
Robotica (2007) volume 25, pp. 1–11. © 2006 Cambridge University Press
doi:10.1017/S0263574706002943 Printed in the United Kingdom

On the construction of discretized configuration
space of manipulators
X. J. Wu1, J. Tang2,∗ and K. H. Heng1

1School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798
2Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs,
CT 06269, USA

(Received in Final Form: June 20, 2006, First published online: August 8, 2006)

SUMMARY
In this research, we study the construction of configuration
space (C-space) of manipulators. The proposed approach is
based upon precomputing the global topology of a robot’s
free space, and consists of an offline phase and an online
phase. In the offline phase, a C-space obstacle database
(COD) for a given robot is developed in which the C-
space obstacle (C-obstacle) maps are stored and indexed by
the cells of the workspace; in the online phase when the
same robot is operated in a real environment, those maps
whose indices match the real obstacle cells are identified and
then extracted from the COD. The superposition of these
maps forms forbidden region in operation. This proposed
approach is a generic one and can be applied to manipulators
with arbitrary kinematic structures and geometries. The
construction of the COD, which is generally the most time-
consuming step, is implemented in the offline phase, and
the online computing only involves the identification of
the components matching the COD indices. Therefore, this
proposed approach for C-space construction can be realized
in a real-time online fashion and is especially suitable for
robot manipulation under dynamic operations. We carry out
analyses on several types of manipulators to verify and
demonstrate the feasibility and efficiency of the proposed
approach.

KEYWORDS: Robot manipulators; Configuration space obstacle;
Bit maps; Motion planning; Dynamic environment.

1. Introduction
The notion of Configuration Space (C-space), which is
defined in terms of the parameters that specify the position
and posture of a robot where each dimension represents a
joint coordinate,1 plays an important role in robot motion
planning. In a C-space, the obstacles in the workspace are
mapped as forbidden regions (referred to as C-obstacle),
and the complement of the C-obstacle constitutes the free
space Cfree. Path planning for a robot with n degrees-of-
freedom (DOF) can thus be converted to the problem of
planning a path for a particle in an n-dimensional C-space.
A series of methods have been proposed for the construction

∗ Corresponding author. E-mail: jtang@engr.uconn.edu

of C-space, some of which involve computing the boundary
of the C-obstacle analytically. Lozano-Perez considered the
case where both the robot and the obstacles were convex
polygons or polyhedra, and the C-obstacle boundary for an
n-DOF manipulator was approximated by sets of (n−1)-
dimensional slices recursively built up from one-dimensional
slices.2 Donald characterized the five-dimensional C-space
boundaries of a six-dimensional C-obstacle using an
algebraic format of constraints based on the contact
condition.3 Maciejewski and Fox also studied the analytical
description of the boundaries of C-obstacle and derived the
connectivity of C-space for revolute manipulators.4 Zhao
et al. developed an analytical representation of C-obstacle
using a set of parametric equations.5 These parametric
equations were resulted from mapping the boundaries of the
obstacles from workspace into the C-space through using the
inverse pseudo kinematics. The aforementioned analytical
approaches have been demonstrated on robots with small
number of DOFs. Nevertheless, the research on analytical
approach for C-space construction with large number of
DOFs under practical environment has been rare, due to the
much increased complexity in analytically representing the
kinematic structures in such applications.

An alternative route is to obtain an approximation of the
C-obstacle by using a discretization of the configuration
space, such as a bitmap or a gray-scale representation.
A bitmap can explicitly represent the free part of the C-
space with 0, and represent the part that gives rise to
collisions with an obstacle with 1. Newman and Branicky
identified the elemental building blocks that can be easily
transformed from the workspace to the C-space.6 They
stored the C-space transforms of shapes as bitmaps first,
and then used the superposition of these primitive maps
to construct the configuration space maps for industrial
robots. Lozano-Perez and O’Donnell implemented a similar
approach to the parallel robot motion planning.7 These
primitive bitmaps, however, were limited to 2-DOF RR-type
manipulators or puma-like robots with consecutive parallel
rotational joints. Kavraki8 and Curto and Moreno9 explored
the general method of bitmap calculation for C-obstacle
without heuristics, where the C-space maps of obstacles
were computed using the Fast Fourier Transform (FFT). This
algorithm is based on the observation that the configuration
space is a convolution of the workspace and the robot.

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

2 Discretized configuration space

Kyatkin and Chirikjian10 and Chirikjian and Ebert-Uphoff11

have considered gray-scale descriptions of C-obstacle. They
used the discrete-motion group as an approximation to
the Euclidean group, and also applied FFT techniques to
calculate the C-obstacles of mobile robots, which move
among static obstacles. The obvious advantage of discretized
representation of C-obstacle is that it provides a simple
means for superposing precomputed maps, and it can take
advantage of the well-established FFT technique including
computing hardware implementation. The main drawback
of this technique, however, is that it is computationally
costly. While it has been recognized that the discretized
representation of C-space (or C-obstacle) could potentially
have wide applications in robot motion planning involving
large number of DOFs especially in path searching, currently
the existent practical motion planners based on explicit
representation of the C-space are still hampered by the curse
of dimensionality.12

In this paper, a new two-phase approach for the
construction of C-space is proposed. The proposed approach
is based upon precomputing the global topology of a robot’s
free space, and consists of an offline phase and an online
phase. In the offline phase, a C-obstacle database (COD) for
a given robot is developed in which the C-obstacle maps
are stored and indexed by the cells of the workspace; in
the online phase when the same robot is operated in a
real environment, those maps whose indices match the real
obstacle cells are identified and then extracted from the COD.
The superposition of these maps forms the forbidden region
in operation or the C-obstacle. This proposed approach is a
generic one and can be applied to manipulators with arbitrary
kinematic structures and geometries. The construction of
the COD, which is generally the most time-consuming
step, is implemented in the offline phase, and the online
computing only involves the identification of the components
matching the COD indices. This leads to a significant
reduction of computational time required for the online
C-space construction. This new approach for the C-space
construction can be realized in a real-time online fashion
and is especially suitable for manipulator motion planning in
dynamic environments. We use a series of simulation cases
involving a 3-DOF manipulator and a 5-DOF manipulator to
demonstrate the performance of the proposed scheme.

2. Basic strategy for C-obstacle database construction
and matching
Let q = (q1, . . ., qn) denote a configuration of a manipulator
with n DOFs, where each element of q is a joint parameter,
measuring either the angular displacement or the linear
displacement depending on the type of the joint. The
proposed approach for C-space construction consists of two
phases, i.e., an offline phase and an online phase.

2.1. Offline C-obstacle database creation
In the offline phase, at first, the workspace, denoted as W,
is decomposed into cells under certain resolution defined as
W = ∪wi . Then, for each cell of the workspace, wi, we find
all configurations of the robot, denoted as Qwi

, under which

we assume robot A passes position wi in the workspace.
Mathematically, we defineQwi

= {q|Aq ∩ wi �= 0}, where
Aq refers to robot A in configuration q. Qwi

constitutes the
C-obstacle in the C-space corresponding to a particle-type
obstacle located at position wi in workspace, and it is referred
to as the C-obstacle map. All of the C-obstacle maps can be
organized into a database, called C-obstacle database (COD),
and indexed by wi.

Here we use a planar manipulator to illustrate the
procedure for offline COD creation. As shown in Fig. 1(a),
in the x–y plane, there exists an RR manipulator A and a
rectangular-type obstacle B. Figure 1(b) shows the grid of
the workspace W after its decomposition, W = ∪wi . As the
first step of the proposed approach, the C-obstacle database
for robot A will be built in the offline phase, i.e., for each
cell wi in W, we set up the C-obstacle map Qwi

. Based
on the rationale that the robot will collide with an obstacle
whenever this obstacle overlaps spatially with any part of
the robot, we may develop a procedure for setting up the
C-obstacle database containing all the C-obstacle maps for
robot A shown in Fig. 1(a). As an illustrative example, for
an arbitrary cell w∗ selected from W, those configurations
constituting Qw∗ are given in the workspace (Fig. 1(c)) and
in the C-space (Fig. 1(d)), respectively. The offline C-obstacle
database can be expressed as

COD = {q|Aq ∩ W �= 0} = {q|Aq ∩ (∪wi) �= 0}
= ∪({q|Aq ∩ wi �= 0}) = ∪(Qwi

) (1)

Let NA be the total number of cells of robot A, and let θ imax

and θ imin be the maximum and minimum value of each joint
variable, respectively. We may have the following pseudo
code.

for θ1 = θ1 min : θ1 max

for θ2 = θ2 min : θ2 max

{
Decompose robot A under configuration (θ1, θ2),

so that A(θ1,θ2) =
NA⋃
i=1

ai ;

for k = 1 : NA

add configuration (θ1, θ2) to Qai

}
(1)

2.2. Online C-space construction
In the online phase, for a real-time scenario containing the
same robot A and an obstacle B, the C-obstacle transformed
from B relative to A, COA(B), can be obtained based on
the offline C-obstacle database. Indeed, the obstacle B is
firstly decomposed under the same grid resolution defined in
the offline phase, i.e., B = ∪bi . Then the offline C-obstacle
database is searched and those maps Qbi

with indexes
matching bi are extracted. According to the union property
for C-space,1 the superposition of Qbi

is thus the real-time C-
obstacle during manipulator operation, i.e., COA(B) = ∪bi .
For the illustrative case shown in Fig. 1(a), we may assume
that the decomposition result of the obstacle B is based on the
same resolution used for W, i.e., B = ∪bi = {b1, b2, b3, b4}.

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

Discretized configuration space 3

Fig. 1. Simulation results of planar RR manipulator. (a) Scenario, (b) Grid of W, (c) Qw∗ shown in workspace, (d) Qw∗ shown in
configuration space, (e) decomposition of B, (f) ∪Qbi

shown in configuration space.

We then obtain the resultant C-obstacle COA(B) as follows,
which is also shown in Fig. 1(f),

COA(B) = {q|Aq ∩ B �= 0} = {q|Aq ∩ (∪bi) �= 0}
= ∪({q|Aq ∩ bi �= 0}) = ∪(Qbi

) (2)

As can be seen from the procedure described above,
the construction of the C-obstacle database in the offline
phase does not require any knowledge of the obstacles
in the real workspace. Once the COD for a given robot
is constructed, it can be utilized as a data source in

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

4 Discretized configuration space

different application scenarios. Since the time-consuming
setup of a COD is realized in the offline phase and only
the identification of maps in the COD is needed in the
online phase, the proposed approach is thus expected to
be able to deliver real-time result for C-space construction.
In Section 4, we will examine the running time of this
proposed approach in some typical cases. The real-time
property also makes the approach especially suitable for
manipulator motion planning in dynamic environment. In
such type of planning, the robot does not have a priori
information about the environment, thus scenario detection
via sensors is required, as described in [13, 14]. The
proposed approach can then be applied in such a sequence:
At each sampling moment, the obstacles are detected by
sensors and decomposed into cells, then the corresponding
C-space is constructed by C-obstacle map superposition;
after that, a suitable search algorithm such as depth first,
Dijkstra’s algorithm, A∗, or best first15 can be employed
to search for collision-free path within the constructed
C-space.

3. Representation scheme
Since the amount of space required for storing the COD
increases drastically as the dimension of the robot and the
resolution in the workspace and C-space increase, an efficient
representation scheme for an object in the workspace and
C-space is critical, which is detailed as follows.

3.1. Representations of the robot and the obstacle
in the workspace
When the robot and the obstacle are decomposed in the
workspace, both of them can be represented by either the
boundary or the entity fashion. We may design four patterns
involving different representation modes of robot A and
obstacle B in a planar case, as shown in Figs. 2(a)–(d). The
following observations can be made.

• If robot A is represented by the boundary, the calculated
result of superposition ∪Qbi

contains the complete
boundary and part of internal cells of the C-obstacle
COA(B), as shown in Fig. 2(e).

• If the robot is represented by the entity, i.e., the boundary
plus all the internal cells, then no matter the obstacle
is represented by boundary or entity, the result of ∪Qbi

contains not only the boundary, but also all the internal
cells of COA(B), which is shown in Fig. 2(f). This can be
explained by the fact that when A coincides with B at one
of B’s internal cell, e.g., bin, then A must at the same time
coincide with B at one boundary cell of B, e.g., bbound, and
therefore ∀bin ∈ B, Qbin ⊂ (∪Qbbound).

Based on the above observations, the following
representation strategies will be used in this paper. If only the
boundary of the C-obstacle is sought, we choose boundary
representation for both the robot and the obstacle; if the
whole entity of the C-obstacle is sought, we use boundary
representation for the obstacle and use entity representation
for the robot.

3.2. C-space representation
In general, the 2m tree representation of a space or an object
� is a hierarchical data structure of degree 2m, where m
is the degree of �. Each node of the tree is a cuboid cell
which is labeled as Black, White, or Gray, respectively. Only
those nodes that are Gray may have children, and each of
those nodes has 2m children.16 The 2m tree structure can save
memory storage by merging a set of neighboring White cells
or neighboring Black cells into a single White or Black cell
at the upper level. In this research, we employ the approach
of 2m tree data structure, outlined in [2, 17], to represent a
robot C-space.

In real applications, if a robot C-space is represented by
a uniform 2m tree, i.e., along each coordinate, the space will
be divided into the same number of intervals, which yields
a huge number of cells in the C-space. For example, for
a manipulator with 6 DOF, if a maximum depth of 5 is
assigned to each coordinate, then the total number of nodes
in C-space will be 25×6 ≈ 109. We may, actually, reduce the
size of the required data set. Firstly, for a manipulator, under
the same amount of joint change, the smaller the distance
between the joint and the base, the larger the end-effector’s
maximum movement will be in the workspace. This leads to
one category of criterion to determine the joint resolution,
that is, the step length along each joint coordinate should
result in almost equal displacement of the robot end-effector
in the workspace. Considering Fig. 3(b), we may determine
the resolution as

�qi = 2 arcsin

(
MaxMove

2li

)
(3)

where MaxMove is the required moving precision of the end-
effector in the workspace. This selection of resolution may
avoid abrupt motions and yield smooth paths.18,19

Secondly, if the resolution of each joint is sufficiently
small, no additional collision check has to be made for
adjacent link positions. Furthermore, the swept volume
between adjacent link positions is zero, and we have
reasonable workspace coverage. For a two-dimensional link,
if the swept area between two adjacent link positions is zero,
no collision check for intermediate positions is needed, as
shown in Fig. 4, where the maximum joint change is defined
as19

�φ = arctan(r/ l) (4)

where r and l are the link height and length, respectively. We
may then have the second category criterion, i.e., the chosen
maximal step length should lead to a reasonable workspace
coverage.

For either criterion, the C-space should be divided into
different number of cells along each joint coordinate, which
leads to a nonuniform 2m tree representation. As an example,
the depth of a 2m tree to represent the C-space of an
educational robot ESHED SCORBOT ER4pc with 5 DOF is
obtained according to category 1 and 2 criteria, respectively,
which is shown in Table I. In this example, joint 5 is an
exception whose rotation does not change the position of
the end-effector, thus, l5 = 0, and a small-depth value is

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

Discretized configuration space 5

Fig. 2. Different representation modes in workspace, and the corresponding C-obstacle. (a) W-space (A: boundary, B: boundary),
(b) W-space (A: boundary, B: entity), (c) W-space (A: entity, B: boundary), (d) W-space (A: entity, B: entity), (e) C-space calculated
from (a) or (b) [Resolution: 128×128 in W, 128×128 in C], (f) C-space calculated from (c) or (d) [Resolution: 128×128 in W, 128×128
in C].

chosen for joint 5. In later simulations in this paper, we
choose the depth value as (5,5,4,3,3) based on the category 1
criterion.

Figure 5 shows a nonuniform quadtree sample (where
m = 2). As can be seen from Fig. 5(c), each node of the
quadtree is equally divided into four children at both depth

1 and 2; but at depth 3, the map is divided only along the
latitudinal coordinate, i.e., each node is divided into two sub-
nodes only. As also shown in Fig. 5(c), each quadtree node is
labeled with an index value, referred to as a Morton code,20

which maps an n-dimensional vector to a one-dimensional
scalar. A Morton code has one or several digits, each of which

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

6 Discretized configuration space

Fig. 3. The uniform and nonuniform discretization of joints (from
[18]). (a) Uniform discretization (�qi = �qj) results in different
Cartesian movements �xi �= �xj when different joints i, j are
moved, (b) Reasonable discretization (�qi �= �qj) results in equal
maximum Cartesian movement �xi = �xj when different joints i,
j with distance li , lj to the end-effector are moved.

Fig. 4. Adjacent link positions with swept area 0 between them
(from [19]).

Table I. Process to determine the resolution leading to nonuniform
C-space discretization.

Joint

1 2 3 4 5
r (mm) 150 70 70 40 15
l (mm) 595 580 360 140 0

Cat. 1 Resolution
ratio

1

595

1

580

1

360

1

140
NA

Rounded
resolution
ratio

1

25

1

25

1

24

1

23

1

23

Cat. 2 �øi =
arctan(r/l)

14.3◦ 7◦ 11◦ 16.4◦ NA

is called a directional digit. The Morton code specifies the
node position in the tree and its position with respect to its
siblings in the following manner.

• A node can be tracked by starting from the root, traversing
downwards and following its directional digit at each
depth. Shown in Fig. 5 as an example, the black node
with Morton code 211 can be tracked along the dotted
line.

• At the longitudinal direction, counting from the left-most
cell, the decimal value of the Morton code denotes the
sequential position of the corresponding cell in the current
depth.

The Morton code can be obtained by binary interleaving of
the cell’s coordinates.16 Alternatively, the sample space in

Fig. 5(a) can be divided only along the latitudinal coordinate
at depth 1 and be divided along both coordinates at both
depth 2 and 3, which results in a different but equivalent
nonuniform quadtree, as shown in Fig. 6. In the remainder of
this paper, the first convention will be employed.

In Fig. 5(d), two arrays with bit encoding are adopted to
represent this quadtree. In the Black/White array, a single
binary bit is used to denote whether the corresponding tree
node contains black element, i.e., bit value 0 represents that
the node is White; and value 1 means the node is Black
or Gray. Similarly, in the Leaf array, bit value 1 represents
nonleaf node and value 0 for leaf node. Under this strategy,
only 8 bytes are needed to store all the information of the
quadtree shown in Fig. 5(c), which reduces the memory
requirement significantly than the common array or pointer-
type representations.

It is worth noting that certain trade-off exists for the
2m tree representation. Before any operation about the 2m

tree proceeds, the data stored in the tree representation
need to be decoded from the compressed bit encodings,
which could to certain extent slow down the speed for tree
traversing and operations such as union and subtraction,
etc.

3.3. Optimal resolution selection
For the proposed approach of C-space construction, the
selection of resolution in the workspace and the selection
of resolution in the C-space have a significant impact on
both the computational cost and the accuracy. Several sets
of resolutions are tested for the aforementioned illustrative
case. The calculated C-obstacles are shown in Figs. 2 and 7,
which leads to the following observations.

• Under a fixed resolution in workspace, as the resolution
in C-space gets finer, the calculated C-obstacle boundary
gets smoother and converges continuously to theoretical
C-obstacle boundary, as illustrated in Figs. 2(f) and 7(a),
(b).

• Under a fixed resolution in C-space, the increase of
resolution in workspace leads to the same trend, which
is shown in Figs. 2(f) and 7(c), (d).

Normally, the precision requirement is determined by a
real robot application, hence under the premise that the
precision is met, low resolution can be chosen to reduce
the computational cost.

3.4. Encoding the C-obstacle database over neighborhoods
in workspace
Usually, there are only minor variations in the C-obstacle
maps over local neighborhoods of the workspace, and the
C-obstacle database can be encoded for further storage space
reduction.

3.4.1. Reference C-obstacle maps. As an approximation, the
C-obstacle map corresponding to an arbitrary cell in the
workspace may be represented by the bitmap corresponding
to the nearest neighboring reference cell in workspace. The
neighborhoods of cells in the workspace can be obtained
by tree decomposition. The density of reference cells in
the workspace is determined by the kinematic structure

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

Discretized configuration space 7

Fig. 5. Quadtree demo for nonuniform 2m tree. (a) A 2D sample space, (b) non-uniform quadtree decomposition and node labeling,
(c) Quadtree representation of the sample space, (d) The bit encoding result of the quadtree in (c).

Fig. 6. Nonuniform space decomposition under another convention. (a) Another format of non-uniform decomposition, (b) quadtree demo
under another decomposition convention.

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

8 Discretized configuration space

Fig. 7. Calculated C-obstacle under different resolution settings. (a) C-space (Resolution: 32 × 32 in W and 128×128 in C), (b) C-space
[Resolution: 64 × 64 in W and 128 × 128 in C], (c) C-space [Resolution: 128×128 in W, 64 × 64 in C], (d) C-space (Resolution:
128×128 in W, 256×256 in C). (The real line in each sub-figure denotes the theoretical C-obstacle boundary, which is obtained from
analytic derivation.)

and geometric dimensions of the robot. Figure 8 shows
an example C-obstacle map corresponding to the case given
in Fig. 2(c), which is calculated based on this approximation.
Under the adopted resolution, the deviation between the
approximate C-obstacle and the original one is noticeable
but small.

3.4.2. Interpolation of the reference C-obstacle maps. An-
other reasonable approximation of the C-obstacle map
corresponding to an arbitrary cell in the workspace can be
made by using the linear interpolation between the reference
C-obstacle maps. The principal of this linear interpolation is
illustrated in Fig. 9(a) and (b). Such a scheme is analogous to
the morphing procedure in image processing that employs all
nodes as the so-called key points. Figure 9(c) shows the C-
obstacle calculated by using the linear interpolation that also
corresponds to the case given in Fig. 2(c). Compared with
the result from purely neighborhood encoding, the C-obstacle
calculated by the linear interpolation technique matches the
original boundary better.

Fig. 8. C-space calculated based on neighboring encoding.
(Resolution: 128×128 in W, 128×128 in C. Density of reference
cells in W: 32×32).

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

Discretized configuration space 9

Fig. 9. Demonstration of C-obstacle interpolation in a 2D case.
(a) Reference grid in workspace, (b) obtain COp by linear
interpolation (interpolation weights are marked on the arrows),
(c) calculated C-obstacle over neighborhoods in workspace
(resolution: 128×128 in W and 128×128 in C; density of reference
cells in W: 32×32).

4. Case studies and complexity analysis
In this section, we perform case studies to verify and
demonstrate the proposed approach. Some of the simulations
have already been presented in the previous sections as
illustrative examples. Here in this section, we focus on
the computational efficiency and complexity analysis. The
computer programs for simulation are written in C++
language. All simulations are run on a personal computer
with 1.5 GHz Pentium-M CPU and 512 MB memory under
Windows XP operating system.

Table II. Settings and calculation result of the 3-DOF robot.

Settings in
workspace

Range of space [−250, 250] × [−250,
250] × [−250, 250]

Resolution 3.9 mm, 3.9 mm, 3.9 mm
No. of cells 128×128×128 = 2.1×106

No. of reference cells 16×16×16 = 4096
Settings in

C-space
Range of space [0, 360◦] × [0, 360◦]

× [0, 360◦]
Resolution 2.81◦, 2.81◦, 2.81◦

No. of cells 128×128×128 = 2.1×106

Storage
scheme

2mtree + bit encoding
+ Neighborhood
encoding

Running
time

COD setup ≈ 2 h

C-space construction
for scenario in
Fig. 10(a)

0.26 s

Storage
space

24 MB

4.1. C-space construction for RRR robot
In this first demonstration case, a 3-DOF spatial manipulator
is employed as the prototype. Its three links are modeled
as proximate cylinders with the same dimension (radius =
25 mm, length = 100 mm). Each joint is allowed to move
from 0 to 360◦. A cuboid obstacle is placed within the
reachable range of the robot.

The workspace and the calculated C-obstacle are shown in
Fig. 10, and the simulation parameters and the computational
performance are listed in Table II. In this simulation, the
neighborhood of workspace cells is utilized and the density of
reference cells is 128×128×128 = 2.1×106. In [7], the time
to build a 64×64×64 configuration space for the first 3 DOFs
of the Puma robot on a Thinking Machines’ Connection
Machine with 8 k processors is approximately 2 s. It should be
noted that a rigorous comparison of computational efficiency
is difficult to achieve, because of the difference in computing
platform, programing language, and operating system, etc.
However, with the current result we may conclude that
the online running time of the proposed approach is much
shorter and warrants the real-time application under dynamic
operations.

4.2. C-space construction for a 5-DOF robot
Currently, manipulators with 5 or more DOFs are widely
used in industry. Clearly, constructing the explicit C-space
for these types of manipulators is quite useful for practical
applications. It is worth emphasizing that due to the system
complexity in kinematic structure and geometric shape, very
few successful studies on C-space construction for such
manipulators have been reported in literature. In this simu-
lation case, ESHED SCORBORT ER4pc, a 5-DOF educa-
tional robot is used as the prototype to evaluate the proposed
approach. The simulation scenario is shown in Fig. 11, where
a wall is arranged as the obstacle. During the simulation, the
CAD model of the robot links is loaded into the program
to facilitate the construction of the COD. The simulation
parameters and the computational performance are listed
in Table III. While the offline running time based on the

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

10 Discretized configuration space

Fig. 10. Simulation results of a spatial RRR manipulator. (a) RRR manipulator and the obstacle in workspace, (b) calculation result of
C-obstacle.

proposed approach is comparable to the results presented in
[19], the extremely short online running time again shows
that this approach can lead to the real-time motion planning
under dynamic operations.

4.3. Computational complexity analysis
The worst-case time complexity of the proposed algorithm
can be analyzed as follows.

• In the offline phase, the complexity of creating a COD
is O(CW · CC), where CW denotes the complexity of the
robot workspace and it can be expressed as

∏
d=x,y,z (Nd)

with Nd being the resolution in each dimension of the
workspace, CC denotes the complexity of a C-obstacle

map and it can be expressed as
∏n

d=1 (Nd) with Nd being
the resolution in each dimension of the C-space, and n is
the number of DOF. Therefore, the complexity of the COD
can be denoted as

∏
d=x,y,z,1,....,n (Nd).

• In the online phase, the complexity for C-obstacle
assembling can be expressed as O(CO · CC), where CO is
the complexity of the obstacles, CC is still the complexity
of a C-obstacle map.

In normal robot applications, the obstacles occupy only a
small part of the robot workspace, thus the complexity of
obstacles CO is far less than that of the workspace CW.
Furthermore, the hierarchical representation scheme of the C-
obstacle maps can greatly reduce the time complexity in the

Fig. 11. ESHED SCORBOT-ER4PC robot and the obstacle.

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

Discretized configuration space 11

Table III. Settings and calculation result of the SCORBOT robot.

Settings in
workspace

Range of space [−600, 600] × [−600, 600]
× [−600, 600]

Resolution 18.75 mm, 18.75 mm,
15.625 mm

No. of cells 64×64×64 = 2.62×105

No. of obstacle cells
after the wall is
decomposed

1840

Settings in
C-space

Range of space [−130.0, 180◦] × [−125.0,
40.0◦] × [−130.0, 130◦]
× [−220.0, 40.0◦]
× [0, 360◦]

Resolution 4.84◦, 5.15◦, 16.25◦, 32.5◦,
42.0◦

Total no. of cells 106

Storage
scheme

2m tree + bit
encoding

Running
time

COD setup ≈ 4 h

C-space construction
for scenario in
Fig. 11

2.015 s

Storage
space

125 MB

online phase. As an example, in the aforementioned second
case study, the offline phase of COD creation costs nearly
4 h while the online C-space construction corresponding to
a wall-type obstacle only needs 2.015 s. It should be noted
that with the further increase of the number of DOFs, the
storage space requirement could increase drastically. For
those applications, the inherent representation of the C-space
connectivity, such as the dynamic roadmap21 could be
promising.

5. Concluding remarks
In this paper, a new two-phase approach for C-space
construction of manipulators is proposed. In the offline phase,
a C-obstacle database which stores the C-obstacle maps
indexed by the cells of the workspace is created. Based on
the offline C-obstacle database, one can obtain the C-space
under real-time operation. The proposed approach is generic
in nature and its online running time is extremely short, which
makes it especially suitable for manipulator motion planning
under dynamic environments. Simulations on 3-DOF and
5-DOF manipulators have verified the improved perform-
ance, and suggested the potential for real-time application
under dynamic operating conditions.

References
1. T. Lozano-Perez, “Spatial planning: A configuration

space approach,” IEEE Trans. Comput. C-32, 108–120
(1983).

2. T. Lozano-Perez, “A simple motion planning algorithm for
general robot manipulators,”IEEE Trans. Robot. Autom. 3,
224–238 (1987).

3. B. Donald, “A search algorithm for motion planning with
6-degrees of freedom,” Artif. Intell. 31, 295–353 (1987).

4. A. Maciejewski and J. Fox, “Path planning and the topology
of configuration space,” IEEE Trans. Robot. Autom. 9, 444–
456 (1993).

5. C. Zhao, M. Farooq and M. Bayoumi, “Analytical solution for
configuration space obstacle computation and representation,”
Proceedings of the 21st International Conference on
Industrial Electronics, Control, and Instrumentation (IECON)
(1995) pp. 1278–1283.

6. W. S. Newman and M. S. Branicky, “Real-time configuration
space transforms for obstacle avoidance,” Int. J. Robot. Res.
10, 650–667 (1991).

7. T. Lozano-Perez and P. O’Donnell, “Parallel robot motion
planning,” Proceedings of IEEE International Conference on
Robotics and Automation (1991).

8. L. Kavraki, “Computation of configuration space obstacles
using the fast fourier transform,” IEEE Trans. Robot. Autom.
11, 408–413 (1995).

9. B. Curto and V. Moreno, “Mathematical formalism for the
fast evaluation of the configuration space,” IEEE International
Symposium on Computational Intelligence in Robotics and
Automation (1997) pp. 194–199.

10. A. B. Kyatkin and G. S. Chirikjian, “Computation of robot
configuration and workspaces via the Fourier transform on
the discrete-motion group,” Int. J. Robot. Res. 10, 650–667
(1999).

11. G. S. Chirikjian and I. Ebert-Uphoff, “Numerical convolution
on the Euclidean group with applications to workspace
generation,” IEEE Trans. Robot. Autom. 14, 123–136 (1998).

12. K. Gupta and A. Pobil, Practical Motion Planning in Robotics:
Current Approaches and Future Directions (Wiley, New York,
1998).

13. H. Choset and J. Burdick, “Sensor-based exploration: The
hierarchical generalized Voronoi graph,” Int. J. Robot. Res.
19, 96–125 (2000).

14. H. Choset, S. Walker, K. Eiamsa-Ard and J. Burdick, “Sensor
based exploration: Incremental construction of the
hierarchical generalized Voronoi graph,” Int. J. Robot. Res.
19, 126–148 (2000).

15. S. M. LaValle, Planning Algorithms (Cambridge University
Press, Cambridge, 2006).

16. H. Samet, The Design and Analysis of Spatial Data Structures
(Addison-Wesley, Massachusets, 1990).

17. B. Faverjon, “Obstacle avoidance using an octree in the
configuration space of a manipulator,” Proceedings of IEEE
International Conference on Robotics and Automation (1984)
pp. 504–512.

18. D. Henrich, C. Wurll and H. Worn, “On-line path planning
with optimal C-space discretization,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (1998).

19. E. Ralli and G. Hirzinger, “A global and resolution
complete path planner for up to 6 dof robot manipulators,”
Proceedings of IEEE International Conference on Robotics
and Automation (1996) pp. 3295–3302.

20. A. K. Hanan Samet, “Octree approximation and compression
methods,” Proceedings of the 1st International Symposium
on 3D Data Processing Visualization and Transmission
(3DPVT’02) (2002).

21. P. Leven and S. Hutchinson, “Toward real-time path planning
in changing environments,” Proceedings of Workshop
Algorithmic Foundations Robotics (2000) pp. 363–376.

https://doi.org/10.1017/S0263574706002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706002943

