑

n=1

(∇+d φ)n ·

[
L∑

i=1

∫ Xi

−∞

dX′i Wσ1(X
′

i − xn)− Yn

]

=

N∑
n=1

φn∇
−

d ·

[
−

L∑
i=1

∫ Xi

−∞

dX′i Wσ1(X
′

i − xn)+ Yn

]
, (6.15)

where in the second line we have summed by parts (Hydon & Mansfield 2011) using
the discrete divergence operator

∇
±

d · vn :=±

3∑
α=1

vαn±α̂ − v
α
n

1xα
. (6.16)

Note that dX′i is treated in (6.15) and hereafter as a vector, with each component
integrated individually. We observe that ∇±d · ∇

±

d×= 0 as an operator (when ± signs
agree).

Given the pairing defined in (6.10), the momentum map µd must therefore be

(µd(m))n =−∇−d ·
L∑

i=1

∫ Xi

−∞

dX′i Wσ1(X
′

i − xn)+∇
−

d · Yn (6.17)

defined at each lattice site n ∈ [1,N]. Due to the gauge invariance of Hd in (6.5) –
that is, Φ∗f Hd =Hd – the full system evolved in continuous time by Hd obeys the
conservation law

µ̇d = 0, (6.18)

as in the continuous Vlasov–Maxwell system of § 4. Equations (6.17)–(6.18) define the
conservation law of our discrete Hamiltonian system in continuous time, systematically
derived via the momentum map.

Following the analysis of (4.24)–(4.25), we may re-express this conservation law by
deriving the continuous-time EOM of the full Hamiltonian Hd, as follows:

Ẋi = {{Xi,Hd}}d = Pi −

N∑
m=1

AmWσ1(Xi − xm),

Ṗi = {{Pi,Hd}}d =

N∑
m=1

(Ẋi ·Am)∇Wσ1(Xi − xm),

Ȧn = {{An,Hd}}d = Yn,

Ẏn = {{Yn,Hd}}d =

L∑
i=1

ẊiWσ1(Xi − xn)− (∇
−

d ×∇
+

d ×A)n.


(6.19)

Now substituting Ẏn into the charge conservation law equations (6.17)–(6.18), we note
that

0= ρ̇n +∇
−

d · Jn, (6.20)
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where

ρn :=−∇
−

d ·

L∑
i=1

∫ Xi

−∞

dX′i Wσ1(X
′

i − xn),

Jn :=

L∑
i=1

ẊiWσ1(Xi − xn).

 (6.21)

This is an alternative form of the charge conservation law equation (6.18) for the
continuous-time evolution of the Hamiltonian system of Qin et al. (2016). (We observe
that, unlike its counterpart in (4.25), it is an off-shell identity.)

The form of ρn in (6.21) can be justified by a schematic one-dimensional example
in which Wσ1(x)= 1 on 0 6 x<1x and 0 otherwise. For a single particle at Xi = 0.2,
we have

ρn =−∇
−

d ·

∫ 0.2

−∞

dX′i Wσ1(X
′

i − xn)=


0.8/1x n= 0,
0.2/1x n= 1,
0 n 6= 0, 1.

(6.22)

This result demonstrates the appropriateness of the momentum map’s systematically
derived charge density.

We now define an algorithmic solution of this Hamiltonian system via a splitting
method, and examine the preservation of µd. To algorithmically evolve this system in
discrete time, we define a gauge-compatible splitting method adapted from He et al.
(2015, 2016). We define Hamiltonian subsystems

Hd =

3∑
α=1

Hα
Klim +HA +HY, (6.23)

where

Hα
Klim :=

1
2

L∑
i=1

(Pαi − Aα(Xi))
2,

HA :=
1
2

N∑
n=1

|∇
+

d ×A|2n,

HY :=
1
2

N∑
n=1

Y2
n.


(6.24)

We immediately note that these subsystems are all gauge invariant for the group action
of (6.7) – Φ∗f Hi=Hi ∀f ∈Fd and i – and will therefore comprise a gauge-compatible
splitting – and preserve µd – if they can be exactly solved.
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Let us examine the EOM for each subsystem Hi in turn

Hα
Klim



Ẋβ
i = δ

β
α

[
Pαi −

N∑
m=1

AαmWσ1(Xi − xm)

]
,

Ṗβi = Ẋα
i

N∑
m=1

Aαm∂βWσ1(Xi − xm),

Ȧβn = 0,

Ẏβn = δ
β
α

L∑
i=1

Ẋα
i Wσ1(Xi − xn),

(6.25)

HA


Ẋi = 0,
Ṗi = 0,
Ȧn = 0,
Ẏn =−(∇

−

d ×∇
+

d ×A)n,

(6.26)

HY


Ẋi = 0,
Ṗi = 0,
Ȧn = Yn,

Ẏn = 0,

(6.27)

where ∂β ≡ ∂/∂Xβ
i . (We emphasize that α is fixed, and is not summed over in the

expressions for Hα
Klim.) HA and HY are exactly solvable at a glance. Furthermore,

Hα
Klim is seen to be exactly solvable by noting that Ẍβ

i = 0; Ẋβ
i is therefore a constant

determined by a time step’s initial conditions. The evolutions of Ṗi and Ẏn in Hα
Klim

follow immediately from this analysis.
The exact time evolutions of HA, HY and Hα

Klim are therefore explicitly solved,
defining by construction an explicit-time-advance gauge-compatible splitting method
that exactly preserves the momentum map, µ̇d = 0, as desired. The alternative form
of the charge conservation law given in (6.20) – that is, ρ̇n +∇

−

d · Jn = 0 – is
also exactly preserved in this algorithm, because the substitution that led from
(6.18) to (6.20) – that is, ∇−d · Ẏn =∇

−

d · Jn – holds for each Hamiltonian subsystem
above.

Finally, we note that the momentum map µd has significant ramifications for the
appropriate initial conditions of the preceding algorithm. We refer the reader to a brief
but important discussion of these initial conditions in the text following (6.30) below.

6.2. A ‘reduced’ Hamiltonian PIC method
We now examine the PIC method of Xiao et al. (2015), which employs a splitting
method equivalent to that of the preceding section for the reduced Vlasov–Maxwell
bracket of (4.28).

We will mirror Xiao et al. (2015) and derive this PIC scheme by undertaking the
symplectic reduction (Marsden & Weinstein 1974) of the discrete canonical bracket
defined in (6.4). As in § 4.4, we define a mapping to the reduced symplectic manifold
M̃d0 =µ

−1
d (0)/Fd, with coordinates given by
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πd,red :
µ−1

d (0)⊂Md −→ M̃d0 =µ
−1
d (0)/Fd

(Xi, Pi,An, Yn) 7−→ (Xi,Vi,Bn,En),
(6.28)

where
Xi =Xi,

Vi = Pi −A(Xi),

Bn = (∇
+

d ×A)n,
En =−Yn.

 (6.29)

As discussed earlier, care must be taken to ensure that the discrete fields Bn and En
of M̃d0 obey the reduced manifold constraints

(∇+d ·B)n = 0,

−∇
−

d ·

L∑
i=1

∫ Xi

−∞

dX′iWσ1(X
′

i − xn)− (∇
−

d ·E)n = 0.

 (6.30)

We note that these constraints must also be satisfied by any initial condition of the
algorithm. The former condition is necessary to enforce a physically valid magnetic
field. If the latter condition (Gauss’s law) is not satisfied initially, it will have the
effect of adding fixed ‘external’ charges at the corresponding vertex n. In particular,
a non-zero initial Gauss’s law condition will evolve the system along some other
reduced manifold M̃dα =µ

−1
d (α)/Fd with fixed external charge density α.

A similar initial condition must be determined for the unreduced algorithm of
§ 6.1 as well. The unreduced algorithm enforces the constraint (∇+d · ∇

+

d ×A)n = 0
automatically. However, for simulations without external charges, care should be taken
so that the value of (µd(m))n in (6.17) is everywhere initialized to zero. (Alternatively,
equation (6.17) can be used to properly initialize a simulation with external charges
that remain fixed for all time.) We note that our derivation of the momentum map is
essential to this correct specification of initial conditions.

We therefore proceed with the reduction of our discrete system and substitute
equation (6.29) into the bracket of (6.4) to find

{{F,G}}red
d [Xi,Vi,Bn,En]

=

L∑
i=1

(
∂F
∂Xi
·
∂G
∂Vi
−
∂G
∂Xi
·
∂F
∂Vi
+

[
∂F
∂Vi
×
∂G
∂Vi

]
·

N∑
n=1

BnWσ2(Xi − xn)

)

+

N∑
n=1

([
L∑

i=1

∂F
∂Vi

Wσ1(Xi − xn)−

(
∇
−

d ×
∂F
∂B

)
n

]
·
∂G
∂En

−

[
L∑

i=1

∂G
∂Vi

Wσ1(Xi − xn)−

(
∇
−

d ×
∂G
∂B

)
n

]
·
∂F
∂En

)
. (6.31)

To derive the ∂ViF× ∂ViG ·B(Xi) term in the bracket above, our interpolation functions
were required to satisfy an additional constraint

∇×

N∑
n=1

AnWσ1(x− xn)=

N∑
n=1

(∇+d ×A)nWσ2(x− xn) (6.32)

for some interpolation function Wσ2 . As in (6.13), this is a generalized, higher-
dimensional analogue of the simplicial Whitney interpolant constraint.
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Lastly, we re-express the Hamiltonian in the reduced coordinates of M̃d0 as

Hred
d [Xi,Vi,Bn,En] =

1
2

L∑
i=1

V2
i +

1
2

N∑
n=1

(E2
n +B2

n). (6.33)

We have thus recovered the reduced Hamiltonian system of Xiao et al. (2015).
As discussed in § 4.4 for spatially continuous systems, this reduced Hamiltonian

system is automatically guaranteed to preserve the momentum map of its parent, as
long as it evolution is constrained to M̃d0 . To see that this is the case, we may compute
its evolution equations under the splitting scheme analogous to the unreduced case (He
et al. 2015, 2016; Xiao et al. 2015)

Hred
d =

3∑
α=1

Hα
V +HB +HE, (6.34)

where

Hα
V :=

1
2

L∑
i=1

(Vα
i )

2,

HB :=
1
2

N∑
n=1

B2
n,

HE :=
1
2

N∑
n=1

E2
n.


(6.35)

These subsystems generate the following EOM:

Hα
V



Ẋβ
i = δ

β
αVα

i ,

V̇β
i = εβαγVα

i

N∑
n=1

Bγn Wσ2(Xi − xn),

Ḃβn = 0,

Ėβn =−δ
β
α

L∑
i=1

Vα
i Wσ1(Xi − xn),

(6.36)

HB


Ẋi = 0,
V̇i = 0,
Ḃn = 0,
Ėn = (∇

−

d ×B)n,

(6.37)

HE



Ẋi = 0,

V̇i =

N∑
n=1

EnWσ1(Xi − xn),

Ḃn =−(∇
+

d ×E)n,
Ėn = 0.

(6.38)

We note again that α is not summed over in the expressions for subsystem Hα
V .
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Upon inspection, it is evident that the M̃d0 constraints of (6.30) are obeyed in
each subsystem when they are exactly solved. (As in the unreduced case, the
above subsystems are readily exactly solved. In particular, note that V̇α

i = 0 in Hα
V .)

Consequently, the exact conservation law of the reduced system is systematically
derived by simply expressing the unreduced momentum map of (6.17) in M̃d0

coordinates

(µ̄d)n = −∇
−

d ·

L∑
i=1

∫ Xi

−∞

dX′i Wσ1(X
′

i − xn)−∇
−

d ·En

:= ρn −∇
−

d ·En

= 0, (6.39)

where in the final line we have noted that µ̄d vanishes by our previous choice of
reduction to the preimage submanifold µd

−1(0). Equation (6.39) is Gauss’s law, for
which we are by construction guaranteed

˙̄µd = 0, (6.40)

as desired. (An analogous observation was made for the reduced bracket in Kraus
et al. (2017), where the momentum map was treated as a Casimir.) The local
charge conservation law of (6.20) – whose expression is unmodified in the reduced
submanifold – is furthermore satisfied, since ∇−d · Ėn = −∇

−

d · Jn holds in each
subsystem of Hred

d .

7. Conclusion
We have systematically derived conservation laws for both Lagrangian variational

and Hamiltonian splitting PIC methods. Our approach for Lagrangian systems
followed Noether’s second theorem, while our approach for Hamiltonian systems
employed the momentum map. Our treatment of Hamiltonian methods additionally
revealed the decided advantage of gauge-compatible splitting methods over other time
discretizations of Hamiltonian systems (see § 5); when the sub-Hamiltonians of a
splitting method are chosen to be gauge invariant and exactly solvable, such methods
exactly preserve the momentum map associated with this gauge symmetry, as well as
its corresponding conservation laws.

Our study further demonstrated the importance of deriving the momentum map of
a discrete Hamiltonian system in order to correctly specify its initial conditions. In
the case of gauge-invariant PIC methods, the momentum map’s systematic definition
of charge density (see (6.21)) enables the precise assignment (or, more commonly,
avoidance) of ‘external’ fixed charges at each lattice site n as an initial condition.

The techniques we have developed are more widely applicable to the simulation
of gauge theories, and in principle provide a template for the derivation of exact
conservation laws in any gauge-symmetric variational or gauge-compatible splitting
algorithm. Our classification of gauge-compatible splitting methods also provides a
general framework for the construction of Hamiltonian splitting algorithms that obey
exact conservation laws.

As a final note, these results convey an overall impression of the adaptability of
gauge theories to the discrete structures of algorithms. Internal gauge symmetries
are characterized by the transformation of fields defined against the background of
space–time, and their geometric structure can therefore be maintained even after
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the algorithmic discretization of this background. The present effort demonstrates
that much of the formalism that gauge theories employ in continuous space–time –
whether in Lagrangian or Hamiltonian systems – is readily ported to discrete settings
more suitable for computation.
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