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Abstract

The stacked contact process is a three-state spin system that describes the co-evolution
of a population of hosts together with their symbionts. In a nutshell, the hosts evolve
according to a contact process while the symbionts evolve according to a contact pro-
cess on the dynamic subset of the lattice occupied by the host population, indicating
that the symbiont can only live within a host. This paper is concerned with a gener-
alization of this system in which the symbionts may affect the fitness of the hosts by
either decreasing (pathogen) or increasing (mutualist) their birth rate. Standard coupling
arguments are first used to compare the process with other interacting particle systems
and deduce the long-term behavior of the host–symbiont system in several parameter
regions. The spatial model is also compared with its mean-field approximation as stud-
ied in detail by Foxall (2019). Our main result focuses on the case where unassociated
hosts have a supercritical birth rate whereas hosts associated to a pathogen have a sub-
critical birth rate. In this case, the mean-field model predicts coexistence of the hosts
and their pathogens provided the infection rate is large enough. For the spatial model,
however, only the hosts survive on the one-dimensional integer lattice.
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1. Introduction

The stochastic model considered in this paper is a generalization of the stacked contact pro-
cess introduced in [2] and studied analytically in [10]. The stacked contact process is a spatial
stochastic process based on the framework of interacting particle systems that describes the
co-evolution of a population of hosts together with their symbionts. Individuals are located on
the d-dimensional integer lattice and interact with their nearest neighbors. The model assumes
that the symbionts can only live in association with their host (obligate relationship) and are
transmitted both vertically from associated hosts to their offspring and horizontally from asso-
ciated hosts to nearby unassociated hosts. The stacked contact process [2, 10] also assumes that
all the hosts give birth and die at the same rate regardless of whether they are associated with
a symbiont or not, meaning that the symbionts have no effect on the fitness of their host. This
paper considers the natural generalization of the stacked contact process in which associated
and unassociated hosts have different birth rates: symbionts that increase the birth rate of their
host, and therefore have a beneficial effect, are referred to as mutualists, whereas symbionts
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that decrease the birth rate of their host, and therefore have a detrimental effect, are referred to
as pathogens. Formally, the state of the system at time t is a spatial configuration

ξt : Zd −→ {0, 1, 2}
where state 0 means empty, state 1 means occupied by an unassociated host, and state 2 means
occupied by a host associated with a symbiont. Letting

fi(x, ξ ) = (1/2d) card {y ∈Zd :
∑

j=1,2,...,d |xj − yj| = 1 and ξ (y) = i}
be the fraction of nearest neighbors of vertex x which are in state i, hosts and symbionts co-
evolve according to the spin system whose transition rates at vertex x are given by

0 → 1 at rate λ10 f1(x, ξ ), 1 → 0 at rate 1,

0 → 2 at rate λ20 f2(x, ξ ), 2 → 0 at rate 1,

1 → 2 at rate λ21 f2(x, ξ ), 2 → 1 at rate δ.

(1)

The first four transition rates indicate that unassociated hosts give birth at rate λ10, hosts asso-
ciated with a symbiont give birth at rate λ20, and, regardless of whether they are associated or
not, all the hosts die at the normalized rate one. An offspring produced at x is sent to a vertex
chosen uniformly at random among the nearest neighbors, but the birth is suppressed when the
target site is already occupied, which models competition for space. The offspring is always of
the same type as its parent, indicating that the symbiont is always transmitted vertically. The
process described by these four transitions is the multitype contact process [13]. The effect of
the symbiont on the host is modeled by the choice of the two birth rates: the symbiont is

a pathogen when λ20 < λ10,

a mutualist when λ20 > λ10.

The last two transitions describe the symbiont dynamics within the host population. The sym-
biont spreads to adjacent unassociated hosts at rate λ21, which corresponds to a horizontal
transmission of the symbiont. Finally, hosts associated with a symbiont become unassociated
at rate δ, which we simply call the recovery rate even when the symbiont is a mutualist.

The stacked contact process [2, 10] is obtained by setting λ20 = λ10. This corresponds to
the neutral case in which the symbionts have no effect on the fertility of their hosts, i.e. all the
hosts have the same birth rate. The analysis of this special case in [10] is somewhat facilitated
by the fact that the process is attractive and monotone with respect to its parameters. This is
true in certain cases when λ10 �= λ20, but not always; for example, it is false in the setting of
Theorem 3.

1.1. Mean-field approximation

Before studying the spatial stochastic process, we first look at its non-spatial deterministic
counterpart called mean-field approximation, consisting of a pair of coupled ordinary differ-
ential equations. We give a derivation and a brief summary of its properties; the reader may
consult [6] for a thorough treatment. To derive it, consider a set of N sites each of which can be
either empty, occupied by an unassociated host, or occupied by an associated host. We suppose
that each unassociated host attempts to give birth to an unassociated host onto a site chosen
uniformly at random at rate λ10, being successful if that site is empty. Similarly, each associ-
ated host attempts to give birth to an associated host at rate λ20. Each host dies at rate 1, while
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each symbiont dies (i.e. each associated host becomes an unassociated host) at rate δ. Each
associated host attempts to transmit the symbiont to a randomly chosen site at rate λ21, being
successful if the recipient is an unassociated host. Letting U(t) = (U0(t), U1(t), U2(t)) denote
the number of empty sites, unassociated hosts, and associated hosts, respectively, and rescaling
to u = U/N, we have the Markov chain with transitions

u → u + N−1(− 1, 1, 0) at rate Nλ10 u0u1, u → u + N−1(1, −1, 0) at rate Nu1,

u → u + N−1(− 1, 0, 1) at rate Nλ20 u0u2, u → u + N−1(1, 0, −1) at rate Nu2,

u → u + N−1(0, −1, 1) at rate Nλ21 u1u2, u → u + N−1(0, 1, −1) at rate Nδ u2.

This shows that u is a density-dependent Markov chain in the sense of [9]. Since the three
densities add up to one, instead let u = (u1, u2). Writing uN to emphasize the dependence
on N, if limN→∞ uN(0) = u and ε, T > 0, it follows from Theorem 2.2 in [9] that

lim
N→∞ P

(
sup
t≤T

|uN(t) − u(t)| > ε
)

= 0,

where u(t) is the solution to the initial value problem u(0) = u, and

u′
1 = λ10 u0u1 − u1 + δu2 − λ21 u1u2,

u′
2 = λ20 u0u2 − u2 − δu2 + λ21 u1u2.

(2)

It turns out to be more productive to study the proportion of hosts, x1 = u1 + u2, and the
proportion of hosts that are associated, x2 = u2/x1. Letting

λa = λ20 − λ10 and λb = −λa + λ21,

after a bit of algebra we obtain the system

x′
1= G1(x1, x2) = x1 ((λ10 + λax2)(1 − x1) − 1),

x′
2= G2(x1, x2) = x2 ((λa + λbx1)(1 − x2) − δ).

(3)

Note that the map (u1, u2) 	→ (x1, x2) is undefined at x1 = 0, but the inverse (u1, u2) =
(x1(1 − x2), x1x2) is smooth and maps solutions of (3) to solutions of (2). Define the set of
interest � = [0, 1]2 and

�+ =
⎧⎨
⎩

(0, 1] × (0, 1) = {(x1, x2) ∈ � : x1 > 0, 0 < x2 < 1} if δ = 0,

(0, 1] × (0, 1] = {(x1, x2) ∈ � : x1, x2 > 0} if δ > 0,

which is obtained by removing invariant lines on the boundary of �. In addition, let

p0 = (0, 0), p1 = (a1, 0) = (1 − 1/λ10, 0),

p2 = (a2, 1) = (1 − 1/λ20, 1), p3 = (0, a3) = (0, 1 − δ/λa).

Except for very specific parameter values, these are the only candidates for equilibria on the
boundary of �. We also define two conditions on the parameters:

(AinvU): λ20(1 − a1) + λ21a1 > 1 + δ,

(UinvA): λ10(1 − a2) − λ21a2 > 1.
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100 E. FOXALL AND N. LANCHIER

The meaning of these two conditions is as follows:

• (AinvU) stands for ‘associated invades unassociated’, and is relevant if and only if
λ10 > 1. It corresponds to parameter values for which a small introduction of associated
hosts in a stable population of unassociated hosts leads to an increase in the propor-
tion of associated hosts. It is equivalent to G2(p1 + εe2) > 0 for small ε > 0, where
e2 = (0, 1).

• (UinvA) stands for ‘unassociated invades associated’, and is relevant if and only if
λ20 > 1 and δ = 0. It corresponds to parameter values for which a small introduction
of unassociated hosts in a stable population of associated hosts leads to an increase in
the proportion of unassociated hosts. It is equivalent to G1(p2 + εe2) > 0 for small ε > 0,
where e1 = (1, 0).

For x ∈ � let t 	→ φ(t, x) denote the solution to (3) with initial value x. The following result is
proved in the companion paper [6]. We omit some details in the bistability case, since it is not
the focus here.

Theorem 1. The following six cases include all parameter values.
There are two special cases.

1. Redundant symbiont (RS): Suppose max (λ10, λ20) > 1 and δ = λa = λ21 = 0. For all
x ∈ λ+, limt→∞ φ1(t, x) = a1 and t 	→ φ2(t, x) is constant.

2. Bistability (B): There may be up to two locally stable equilibria. This occurs for some,
but not all, parameter values satisfying min (λa, λb) > 0 and either

(i) λ10 ≤ 1 < λ20 < 1 + δ, or

(ii) λ10 > 1 and (AinvU) does not hold.

Suppose (RS) and (B) do not hold. Then there exists x̄ ∈ � such that limt→∞ φ(t, x) = x̄ for
all x ∈ �+. Assuming (RS) and (B) do not hold, four cases are possible.

1. Extinction (E): x̄ = (0, max (0, a3)) if λ10 ≤ 1 and λ20 ≤ 1 + δ.

2. Survival and coexistence of associated and unassociated host (C):

max (0, min (a1, a2)) < x̄1 < max (a1, a2) and max (0, a3) < x̄2 < 1

in the following cases:

(a) δ > 0 and either

(i) λ10 ≤ 1 and λ20 > 1 + δ, or

(ii) λ10 > 1 and (AinvU) holds; or

(b) δ = 0 and either

(i) λ10 ≤ 1, λ20 > 1, and (UinvA) holds,

(ii) λ10 > 1, λ20 ≤ 1, and (AinvU) holds, or

(iii) min (λ10, λ20) > 1, (AinvU) holds, and (UinvA) holds.
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3. Survival of unassociated host only (UH): x̄ = p1 if λ10 > 1 and (AinvU) does not hold.

4. Survival of associated host only (AH): x̄ = p2 if δ = 0, λ20 > 1, and (UinvA) does not
hold.

Before continuing we make a couple of observations concerning this result. First of all,
(RS) occurs only for a single choice of parameters. Moreover, (B) occurs only when we have
λa > 0 and λb > 0, which corresponds to a mutualist whose rate of spread through the pop-
ulation exceeds the increase it provides to the host birth rate. Aside from (RS) and (B), four
behaviors are possible: the host goes extinct (and thus also the symbiont) (E), the host survives
but not the symbiont (UH), both host and symbiont survive with coexistence of associated and
unassociated hosts (C), or the host survives and the symbiont spreads completely through the
host population (AH). In each case, the conditions are straightforward: extinction occurs if the
birth rate is too low, hosts survive without symbiont if the symbiont cannot invade the host in
equilibrium, etc.

1.2. Spatial stochastic process

We can show that the spatial stochastic process exhibits the four main regimes identified
above for the mean-field equations. Notice that another way to describe these four regimes is
as follows: both unassociated hosts (type 1) and associated hosts (type 2) can either survive or
go extinct. Since, for an interacting particle system, there is more than one notion of survival,
we distinguish the two notions that we use. Single-site survival of type i means that, for some
initial configuration ξ with a positive and finite number of type-i individuals (or, if i = 1 and
δ > 0, at least one occupied site),

P(for all t > 0, there exists x such that ξt(x) = i | ξ0 = ξ ) > 0.

The other notion of survival of type i, that we call global survival, is that starting from a
translation-invariant distribution that almost surely has infinitely many type-i individuals,

lim inf
t→∞ P(ξt(x) = i) > 0 for all x ∈Zd.

For the basic contact process discussed below, these two notions are known to coincide, a fact
that follows from the model’s self-duality (see [11] for details). Note that when the recovery
rate δ > 0, survival of associated hosts implies coexistence of associated and unassociated
hosts.

As noted above, the stacked contact process obtained by setting λ10 = λ20 has several nice
properties, including attractiveness and monotonicity as defined below. When λ10 �= λ20 it is
still possible to have these properties, but only in certain cases. In this article we are not focused
on the parameter regimes where attractiveness and monotonicity are present, except in the
simpler subcases where an easy comparison to an already-studied process can be used. For
the sake of the interested reader who wishes to make a further study of this process, we note,
without proof, some other cases, not considered in detail in this article, for which we have
some monotonicity.

Recall that a process is attractive with respect to a partial order on the set of configurations
if, for any two configurations ξ ≤ ξ ′, there exists a coupling of two processes ξt, ξ ′

t with

ξ0 = ξ, ξ ′
0 = ξ ′, and ξt ≤ ξ ′

t for all t > 0.
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A process is monotone increasing with respect to a parameter ρ if the above property holds
when ξt, ξ ′

t have respective parameter values ρ ≤ ρ′, and monotone decreasing if ρ ≥ ρ′. We
focus on partial orders induced by a sitewise order on types, that is,

ξ ≤ ξ ′ if and only if ξ (x) ≤ ξ ′(x) for all x ∈Zd.

1. λ10 > λ20.

(a) λ21 = 0. Attractive for the partial order 0, 2 < 1 and monotone increasing in λ10, δ.

(b) λ21 > 0. Not attractive for any partial order with 0 < 1.

2. λ20 > λ10.

(a) λ20 > λ21.

i. δ > 0. Not attractive for any partial order with 0 < 2.

ii. δ = 0. Attractive for the partial order 0, 1 < 2 and monotone increasing in\break
λ20, λ21.

(b) λ20 = λ21. Type-2 sites give the basic contact process (described below) with birth
rate λ20 and death rate 1 + δ.

(c) λ21 > λ20. Attractive for the order 0 < 1 < 2, monotone increasing in λ10, λ20, λ21,
and monotone decreasing in δ.

Our first result is obtained by comparing the stacked contact process with well-known inter-
acting particle systems. More precisely, we will start by comparing the process with the basic
contact process and the multitype contact process using simple coupling techniques. We will
also show that the process inherits some of the properties of the forest fire model, though,
because of the lack of monotonicity, this does not simply follow from a standard coupling
argument. To state our result, we let λc ∈ (0, ∞) be the critical value of the basic contact
process.

Theorem 2. In all spatial dimensions,

the hosts survive globally when min (λ10, λ20) > λc, (4)

the hosts die out when max (λ10, λ20) ≤ λc, (5)

the associated hosts survive globally when min (λ20, λ21) > (1 + δ) λc, (6)

the associated hosts die out when max (λ20, λ21) ≤ (1 + δ)λc. (7)

In addition, in two dimensions,

the associated hosts die out when λ10 > λ20 and λ21, δ are small, (8)

the associated hosts survive globally when λ20 > (1 + δ) αc and λ10 is small. (9)

The parameter regions in (4)–(9) are shown in Figures 1 and 2. Note that the behavior of the
stochastic process in the parameter regions (4)–(7) agrees with the behavior of its mean-field
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approximation described in Theorem 1, if we think of the mean-field model as having critical
value λc = 1. Indeed, observe for instance that

min (λ20, λ21) > 1 + δ implies (AinvU).

The behavior in the parameter region (8) also agrees with the mean-field equations. To see this,
notice that if λ10 > λ20 are fixed and λ21 = δ = 0 then (AinvU) reduces to λ20/λ10 > 1, which
does not hold, so (AinvU) still does not hold if δ, λ21 > 0 are small. Since λ10 > λ20, (B) does
not hold and (RS) does not hold, so we have either (E) or (UH), depending on the values of
λ10. In either case, Theorem 1 gives x2 → 0 so associated hosts do not persist.

We now focus on the parameter region where λ10 > λc > λ20, which is not covered by
the previous comparison results. In this case, the symbiont is a pathogen. Standard coupling
arguments to compare the host–pathogen system with the basic contact process imply that a
population of healthy (unassociated) hosts survives, whereas, if the recovery rate δ = 0, a pop-
ulation of infected (associated) hosts dies out. The long-term behavior when starting with a
mixture of healthy and infected hosts is not clear, and the main question is whether associated
and unassociated hosts coexist.

Theorem 1 says that in the mean-field model they do coexist provided λ21 is taken suffi-
ciently large. For the spatial model, if the pathogen is to survive then, intuitively speaking,
a certain proportion of infected hosts must remain in close contact with healthy hosts, since
infected hosts alone will not survive. On the other hand, healthy hosts must also have room to
spread into uninfected regions. This suggests that coexistence is favored in higher dimensions,
where interaction neighborhoods involve more sites and each type has more room to move
around. We are unable to show coexistence in higher dimensions, and indeed, few results of
this type exist in the literature. A recent example is [12], which treats a stacked SIR model
on the Erdos–Renyi graph and shows that survival of the secondary infection is favored by
intermediate rates of spread in the primary infection. However, in our case recovery is not per-
manent and the interaction graph (a lattice) is not locally tree-like, both of which significantly
complicate the model.

On the other hand, we are able to show that, in one dimension, when δ = 0 and even when
the infection rate and the birth rate of healthy hosts are very large, the pathogen is unable to
survive.

Theorem 3. Assume that λ10 > λc > λ20, δ = 0, and d = 1. Then, starting from any configu-
ration with infinitely many vertices in state 1,

lim inf
t→∞ P(ξt(x) = 1) > 0 and lim

t→∞ P(ξt(x) = 2) = 0 for all x ∈Z.

The parameter region covered in Theorem 3 is illustrated in the phase diagrams of Figures 1
and 2. Also, in addition to the statement of the theorem, our proof gives specific estimates on
the rate of extinction of the pathogens and the rate of expansion of the healthy hosts. The first
part of the proof shows that there exists a constant c > 0 such that, uniformly in all initial
configurations ξ0 with infinitely many 1s and for any site x,

P(sup {t : ξt(y) = 2 for some y such that |y − x| ≤ ect} < ∞) = 1. (10)

In other words, there exists a uniform (over all sites) exponentially growing (in time) neigh-
borhood of any site which is eventually void of pathogens. To describe the long-term behavior
of the healthy hosts, let ζt denote the one-dimensional nearest-neighbor (supercritical) con-
tact process with parameter λ10 starting from the all-one configuration. Also, let α > 0 denote
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Host extinction

Host survival

λ21

λ20 = λc

λ10 = λc

λ10

λ20

(5)

λ21

λ20 = λc
λ20

λ21 = (1 + δ ) λc

λ20 = (1 + δ ) λc

(4)

(6)

λ10

TH 3 (δ = 0 , d = 1)

TH 3 (δ = 0 , d = 1)

(9, d = 2)

FIGURE 1. Picture of the parameter region (5) in which the host is known to die out, at the top, and of
the parameter regions (4), (6), (9), and the one in Theorem 3 in which the host is known to survive, at the
bottom. Note that the bottom picture accounts for the fact that how small λ10 is in (9) might depend on

the value of λ20.

the edge speed in this contact process as defined in [3]; that is, starting from the initial
configuration ξ0(x) = 1{x ≤ 0},

α = lim
t→∞ t−1 sup{x : ξt(x) �= 0}.
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Symbiont survival

Symbiont extinction

λ10

λ21

λ20

λ21 = (1 + δ ) λc

λ20 = (1 + δ ) λc

(6)

λ20

λ21

(1 + δ ) λc

λ20 = λc

λ10

λ20 = (1 + δ ) λc

λ10 = λc

(7)

(5)
TH 3 (δ = 0 , d = 1)

(9, d = 2)

δ small)
(8, d = 2,

FIGURE 2. Picture of the parameter regions (5), (7), (8), and the one in Theorem 3 in which the symbiont
is known to die out, at the top, and of the parameter regions (6) and (9) in which the symbiont is known
to survive, at the bottom. The pictures account for the fact that how small λ21 is in (8) might depend on

the values of λ10 and λ20, and how small λ10 is in (9) might depend on λ20.

Then, under the assumptions of the theorem, there exist

• a random site X and an almost surely finite time T that depend on ξ ,

• site-valued processes �t ≤ rt defined for t ≥ T and satisfying �T = rT = X,

• a coupling of the processes ξt and ζt
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TABLE 1. Graphical representation of the process when λ10 ≥ λ20 (pathogen). The rates in the left col-
umn correspond to the different parameters of the independent Poisson processes, attached to either each

oriented-edge-connected two neighbors (first three rows) or each vertex (last two rows).

Rate Symbol Effect on the process

(λ10 − λ20)/2d x
1−→ y Birth at y when x is occupied by a healthy host and y is

empty

λ20/2d x
2−→ y Birth at y when x is occupied and y is empty

λ21/2d x
3−→ y Infection at y when x is infected and y is occupied by a

healthy host
1 × at x Death at x when x is occupied
δ • at x Recovery at x when x is infected

such that, P-almost surely,

lim
t→∞ −�t/t = lim

t→∞ rt/t = α and ξt(x) = ζt(x) for all (x, t) ∈ [�t, rt] × [T, ∞). (11)

In other words, as long as ξ has an infinite number of 1s, then, P-almost surely, eventually there
arises a stable population of 1s that behaves like the basic contact process on an interval that
grows linearly in time. From (10) and (11), we also obtain a complete convergence theorem.
Indeed, letting ν denote the upper invariant measure of the contact process ζt and δ0 denote the
measure that concentrates on the all-zero configuration, since the distribution of the contact
process converges weakly to ν [11, Ch. VI], we deduce the following for the distribution μt of
the process ξt.

Corollary 1. Let λ10 > λc > λ20, δ = 0, and d = 1. Then, as t → ∞,

μt ⇒ ρδ0 + (1 − ρ)ν where ρ = Pμ0 ({x : ξt(x) = 1} �=∅ for all t > 0).

In particular, all invariant measures are convex combinations of δ0 and ν.

2. Proof of Theorem 2

Throughout the paper, we think of the process as being generated from a percolation sub-
structure, also called Harris’ graphical representation [8]. The percolation substructure consists
of independent Poisson processes with appropriate rates attached to each vertex and oriented
edge of the d-dimensional integer lattice. The process is then constructed by assuming that, at
the times of these Poisson processes, either a birth, or an infection, or a death, or a recov-
ery occurs whenever the configuration of the system at that time is compatible with the
event. Table 1 shows, for instance, how the stacked contact process can be constructed when
λ10 ≥ λ20, while Table 2 shows another example of contruction when λ20 ≥ λ21.

Proof of (4)–(7). In the limiting case when the recovery rate δ = ∞, all the symbionts die
instantaneously so the host dynamics reduces to the basic contact process

0 → 1 at rate λ10 f1(x, ξ ), 1 → 0 at rate 1.

In this case, there is a critical value λc ∈ (0, ∞) such that above λc the host population survives
whereas at and below λc the population goes extinct [1]. This is in qualitative agreement with
the mean-field equations.
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TABLE 2. Graphical representation of the process when λ20 ≥ λ21. The rates in the left column cor-
respond to the different parameters of the independent Poisson processes, attached to either each

oriented-edge-connected two neighbors (first three rows) or each vertex (last two rows).

Rate Symbol Effect on the process

λ10/2d x
1−→ y Birth at y when x is occupied by a healthy host and y is empty

(λ20 − λ21)/2d x
2−→ y Birth at y when x is occupied by an infected host and y is

empty

λ21/2d x
3−→ y Birth at y when x is occupied by an infected host and y is

empty, or infection at y when x is infected and y is occupied
by a healthy host

1 × at x Death at x when x is occupied
δ • at x Recovery at x when x is infected

Assume from now on that the recovery rate is finite and let

ξ1
t (x) = 1{ξt(x) �= 0} and ξ2

t (x) = 1{ξt(x) = 2} for all x ∈Zd

be the process that keeps track of the hosts and the process that keeps track of the hosts
associated to a symbiont, respectively. The transitions of the process ξ1

t satisfy

0 → 1 at rate at least min (λ10, λ20) f1(x, ξ1),

0 → 1 at rate at most max (λ10, λ20) f1(x, ξ1),

while 1 → 0 at rate one. In particular, this process can be compared to the basic contact process
to deduce that, for all x ∈Zd and starting from a translation-invariant distribution with infinitely
many 1s and 2s,

lim inf
t→∞ P(ξt(x) �= 0) > 0 when min (λ10, λ20) > λc,

lim
t→∞ P(ξt(x) �= 0) = 0 when max (λ10, λ20) ≤ λc.

This follows from Theorem III.1.5 in [11], which applies to general two-state spin systems,
together with obvious inequalities relating the transition rates of our process and their counter-
part for the basic contact process. This proves (4) and (5). Alternatively, one can prove these
results by using a coupling argument. For instance, when λ10 ≥ λ20, the contact process ζ 2

t with
parameter λ20 can be constructed from the graphical representation in Table 1 by assuming that
births can only occur through type-2 arrows, while the contact process ζ 1

t with parameter λ10
can be constructed by assuming that births occur through both type-1 and type-2 arrows. In
both processes, particles are killed at the death marks ×. Constructing the stacked contact pro-
cess and these two contact processes from this common graphical representation results in a
coupling such that

{x ∈Zd : ζ 2
t (x) = 1} ⊂ {x ∈Zd : ξ1

t (x) = 1} ⊂ {x ∈Zd : ζ 1
t (x) = 1}

at all times t, provided this holds at time zero. This shows (4) and (5) when λ10 ≥ λ20.
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The analogous property when the inequality is reversed can be proved similarly by using
another graphical representation which is designed based on the ordering of the parameters.
Looking now at the second process ξ2

t , the transitions satisfy

0 → 1 at rate at least min (λ20, λ21) f1(x, ξ2),

0 → 1 at rate at most max (λ20, λ21) f1(x, ξ2),

while 1 → 0 at rate 1 + δ, from which it follows that, for all x ∈Zd and starting from a
translation-invariant distribution with infinitely many 1s and 2s,

lim inf
t→∞ P(ξt(x) = 2) > 0 when min (λ20, λ21) > (1 + δ) λc,

lim
t→∞ P(ξt(x) = 2) = 0 when max (λ20, λ21) ≤ (1 + δ)λc,

which shows (6) and (7). This can again be proved by using Theorem III.1.5 in [11], or by
coupling the process with the two contact processes with respective birth rates λ20 and λ21
and common death rate 1 + δ using the graphical representation in Table 2 when λ20 ≥ λ21,
while the analogous property when the inequality is reversed can be proved by using another
graphical representation which is designed based on the ordering of the parameters. �
The four parameter regions in (4)–(7) are illustrated in the diagrams of Figures 1 and 2.

Proof of (8). Setting λ21 = δ = 0, the process reduces to the multitype contact process
completely analyzed when the death rates are equal in [13]. The transition rates become

0 → 1 at rate λ10 f1(x, ξ ), 1 → 0 at rate 1,

0 → 2 at rate λ20 f2(x, ξ ), 2 → 0 at rate 1.

In this case, the type with the larger birth rate outcompetes the other type provided its birth rate
is also strictly larger than the critical value of the single-type contact process. This result was
first proved in [13] using duality techniques and again in [5] also using a block construction
in two dimensions to prove that the long-term behavior of the process is not altered by small
perturbations of the parameters. In particular, using a similar perturbation argument, it can be
deduced from Propositions 3.1 and 3.2 in [5] that, for all x ∈Z2 and regardless of the initial
configuration,

lim
t→∞ P(ξt(x) = 2) = 0 when λ10 > λ20 and λ21, δ are small.

This proves property (8). �
Proof of (9). The forest fire model, also referred to as epidemics with recovery, is the three-

state spin system with a cyclic dynamics described by the following three transitions:

0 → 2 at rate α f2(x, η), 2 → 1 at rate 1,

1 → 0 at rate β.

The three states are interpreted as 0 = alive, 2 = on fire, and 1 = burnt, but can also be thought
of respectively as healthy, infected, and immune in the context of epidemics. This process has
been studied in [4], but note that we have interchanged the roles of the two states 1 and 2 to
facilitate comparison with our model.
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Denote the forest fire process by ηt. The main result in [4] shows the existence of a critical
value αc ∈ (0, ∞) such that, regardless of the value of β > 0 and starting from a translation-
invariant distribution with infinitely many 1s and 2s in two dimensions,

lim inf
t→∞ P(ηt(x) = 2) > 0 when α > αc.

Because the dynamics is cyclic, basic couplings between the forest fire model and our process
do not lead to any useful stochastic ordering between the two systems. However, the proof in
[4] easily extends to our process in a certain parameter region. Indeed, in addition to general
geometrical properties and percolation results which are not related to the specific dynamics
of the forest fire model, the key estimates in [4] rely on the following two ingredients:

(a) The set of burning trees dominates its counterpart in the process with no regrowth (β =
0) provided both processes start from the same configuration.

(b) In regions that have not been on fire for at least S units of time, the set of trees which
are alive dominates a product measure with density 1 − e−βS.

Now, fix δ ≥ 0, let β = 1/(δ + 1), and consider the spin system on the two-dimensional integer
lattice whose dynamics is described by the five transitions

0 → 2 at rate βλ20 f2(x, η), 1 → 0 at rate β,

1 → 2 at rate βλ21 f2(x, η), 2 → 0 at rate β,

2 → 1 at rate βδ.

Note that this is the process (1) with λ10 = 0 slowed down by the factor β. Alternatively, one
can see this process as the forest fire model modified so that burnt trees can catch fire (1 → 2)
and trees on fire can spontaneously change to living trees (2 → 0), skipping the burnt phase.
In this process, trees burn for an exponential amount of time with rate β + βδ = 1, as in the
original forest fire model. It follows that the domination property (a) remains true: the set of
burning trees in this new process dominates its counterpart in the forest fire model with no
regrowth and in which the fire spreads by contact at rate α = βλ20. Since the transition 1 → 0
again occurs spontaneously at rate β, the domination of the product measure (b) remains true
as well. In particular, starting from a translation-invariant distribution with infinitely many 1s
and 2s,

lim inf
t→∞ P(ξt(x) = 2) > 0 when λ20 > (δ + 1) αc.

This holds for all λ21 ≥ 0. Since the proof in [4] is based on a block construction, which sup-
ports small perturbations of the system, we also obtain coexistence in the process (1) under the
same assumptions and provided λ10 is sufficiently small. In conclusion, in d = 2 and starting
from a translation-invariant distribution with infinitely many 1s and 2s,

lim inf
t→∞ P(ξt(x) = 2) > 0 when λ20 > (δ + 1) αc and λ10 is small.

This proves (9), and completes the proof of Theorem 2. �

3. Proof of Theorem 3

This section is devoted to the proof of (10) and (11), which together imply Theorem 3.

https://doi.org/10.1017/jpr.2019.79 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.79


110 E. FOXALL AND N. LANCHIER

The first step is to obtain exponential bounds, in space-time, on the set of descendants
(defined below in the natural way) of a type-2 individual, which is done in Proposition 3.
To accomplish this we need two crucial observations, described in a moment, together with an
iterative or ‘restart’ argument, and several estimates that build upon one another. We then show
in Proposition 4 that, from any location, eventually the nearest type-2 individual will be at a
distance which is exponentially far away as a function of time. This is then used to show that,
from an initial configuration with infinitely many type-1 sites, at least one of them will produce
a set of individuals of type 1 growing linearly in time, none of which ever interact with a type
2, completing the proof.

To obtain Proposition 3, the first crucial observation is the following asymmetry between
sub- and supercritical contact processes. It is known that for a (single-type) contact pro-
cess on Z with half-line initial condition ξ0(x) = 1(x ≤ 0), and defining the right edge rt :=
sup{x : ξt(x) �= 0},

if λ > λc, eventually rt ≤ Ct, while

if λ < λc, eventually rt ≤ −ect,
(12)

where c, C > 0 depend only on the value of λ in each case.
The case λ > λc follows from Theorem 4 in [7], while the case λ < λc is the content of the

proof of Theorem 8 in [7]. If λ > λc we actually have rt/t → α(λ), but the above is the more
pertinent fact here. In words, the invasion front of a supercritical contact process advances at
most linearly, while the front for a subcritical contact process falls back exponentially fast.
Thus, if, in our process, we begin with ξ0(x) = 1(x < 0) + 21(x > 0), i.e. type 1 to the left of
the origin and type 2 to the right, then if the right-hand boundary of type 1 and the left-hand
boundary of type 2 do not meet within a short time, with high probability the two types will
never interact, with the 2s vanishing rapidly while the 1s gradually advance. Naturally, this
argument is also applicable if we start with a small patch of type 2s surrounded by type 1s.

The second observation is a comparison property that lets us reduce the study of the descen-
dants of a type-2 site to the setting where there is a collection of 2s surrounded by 1s on either
side. Namely, if in the initial configuration we replace all 2s with 1s, then the resulting pro-
cess has at least as many occupied sites as it did before. Given ξt with ξ0 = ξ , if we define an
auxiliary copy ξ ′ on the same graphical representation, with initial configuration

ξ ′
0 = 1{ξ0(y) �= 0},

then since λ20 ≤ λ10 it follows that

for all t ≥ 0, {x : ξt(x) �= 0} ⊆ {x : ξ ′
t (x) = 1}. (13)

Notice that the same is not true if we replace some but not all 2s with 1s, as can be seen by
simple counterexamples. Next, we define descendant and ancestor. Suppose ξs(x) = ξt(y) = i �=
0 for some x, y and s ≤ t. Then (y, t) is a descendant of (x, s), and (x, s) is an ancestor of (y, t),
if either (y, t) = (x, s) or if there are times and sites

s = t0 < t1 < · · · < tk−1 ≤ tk = t and x = x1, x2, . . . , xk = y

such that the following two conditions hold:

• For j = 1, 2, . . . , k, we have ξr(xj) = i for all times r ∈ [tj−1, tj].

• For j = 1, 2, . . . , k − 1, we have ξt−j
(xj+1) �= ξtj(xj+1) = i as a result of a birth or

infection event along the edge (xj, xj+1) at time tj.
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time t 0 1 0 0 2 2 0 0 2 0 0 0 1 2
ξt

x

at dt lt rt ht bt

FIGURE 3. Picture related to the proof of Proposition 3.

For a set S ⊂Z and s ≤ t, let

A(s, t; S) = {y : (y, t) is a descendant of (x, s) for some x ∈ S}.
Use the shorthand A(s, t; x) for A(s, t; {x}) and At(S) for A(0, t; S), and for i = 1, 2 and a con-
figuration ξ let Si(ξ ) = {x : ξ (x) = i}. It follows from the definition of descendant that for t ≥ 0
and i = 1, 2,

{A(s, t; x) : x ∈ Si(ξs)} is a partition of Si(ξt).

Thus, to control S2(ξt), which is our goal, it is enough to get good bounds on At(x) for x ∈
S2(ξ0).

Given an interval S disjoint from S1(ξ0), let At = At(S) and let �t = inf At, rt = sup At,

at = sup {x < �t : ξt(x) �= 0}, and bt = inf{x > rt : ξt(x) �= 0}.
Also, let dt = �t − at, ht = bt − rt, and mt = min (dt, ht). Figure 3 gives an illustration of these
quantities. Notice that, since interactions are with nearest neighbors and S ∩ S1(ξ0) =∅ by
assumption, it follows that [�t, rt] ∩ S1(ξt) =∅ for t ≥ 0, and a fortiori that

A(s, t; [�s, rs]) = At for s ≤ t. (14)

Time intervals when mt = 1 we call invasion, and when mt ≥ 2 we call struggle. The basic
recipe for controlling At is to control the duration and extent of each invasion, and to show that
each struggle results, with positive probability, in the rapid and total collapse of At.

We begin with struggle, which is the toughest to address; in fact, invasion will be surrep-
titiously taken care of in Proposition 1. In the next result we show that, starting from a fixed
initial configuration ξ0, with positive probability, collapse of At occurs before invasion, uni-
formly over finite intervals S and ξ0 such that S1(ξ0) is disjoint from S. In addition, we show
that if collapse occurs, then it is exponentially fast. This makes use of the comparison property
(13) as well as the asymmetry (12), and the fact that in the absence of invasion (that is, when
mt > 1) the particles in At do not interact with the particles outside At. Using these estimates
and an iterative restarting argument, we can then prove Proposition 1, which then easily leads
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to Propositions 2 and 3, at which point we have enough to tackle the proof of (10) and (11).
In the following proofs, c and C are strictly positive constants such that the given statements
hold for c and all smaller values than c, or C and all larger values than C, which will mean that
c, 1/C are allowed to decrease from step to step.

Lemma 1. There are p, c, C > 0 such that, if S ⊂Z is a finite interval, S ∩ S1(ξ0) =∅, and
m0 ≥ 2, then letting τ = inf{t : mt = 1}, P(τ = ∞) ≥ p and, for t > 0,

max (P(rs > r0 − ecs for some s > t and τ = ∞), P(t < τ < ∞)) ≤ C e−ct.

Proof . Using a pair of independent substructures that we denote �1, �2, define generalized
stacked contact processes ζ 1−

t , ζ 1+
t and ζ 2

t with the same parameters as ξt and with initial
configurations

ζ 1−
0 (x) = 1(ξ0(x) �= 0, x < min S), ζ 1+

0 (x) = 1(ξ0(x) �= 0, x > max S) and

ζ 2
0 (x) = 2 1(ξ0(x) = 2, x ∈ S).

Define ζ 1
t by ζ 1

t (x) = max (ζ 1−
t (x), ζ 1+

t (x)), noting ζ 1
t is a stacked contact process with initial

configuration 1(ξ0(x) �= 0, x /∈ S), independent of ζ 2
t . For all t, ζ 1

t has no sites of type 2, and
since δ = 0, ζ 2

t has no sites of type 1. Let

�′
t = inf{y : ζ 2

t (y) �= 0}, r′
t = sup{y : ζ 2

t (y) �= 0}, and

a′
t = sup{y : ζ 1−

t (y) �= 0}, b′
t = inf{y : ζ 1+

t (y) �= 0}.
Let d′

t = �′
t − a′

t, h′
t = b′

t − r′
t, and m′

t = min (d′
t, h′

t).
Since At(S) and At(Z \ S) are separated (have no adjacent sites) for t < τ , we can define ξt as

follows. For t < τ , use �2 and the initial configuration ξ0 1(S) to determine ξt(x) for x ∈ At(S)
and use �1 and the initial configuration ξ0 1(Z \ S) to determine ξt(x) for x /∈ At(S). Then use
ξτ and �1 to determine ξt for t ≥ τ . This furnishes a coupling of ξt with ζ 1−

t , ζ 1+
t , ζ 2

t , and this
coupling has the property that, for all t ≤ τ ,

At(S) = {x : ζ 2
t (x) = 1} and At(Z \ S) ⊆ {x : ζ 1

t (x) = 1}.
The first statement is clear, while the second statement follows from (13). It follows in partic-
ular that at ≤ a′

t, �t ≥ �′
t, rt ≤ r′

t, and bt ≥ b′
t, and thus dt ≥ d′

t, ht ≥ h′
t, and mt ≥ m′

t for t ≤ τ . To
simplify matters we note that τ = τ� ∧ τr, where

τ� = inf{t : dt = 1} and τr = inf{t : ht = 1}.
In the estimates that follow, c, C, and D are positive constants and c, 1/C may get smaller

from step to step. By the monotonicity of the contact process, the set of occupied sites
{x : ζ 1−

t (x) = 1} of ζ 1−
t is dominated by the pure birth process in which particles do not die

and give birth onto neighboring sites at rate λ10, similarly for ζ 1+
t , and for ζ 2

t with λ20 instead
of λ10. In particular,

P(b′
t − r′

t < n) ≤ P(h0 − Poisson ((λ10 + λ20) t) < n) for all n > 0,

and, applying a standard large deviations estimate, we get

P(h′
s < 2 for some s ≤ h0/(2 (λ10 + λ20))) ≤ C e−ch0 . (15)
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Also, for each t > 0,
P(b′

s < b0 − 2λ10 t for some s ≤ t) ≤ e−ct. (16)

To control r′
s, we use a known estimate at integer times, then a Poisson estimate at in-between

times.
From (12) and the assumption λ20 < λc, for t > 0,

P(r′
t > r0 − ect) ≤ C e−ct. (17)

In addition, since the displacement in one unit of time is dominated by a Poisson random
variable with parameter λ20, for any integer k ≥ 0 we have

P(r′
s − r′

n > k for some s ∈ [n, n + 1]) ≤ C e−ck. (18)

Combining (17) with t = n and (18), we deduce that

P(r′
s > r0 − ecn + n for some s ∈ [n, n + 1]) ≤ C e−cn. (19)

Then, combining with (16) evaluated at t = n + 1, for each integer n ≥ 1,

P(h′
s < h0 + ecn − (1 + 2 λ10)(n + 1) for some s ∈ [n, n + 1]) ≤ C e−cn. (20)

To deduce the first estimate we distinguish two cases, where D > 0 is a large enough constant.

Case 1: m0 > D For one side of the argument, h0 > D suffices; an analogous argument
applies to the other side assuming d0 > D. The bound on h′

s in (20) is at least two for all n.
Recalling that ht ≥ h′

t for t ≤ τ , then combining (15) with (20) summed over n ≥ �h0/(2 (λ10 +
λ20))�,

P(τr < ∞) = P( inft≥0 ht ≤ 1) ≤ P( inft≥0 h′
t ≤ 1)

≤ Ce−ch0 + ∑
n≥ch0

C e−cn ≤ C e−ch0 when h0 > D,
(21)

where c, C do not depend on D. By reflection invariance, the same holds for τ�. If D is large
enough that Ce−cD < 1/2 we find that P(τ = ∞) ≥ 1 − 2Ce−cD = ε for some ε > 0.

Case 2: m0 ≤ D Given S, let E denote the event where, in one unit of time, there is a death
at every site in [ inf S − D, inf S − 1] ∪ [ sup S + 1, sup S + D] and no birth onto any vertex in
the same set. Since the birth rate onto any vertex is at most 2λ10 and the death rate at any site
is 1,

P(E) ≥ (1 − e−1)4D(e−2λ10 )4D = δ > 0,

with δ depending on D but not on S. Note that on E, τ > 1 and m1 > D. Using the Markov
property and the previous result,

P(τ = ∞) ≥ P(τ > 1 and m1 > D)P(τ = ∞ | τ > 1 and m1 > D) ≥ δε,

which gives the first statement with p = δε > 0.
Now, in (19) above, for n ≥ n0 for some n0, absorb n into −ecn by decreasing c, then increase

C to account for n < n0. Then, for any t > 0, summing (19) over n ≥ �t�,

P(r′
s > r′

0 − e−cs for some s > t) ≤ C e−ct.
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On the event {τ = ∞}, we have rt ≤ r′
t for all t ≥ 0, and the second statement follows. Using

the two bounds (16) and (17) above, and noting that m0 ≥ 2,

P(h′
t < 2 + ect − 2 λ10 t) ≤ C e−ct

and for t large enough, 2 + ect − 2 λ10 t ≥ t. Since ht ≥ h′
t for t ≤ τ , it follows that

P(ht < t, t < τ ) ≤ Ce−ct,

and an analogous estimate applies to dt. For t large enough, using the above and (21),

P(t < τ < ∞) = P(mt < t, t < τ < ∞) + P(mt ≥ t, t < τ < ∞)

≤ P(mt < t, t < τ ) + P(t < τ < ∞ | mt ≥ t)

≤ P(ht < t, t < τ ) + P(dt < t, t < τ )

+ P(t < τr < ∞ | mt ≥ t) + P(t < τ� < ∞ | mt ≥ t)

≤ 4Ce−ct.

This completes the proof. �
Lemma 2. Let T = inf{t : mt ≥ 2}. There are positive constants c,c such that, if S ⊂Z is a finite
interval and S ∩ S1(ξ0) =∅, then

P(T > t) ≤ Ce−ct.

Proof. Let s0 = 0 and s1, s2, . . . denote the times when either death occurs at �t − 1 or
rt + 1, or infection occurs across either the edge (�t, �t − 1) or (rt, rt + 1). Then T ≤ s2K where

K = inf{k : death occurs at (�t − 1, s2k−1) and (rt + 1, s2k)}.
Clearly, K � Geometric ((1/2λ21)2) and {sk+1 − sk : k ≥ 0} � {σk : k ≥ 0}, an independent and
identically distributed sequence of exp (2) random variables. A routine estimate gives the
result. �

Next, we show the position of the rightmost pathogen in any At goes to −∞ exponentially
fast. This is the analog of the second estimate in Lemma 1 but dropping the condition τ = ∞.
This result is then used in the subsequent lemma to show that the probability that the rightmost
pathogen moves n steps to the right of its initial position decays exponentially with n.

Proposition 1. There are positive constants c,C such that, if S ⊂Z is a finite interval and
S ∩ S1(ξ0) =∅, then

P(rt > r0 − ect) ≤ C e−ct.

Proof . Define recursively the two sequences of stopping times (τi)i≥0 and (Ti)i≥0 by τ0 = 0,
T0 = inf{t ≥ 0 : mt = 2}, and, recursively for i ≥ 1,

τi = inf {t > Ti−1 : mt = 1},
Ti = inf {t > τi : mt = 2},

with the convention inf ∅= ∞. Let N = inf{i : τi = ∞}. Recursively at each time τi, applying
the strong Markov property and noting (14), then applying the first result of Lemma 1 with
S = [�τi , rτi ] we find that

N � −1 + Geometric (p),
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where � means stochastically smaller. Doing the same, but applying the third result of
Lemma 1,

{(τi − Ti−1) 1(N ≥ i) : i > 0} � {σi 1(N ≥ i) : i > 0},
where σ1, σ2, . . . is a sequence of independent, identically distributed random variables
independent of the random variable N and such that

P(σi > t) = min (Ce−ct, 1) for all t > 0.

Using Lemma 2, the same holds for {(Ti − Ti−1)1(N ≥ i) : i > 0}. Letting n = �t/4E[σi]�, and
applying a large deviations bound,

P(τN > t) ≤ P((τN − TN−1) + · · · + (τ1 − T0) > t/2)

+ P((TN−1 − τN−1) + · · · + (T0 − τ0) > t/2)

≤ 2P(σ1 + · · · + σN > t/2)

≤ 2P(N > n) + 2P(σ1 + · · · + σn > 2n E[σi]) ≤ 2C e−cn ≤ 2C e−ct.

(22)

We may assume that λ20 ≤ λ21, since otherwise At is dominated by a contact process with
infection rate λ20 < λc and initial sites S, and the result then follows directly from (12).
Comparing the set of sites in state 2 to a pure birth process with no deaths and with birth
to adjacent sites at rate λ21, a large deviations estimate gives c, C > 0 such that

P(rt > r0 + 2 λ21 t) ≤ C e−ct for all t > 0. (23)

For any c > 0, there is t0 such that λ21 t < ect − ect/2 for all t > t0, in which case

P(rt > r0 − ect/2) ≤ P(rt/2 > r0 + λ21 t)

+ P(rt > r0 − ect/2 and rt/2 ≤ r0 + λ21 t)

≤ P(rt/2 > r0 + λ21 t) + P(rt > rt/2 − λ21 t − ect/2)

≤ P(rt/2 > r0 + λ21 t) + P(rt > rt/2 − ect)

(24)

for all t > t0. On the other hand,

P(rt > rt/2 − ect) ≤ P(τN > t/2) + P(rt > rt/2 − ect, τN ≤ t/2). (25)

Letting τ (t) = inf{s > t : ms = 1}, the event τN ≤ t/2 is equivalent to τ (t/2) = ∞. Applying the
second result of Lemma 1 with S = [�t/2, rt/2] we find that

P(rt > rt/2 − ect and τ (t/2) = ∞) ≤ Ce−ct.

Combining with (22)–(25) gives the desired estimate when t > t0. If t ≤ t0 then, after increasing
C if necessary, the estimate holds for all values of t. �

Proposition 2. There is C > 0 such that, if S ⊂Z is a finite interval and S ∩ S1(ξ0) =∅, then

P(rt > r0 + n for some t ≥ 0) ≤ C e−cn.
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Proof. Comparing to a pure birth process as above,

P(rs > r0 + n for some s ≤ m0) ≤ C e−cn for m0 = �n/2λ21�.

If n ≥ n0 = supm≥0 −ecm + m, then using Proposition 3 and large deviations for the Poisson
distribution with parameter λ21,

P(rs > r0 + n for some s ∈ [m, m + 1])

≤ P(rm > r0 − e−cm) + P(rs > rm + m for some s ∈ [m, m + 1]) ≤ C e−cm.

Summing over m ≥ m0 gives the desired estimate for n ≥ n0; for n < n0 increase C if
necessary. �

We can now show that the set of descendants is exponentially bounded in both space and
time.

Proposition 3. There are c, C > 0 such that, if x ∈Z and ξ0(x) = 2,

P(At(x) �=∅) ≤ C e−ct and P(At(x) � [x − n, x + n] for some t ≥ 0) ≤ C e−cn.

Proof. Defining at, �t, etc. with S = {x}, �0 = r0 = x, and At(x) �=∅ is equivalent to �t ≤ rt.
Using Proposition 1, reflection invariance, and a union bound,

P(�t > rt) ≥ P(�t ≥ �0 + ect and rt ≤ r0 − ect)

≥ 1 − (P(�t < �0 + ect) + P(rt > r0 − ect) ≥ 1 − 2Ce−ct,

and the first result follows by taking the complement. The second result follows in the same
way, except using Proposition 2. �

Next, we use Proposition 3 to prove (10), which says that in an exponentially growing
neighborhood of any site, eventually there are no sites in state 2. We also record an exponential
estimate. Note the change in the definition of �x

t , rx
t .

Proposition 4. For a site x ∈Z, let

�x
t = sup {y ≤ x : ξt(y) = 2} and rx

t = inf {y ≥ x : ξt(y) = 2}.
Then, there exist c, C > 0 such that, for any ξ0 and t0,

P(�x
t > x − ect or rx

t < x + ect for some t > t0) ≤ C e−ct0 .

Also, there exists c > 0 such that, for any ξ0 and any site x,

P( sup {t : ξt(y) = 2 for some y such that |y − x| ≤ ect} < ∞) = 1.

Proof. Throughout this proof, y refers to a site which is initially in state 2. Let c, C be two
constants as in Proposition 3, so that for all y, ξ , and n,

max (P(An(y) �=∅), P(At(y) � [x − n, x + n] for some t ≥ 0)) ≤ C e−cn.

Using a union bound over y ∈ [x − ecn/2, x + ecn/2] and that At(y) =∅ is an absorbing property,

P(At(y) �=∅ for some y such that ξ0(y) = 2

and |y − x| ≤ ecn/2 and some t ≥ n) ≤ C e−cn/2.
(26)
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Let n0 be such that n ≥ n0 implies ecn/2 − ec(n+1)/4 > n. If |y − x| = �ecn/2� + m for integer
m ≥ 0 and any n ≥ n0, then, using the second half of Proposition 3,

P( inf
t

min{|z − x| : z ∈ At(y)} ≤ ec(n+1)/4) ≤ C e−c(n+m).

Taking C larger if necessary makes the previous inequality also true for all n < n0. Then, taking
a union bound and increasing C at the last step gives

P( inft min{|z − x| : z ∈ At(y)} ≤ ec(n+1)/4 for some y

such that |y − x| > ecn/2 and ξ0(y) = 2) ≤ C(1 − e−c) e−cn ≤ C e−cn.
(27)

Combining (26) and (27) gives

P(ξt(y) = 2 for some y ∈ [x − ect/4, x + ect/4] and t ∈ [n, n + 1]) ≤ C e−cn/2.

Given t0, summing over n ≥ �t0� gives the first statement. Summing over all n and using the
Borel–Cantelli lemma finishes the proof. �

In what follows, a mark refers to a Poisson point in the graphical representation. Marks are
named by their effect on the target site, so, for example, a 0 → 1 mark is an edge mark at some
time t along a directed edge (x, y) such that if ξt− (x) = 1 and ξt−(y) = 0 then ξt(y) = 1. Also, a
death mark refers to a � → 0 event, while a birth mark is a 0 → � event, where � �= 0. Note that
since the graphical representation consists of at most a countably infinite number of Poisson
point processes, with probability one, no two marks occur at the same time.

Next, we use Proposition 4 to produce an interval that grows linearly in time and is devoid
of pathogens.

Lemma 3. For any μ > 0, there are c, C > 0 such that, for all integer n > 0,

P(ξt(x) = 2 for some |x| ≤ n/2 + μt) ≤ C e−cn

for all ξ0 such that ξ0(x) �= 2 for all |x| ≤ n.

Proof. Let y = n + m with m > 0; a similar argument applies to −y. Using Proposition 3
gives the existence of constants c, C > 0 such that, for all ε > 0,

P(Ay
εy �=∅ or inft Ay

t < 2y/3) ≤ C e−cεy.

On the complement of the above event, the descendants of (y, 0) are contained in

� := {(x, t) : x ≥ 2y/3 and 0 ≤ t ≤ εy}.
A quick sketch (see Figure 4) shows that the rectangle � is disjoint from the set

{(x, t) : t ≥ 0 and |x| ≤ n/2 + μt}
provided the top left corner of � lies to the right of the line x = n/2 + μt, which is the condition

n/2 + μεy < 2y/3.

Since n ≤ y, this condition is satisfied if ε < 1/6μ. Summing over m > 0 for both y = n + m
and y = −n − m then gives the desired result. �
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time t

t = εy

n/2 + μεy n/2 + μt

n/2 n

mno 2 at time 0

y = n + m2y/3

FIGURE 4. Picture related to the proof of Lemma 3.

A related notion to the descendants is the cluster, that we need only define for type 1, as
follows. Suppose ξs(x) = ξt(y) = 1 for some x, y and s ≤ t. Then, we say that (y, t) belongs to
the cluster of (x, s) if there are times and sites

s = t0 < t1 < · · · < tk−1 ≤ tk = t and x = x1, x2, . . . , xk = y

such that the following two conditions hold:

• For j = 1, 2, . . . , k, we have ξr(xj) = 1 for all times r ∈ [tj−1, tj].

• For j = 1, 2, . . . , k − 1, there is a 0 → 1 birth mark along the edge (xj, xj+1) at time tj.

In contrast to the definition of descendants, it is permitted to have ξt−j
(xj+1) = 1.

If ξs(x) = 1 then, for t ≥ s, let Bt(x, s) denote the cluster of (x, s) at time t, that is,

Bt(x, s) := {y ∈Z : (y, t) is in the cluster of (x, s)},
and denote it Bt(x) for s = 0. Again, since interactions are nearest-neighbor,

ξt(y) �= 2 for all y ∈ [ inf Bt(x, s), sup Bt(x, s)] and t ≥ s.

As a warm-up to (11), we prove the following.

Lemma 4. Suppose ξ0(0) = 1. Let �t = inf Bt(0) and rt = sup Bt(0), and let

τ = inf {t > 0 : ξt(�t − 1) = 2, ξt(rt + 1) = 2, or Bt =∅}.
Then, there are p, c, C > 0 such that

P(τ = ∞) ≥ p and P(t < τ < ∞) ≤ C e−ct

uniformly over ξ0 such that ξ0(0) = 1.

Proof. Define a pair of independent copies ξ1
t and ξ2

t of the generalized stacked contact
process with initial configurations

ξ1
0 (y) = ξ0(y) 1{y = 0} and ξ2

0 (y) = ξ0(y) 1{y �= 0}.
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Also define

�1
t = inf {x : ξ1

t (x) = 1} and r1
t = sup {x : ξ1

t (x) = 1},
a2

t = sup {x < �1
t : ξ2

t (x) = 2} and b2
t = inf {x > r1

t : ξ2
t (x) = 2},

so that τ can also be expressed as

τ = inf {t > 0 : �1
t − a2

t ≤ 1, b2
t − r1

t ≤ 1, or ξ1
t ≡ 0}.

To show that τ = ∞ with positive probability, first we fix n and consider the case
min (|a2

0|, |b2
0|) ≥ n. Using large deviations estimates for the Poisson distribution, we can show

that

P( max (|�1
t |, |r1

t |) ≥ 2λ10 t + n/2 − 1 for some t > 0) ≤ C e−cn.

To do so, it suffices to first make an estimate for t ≤ m0 := �n/4λ10�, then for t ∈ [m, m + 1]
for each m ≥ m0, then to take a union bound. Then, taking μ = 2λ10 and using Lemma 3, for
integer n > 0 we have

P( min (|a2
t |, |b2

t |) ≤ 2λ10 t + n/2 for some t > 0) ≤ C e−cn.

Since λ10 > λc by assumption, q := P(ξ1
t �≡ 0 for all t) > 0. Moreover, if ξ1

t �≡ 0 for all t and
min (|a2

t |, |b2
t |) > max (|�1

t |, |r1
t |) for all t > 0 then τ = ∞, so taking n large enough that

2Ce−cn < q/2, we find that if ξ (x) �= 2 for |x| ≤ n then

P(τ = ∞) ≥ q − q/2 = q/2.

For ξ such that ξ (0) = 1, the probability

P(ξ1(0) = 1 and ξ1(x) = 0 for all 0 < |x| ≤ n)

is at least the probability that, on the time interval [0, 1], there are no birth marks along edges
touching [− n, n], there is no death mark at 0, and there is a death mark at every x with 0 <

|x| ≤ n, and this probability is at least 2p/q for some p > 0. Using the Markov property and the
estimate on τ = ∞ in the previous case then gives P(τ = ∞) ≥ (2p/q)(q/2) = p > 0 as desired.

To deduce the estimate on P(t < τ < ∞), we note that

P( max (|�1
s |, |r1

s |) ≥ 2λ10 s for some s ≥ t) ≤ C e−ct,

which can be proved by applying an estimate at each integer time n > t and summing over n.
Then, combining with the first statement in Proposition 3 and noting that

t < τ < ∞ implies that max (|�1
s |, |r1

s |) ≥ min (|a2
s |, |b2

s |) − 1 for some s > t,

we deduce the estimate on P(t < τ < ∞). �

We are now ready to establish (11), which states the existence of a linearly growing region
starting from a random space-time point in which the process agrees with the contact process
with parameter λ10. This will also complete the proof of Theorem 2.
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Proof of (11). Given (x, s), for t ≥ s recall that Bt(x, s) denotes the cluster of (x, s) at time t.
Let τ0 = 0, and x0 be any site with ξ (x0) = 1. Without loss of generality, suppose that the set
{x > 0 : ξ (x) = 1} is infinite, and define xi and τi recursively for λ21 < ∞ by letting

�i
t = inf Bt(xi, τi),

ri
t = sup Bt(xi, τi),

τi+1 = inf {t > τi : ξt(�i
t − 1) = 2 or ξt(ri

t + 1) = 2},
xi+1 = inf {x > xi : ξτi+1 (x) = 1},

with the value of xi being unimportant if τi = ∞. Note that if time τi < ∞ then site xi+1 is well
defined due to the fact that

{ξ : ξ (x) = 1 for infinitely many x > 0}
is an invariant set for the dynamics. Let N = sup {i : τi < ∞}. Applying the strong Markov
property and using Lemma 4, we obtain that N is at most geometric with parameter p. In
addition, by the second part of Lemma 4, for i = 0, 1, 2, . . .,

τi+1 − τi � Ti where P(Ti > t) ≤ max (1, Ce−ct)

and the random variables Ti are independent. In particular, τN is almost surely finite. Let T =
τN , X = xN , �t = �N

t , and rt = rN
t .

Recall that ζt denotes the process with initial configuration ζ0(x) = 1 for all x. Since λ10 >

λ20 by assumption, a straightforward coupling argument shows that, for any configuration ξ0,

{x ∈Z : ξt(x) �= 0} ⊆ {x ∈Z : ζ (x) = 1}.
Therefore, ζτi(xi) = 1 whenever τi < ∞. By definition of time τi+1, the set Bt(xi, τi) is the set
of infected sites in a (single-type) contact process started from the single infected site xi at time
τi, so a coupling found in [3] shows that if τi < ∞ then

ξt(x) = ζt(x) for all x ∈ [�i
t, ri

t] and all τi < t < τi+1.

In [3] it is shown that, for the contact process, on the event of single-site survival, −�i
t/t and

ri
t/t → α > 0, so the same is true here provided τi+1 = ∞, which is the case for i = N. The

proof is now complete. �
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