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The interaction of stationary streaks undergoing non-modal growth with modally
unstable instability waves in a high Mach number boundary-layer flow is studied
using numerical computations. The geometry and flow conditions are selected
to match a relevant trajectory location from the ascent phase of the HIFiRE-1
flight experiment; namely, a 7◦ half-angle, circular cone with 2.5 mm nose radius,
free-stream Mach number equal to 5.30, unit Reynolds number equal to 13.42 m−1

and wall-to-adiabatic temperature ratio of approximately 0.35 over most of the
vehicle. This paper investigates the nonlinear evolution of initially linear optimal
disturbances that evolve into finite-amplitude streaks, followed by an analysis of
the modal instability characteristics of the perturbed, streaky boundary-layer flow.
The investigation is performed with a stationary, full Navier–Stokes equations solver
and the plane-marching parabolized stability equations (PSE), in conjunction with
partial-differential-equation-based planar eigenvalue analysis. The overall effect of
streaks is to reduce the peak amplification factors of instability waves, indicating a
possible downstream shift in the onset of laminar–turbulent transition. The present
study confirms previous findings that the mean-flow distortion of the nonlinear
streak perturbation reduces the amplification rates of the Mack-mode instability.
More importantly, however, the present results demonstrate that the spanwise varying
component of the streak can produce a larger effect on the Mack-mode amplification.
The analysis of planar and oblique Mack-mode waves modulated by the presence
of the streaks shows that the planar Mack mode still dominates the instability
characteristics of the flow. The study with selected azimuthal wavenumbers for the
stationary streaks reveals that a wavenumber of approximately 1.4 times larger than
the optimal wavenumber is more effective in stabilizing the planar Mack-mode
instabilities. In the absence of unstable first-mode waves for the present cold-wall
condition, transition onset is expected to be delayed until the peak streak amplitude
increases to nearly 35 % of the free-stream velocity, when intrinsic instabilities
of the boundary-layer streaks begin to dominate the transition process. For streak
amplitudes below that limit a significant net stabilization is achieved, yielding a
potential transition delay that can exceed 100 % of the length of the laminar region
in the uncontrolled case.
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1. Introduction
Laminar–turbulent transition of boundary-layer flows can have a strong impact on

the performance of hypersonic vehicles because of its influence on the surface skin
friction and aerodynamic heating. Therefore, the prediction and control of transition
onset and the associated variation in aerothermodynamic parameters in high-speed
flows is a key issue for optimizing the performance of the next-generation aerospace
vehicles.

Under low levels of background disturbances, transition is initiated by the
exponential amplification of linearly unstable eigenmodes, i.e. modal instabilities of
the laminar boundary layer. In two-dimensional boundary layers, different instability
mechanisms dominate the exponential growth phase depending on the flight speed.
Planar, i.e. two-dimensional, Tollmien–Schlichting (TS) waves are the most unstable in
the incompressible regime, whereas oblique first-mode instabilities correspond to the
most amplified disturbances in supersonic boundary layers. The hypersonic regime
is again dominated by the growth of planar acoustic waves of the second mode,
i.e. Mack-mode type (Mack 1984). In the presence of sufficiently strong external
disturbances in the form of either free-stream turbulence (FST) or three-dimensional
wall roughness, streamwise streaks involving alternately low and high streamwise
velocity have been observed to appear in incompressible boundary layers (Klebanoff
1971; Vermeersch & Arnal 2010). Further research in the incompressible regime has
shown that high-amplitude streaks can become unstable to shear layer instabilities
that lead to a form of ‘bypass transition’ (Andersson et al. 2001). When the streak
amplitudes are low enough to avoid these instabilities, i.e. when the background
disturbance level is moderate, the streaks can actually reduce the growth of the TS
waves as documented in both theoretical and experimental studies (Boiko et al. 1994;
Cossu & Brandt 2002; Bagheri & Hanifi 2007). The stabilizing effect of stationary
streaks in low-speed boundary layers have been used in passive flow control strategies
to demonstrate delayed onset of transition by using micro vortex generators (MVGs)
along the body surface (Fransson et al. 2006; Shahinfar et al. 2012).

Despite the numerous research efforts focused on tripping hypersonic boundary-
layer flows by using roughness elements, there have been a few experimental
and numerical studies reporting a delay in transition under certain circumstances.
Most of these studies used two-dimensional roughness elements. James (1959) used
fin-stabilized hollow tube models in free flight with a screw-thread type of distributed
two-dimensional roughness. He found that for a given free-stream Mach number in
the range of 2.8–7, there exists an optimum roughness height for transition delay.
Fujii (2006) studied the effects of two-dimensional roughness by using a 5◦ half-angle
sharp cone at a free-stream Mach number of 7.1. He also observed transition delay for
certain conditions when the wavelength of the wavy wall roughness was comparable
to that of the Mack-mode instabilities. More recently, Fong, Wang & Zhong (2014),
Fong et al. (2015) performed numerical and experimental studies, respectively, that
were focused on the effect of two-dimensional surface roughness on the stability of
a hypersonic boundary layer at a free-stream Mach number of 6. The experiments
(Fong et al. 2015) used a flared cone with strips of roughness in the Boeing/AFOSR
Mach 6 Quiet Tunnel and supported the numerical predictions indicating a stabilizing
influence on the amplification of Mack-mode disturbances (Fong et al. 2014). In
particular, these studies showed that the most dominant Mack-mode instability could
be suppressed via judicious placement of the roughness elements along the surface
of the cone. Among the limited experimental evidence of delayed transition in
a hypersonic boundary layer and in the presence of three-dimensional roughness
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elements is the study by Holloway & Sterrett (1964), who used a single row of
spherical roughness elements partially recessed within a flat plate model in the
NASA Langley 20-in. Mach 6 tunnel. Data for multiple boundary-layer-edge Mach
numbers were obtained by varying the plate mounting angle. They found that, for
cases with the smallest roughness diameters, transition was delayed for edge Mach
numbers larger than 3.7, which approximately corresponds to the lower bound for
second-mode dominance over first-mode instabilities in a flat plate boundary layer at
typical wind tunnel conditions. Therefore, their results are suggestive of a stabilizing
influence of roughness-induced streaks on Mack-mode waves. When the roughness
height becomes sufficiently large, the streaks can develop high-frequency instabilities
that can lead to earlier transition (Choudhari, Li & Edwards 2009; Paredes et al.
2015a) as found by Holloway & Sterrett (1964).

Theoretical studies of the interaction between stationary disturbances and Mack-
mode instabilities in hypersonic boundary layers have been recently initiated. Li et al.
(2010) studied the interaction of Görtler vortices with Mack-mode instabilities on
a flared cone, demonstrating a possible route to transition via this interaction. Li
et al. (2015b) studied the secondary instability of cross-flow vortices in a hypersonic
cone at angle of attack and found that nonlinearly saturated cross-flow vortices
destabilize the Mack modes, which dominate the transition onset over the intrinsic
secondary instabilities of the cross-flow vortices (Choudhari et al. 2017, 2018). Ren,
Fu & Hanifi (2016) studied the stabilizing effect of weakly nonlinear suboptimal
streaks and Görtler vortices on the planar first-mode and Mack-mode instabilities.
They documented a slight reduction in the logarithmic amplification factor of
approximately 1N = 0.2 relative to the baseline, zero-streaks flat plate boundary
layer. Furthermore, Paredes, Choudhari & Li (2016b, 2017b) have demonstrated that
finite-amplitude optimal streaks can substantially damp planar Mack-mode instabilities
in the hypersonic flow over a circular cone at zero angle of attack and ground test
conditions, although oblique first-mode instabilities are destabilized.

The development of roughness-induced streaks is strongly dependent on the details
of roughness element shape, height and spanwise or azimuthal spacing. A conceptually
simple model that can characterize as well as provide an upper bound on the transient
algebraic growth and subsequent slow decay of boundary-layer streaks due to arbitrary
initial disturbances is the optimal growth theory; see Schmid (2007) for a review. The
transient growth arises as a result of the non-normality of disturbance equations, and
the optimal growth theory seeks to maximize the disturbance growth between a
selected pair of streamwise locations. Regardless of the flow Mach number, the
disturbances experiencing the highest magnitude of transient growth have been
found to be stationary streaks that arise from initial perturbations that correspond to
streamwise vortices. The instabilities of optimal streaks with finite initial amplitudes
in supersonic and hypersonic boundary layers has been recently addressed by Paredes,
Choudhari & Li (2016a,c, 2017c). Furthermore, Paredes, Choudhari & Li (2017a)
investigated the interaction of nonlinear stationary optimal growth perturbations with
modally unstable instability waves in a Mach 3 adiabatic flat-plate boundary-layer
flow. At the selected conditions, the most-amplified linear waves correspond to the
oblique, first-mode waves. The analysis showed that optimally growing stationary
streaks can destabilize the first-mode waves, but only when the spanwise wavelength
of the instability waves is equal to or smaller than twice the streak spacing. Thus,
as long as the amplification factors for the destabilized, short wavelength instability
waves remain below the threshold level for transition, a significant net stabilization is
achieved. On the other hand, the effect of nonlinear stationary streaks on the growth
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Periodic array
of actuators

Periodic array
of streaks Instability

waves

Lc

x

FIGURE 1. (Colour online) Sketch (side view) of the cone illustrating the present
conceptual configuration. The wake of the periodic array of actuators generates the
periodic array of streaks that modulate the instability waves.

of Mack-mode instabilities has not been studied as yet. The present work seeks to
bridge this gap with the goal of developing a more thorough knowledge base for
transition prediction in the presence of stationary streaks and potentially expand the
range of available techniques for transition control at hypersonic flight Mach number
conditions.

To that end, we study the effect of a periodic array of finite-amplitude streaks
on the dominant instability waves in axisymmetric or two-dimensional boundary
layers at hypersonic Mach numbers, i.e. the Mack-mode instabilities. Figure 1 shows
a schematic of the flow configuration considered in this work. The geometry is a
7◦ half-angle circular cone with rn = 2.5 mm nose radius and Lc = 2.0 m length.
The free-stream parameters, i.e. Mach 5.30 flow with a unit Reynolds number of
Re′ = 13.42× 106 m−1 and free-stream temperature of T∞ = 201.4 K, are selected to
match the flow conditions of the HIFiRE-1 flight experiment during the ascent phase
at time equal to 21.5 s (Kimmel et al. 2015). Even though this Mach number may be
somewhat lower than the typical Mach number range associated with the hypersonic
regime, the underlying flow exhibits the same instability characteristics as the higher
Mach number boundary layers. The laminar boundary-layer flow over the cone is
computed by solving the full Navier–Stokes equations. The good correlation between
experimental measurements and theoretical predictions based on the parabolized
stability equations (PSE) has confirmed that laminar–turbulent transition in this flow
is driven by the modal growth of planar Mack-mode instabilities (Li et al. 2015a).
The analysis presented herein is based on boundary-layer streaks resulting from the
transient growth of an optimal initial perturbation. The perturbed three-dimensional
boundary layer is used as a basic state for the subsequent modal instability analysis
by means of the plane-marching PSE.

The paper is organized as follows. Section 2 provides a summary of the
transient growth framework and the plane-marching PSE. The results are presented
in § 3. First, the perturbed three-dimensional boundary layer composed of the
two-dimensional boundary layer plus a finite-amplitude optimal growth perturbation
is analysed by using the stationary from of the plane-marching PSE. Subsequently,
the plane-marching PSE are used to examine the instability characteristics of the
Mack-mode waves as well as the streak instabilities of the modified basic states. The
effect of the streak azimuthal wavelength on the net stabilization of the Mack-mode
waves is also studied in § 3. Finally, summary and concluding remarks are presented
in § 4.
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2. Theory
This section introduces the methodologies used in this paper. The procedure

closely follows the study of Paredes et al. (2017a) that analysed the interactions of
the oblique first-mode waves and finite-amplitude optimal streaks in a supersonic
boundary layer. In brief, the analysis begins with the identification of the linearly
optimal perturbation that results in maximum energy gain. The latter is then used
as inflow disturbance for the parabolic integration of the stationary, nonlinear,
plane-marching PSE to obtain a three-dimensional, azimuthally periodic, perturbed
boundary-layer flow. Subsequently, the modal instability characteristics of this
perturbed three-dimensional boundary-layer flow are studied by using the linear
form of time harmonic, plane-marching PSE.

2.1. Linear optimal growth
Linear transient growth analysis is performed using the linear PSE as explained by
Pralits et al. (2000) and Paredes et al. (2016d). In the PSE context, the perturbations
have the form

q̃(ξ , η, ζ , t)= q̂(ξ , η) exp
[

i
(∫ ξ

ξ0

α(ξ ′) dξ ′ +mζ −ωt
)]
. (2.1)

The suitably non-dimensionalized, orthogonal, curvilinear coordinate system (ξ , η, ζ )
denotes streamwise, wall-normal and azimuthal coordinates and (u, v,w) represent the
corresponding velocity components. Density and temperature are denoted by ρ and T .
The Cartesian coordinates are represented by (x, y, z). The vector of perturbation fluid
variables is q̃(ξ , η, ζ , t)= (ρ̃, ũ, ṽ, w̃, T̃)T, the vector of amplitude functions is q̂(ξ , η)=
(ρ̂, û, v̂, ŵ, T̂)T and the vector of basic state fluid variables is q̄(ξ , η)= (ρ̄, ū, v̄, w̄, T̄)T.
The streamwise and azimuthal wavenumbers are α and m, respectively; and ω is the
angular frequency of the perturbation. The azimuthal wavelength is defined as λ =
2π/m.

The optimal initial disturbance, q̃0, is defined as the initial (i.e. inflow) condition at
ξ0 that yields a maximum objective function, J(q̃). The objective function is defined
as the energy gain of the perturbation up to a specified position, ξ1. Herein, we use
the mean energy gain,

G= 1
ξ1 − ξ0

∫ ξ1

ξ0

E(ξ ′) dξ ′

E(ξ0)
, (2.2)

where E denotes the energy norm of q̃. The energy norm is defined as

E(ξ)= 1
λ

∫
ζ

∫
η

q̃(ξ , η, ζ )HM q̃(ξ , η, ζ ) hξ hζ dη dζ , (2.3)

where hξ andhζ are the metric factors associated with the streamwise and azimuthal
curvatures, respectively, M is the energy weight matrix and the superscript H denotes
conjugate transpose. The positive–definite energy norm used here was derived by Chu
(1956) and used by Mack (1969) and Hanifi, Schmid & Henningson (1996) for linear
stability theory. This energy norm is defined as

M = diag
[

T̄(ξ , η)
γ ρ̄(ξ , η)M2

, ρ̄(ξ , η), ρ̄(ξ , η), ρ̄(ξ , η),
ρ̄(ξ , η)

γ (γ − 1)T̄(ξ , η)M2

]
. (2.4)
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The variational formulation of the problem to determine the maximum of the objective
functional J=G leads to an optimality system (Pralits et al. 2000; Tumin & Reshotko
2003; Zuccher, Tumin & Reshotko 2006), which is solved in an iterative manner
starting from a random solution at ξ0 that must satisfy the boundary conditions.
Summarizing, the linear PSE, Lq̃ = 0, are used to integrate q̃ up to ξ1, where the
final optimality condition is used to obtain the initial condition for the backward
adjoint PSE integration. At ξ0, the adjoint solution is used to calculate the new
initial condition for the forward PSE integration with the initial optimality condition.
The iterative procedure finishes when the value of J has converged up to a certain
tolerance, which was set to a relative error of 10−6 in the present computations.

2.2. Plane-marching PSE
The nonlinear evolution of the stationary, finite-amplitude streaks is solved using
an implicit formulation of the nonlinear plane-marching PSE (Paredes et al. 2015b,
2016c, 2017a). Subsequently, the linear form of the plane-marching PSE is used
to study the linear, non-parallel stability characteristics of the modified basic state
corresponding to the sum of the circular cone boundary layer and the finite-amplitude
optimal disturbance. The initial disturbance profiles for the plane-marching PSE are
obtained using a partial-differential-equation (PDE) based two-dimensional eigenvalue
problem (EVP). In the plane-marching PSE context, the perturbations to the streak
have the form

q̃(ξ , η, ζ , t)= q̂(ξ , η, ζ ) exp
[

i
(∫ ξ

ξ0

α(ξ ′) dξ ′ −ωt
)]
. (2.5)

Substituting (2.5) into the Navier–Stokes (NS) equations, and neglecting the viscous
streamwise derivatives of the slowly varying amplitude function q̂, the plane-marching
PSE can be written in a compact form as(

Ln +Mn
∂

∂x

)
q̂n(x, y, z)=Fn(x, y, z) exp

(
−i
∫ x

x0

αn(x′) dx′
)
, (2.6)

where Fn is the Fourier component of the total forcing F that contains the nonlinear
terms. The entries of the coefficient matrices for Ln and Mn and vector F are found
in Paredes (2014) and Paredes et al. (2017a).

The PSE system of equations is not fully parabolic due to the streamwise pressure
gradient term in the streamwise momentum equation (Li & Malik 1996, 1997).
However, the minimum step size requirement is met for all the results presented
herein and no special treatment to the equations was required to achieve results that
are insensitive to the size of the marching step.

To follow the development of finite-amplitude optimal disturbances (i.e. streaks),
the nonlinear formulation of the plane-marching PSE is used (Paredes et al. 2015b).
For the stationary disturbances of interest in this paper, N = 0 and α0 = 0. Because
of this, a single mode is integrated by using an implicit formulation to facilitate
the convergence of the solution for moderate streak amplitudes (Paredes et al.
2016a,c). Subsequently, the linear form of the plane-marching PSE, which latter are
recovered from (2.6) by setting F= 0, is used herein to study the linear, non-parallel
stability characteristics of the modified basic state corresponding to the sum of
the flat-plate boundary layer and the finite-amplitude optimal disturbance. A more
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detailed description of the plane-marching PSE methodology is given by Paredes
(2014), Paredes et al. (2015b) and Paredes et al. (2017a).

The onset of laminar–turbulent transition is estimated using the logarithmic
amplification ratio, the so-called N-factor, based on Mack’s energy norm E defined in
(2.3) and relative to the lower bound location ξlb where the disturbance first becomes
unstable,

N =−
∫ ξ

ξlb

αi(ξ
′) dξ ′ + 1/2 ln[Ê(ξ)/Ê(ξlb)]. (2.7)

Accordingly, we assume that transition onset is likely to occur when the peak N-factor
reaches a specified value. Similarly, the non-parallel growth rate based on the Mack’s
energy norm E is defined as

σ = dN
dξ
. (2.8)

2.3. Spatial discretization and boundary conditions
The PSE are integrated along the streamwise coordinate by using second-order
backward differentiation. A constant step of 1R = 2.5, where R = √Rex, along the
streamwise direction is used. Finite differences (Hermanns & Hernández 2008; Paredes
et al. 2013) (FD-q) of sixth order are used for discretization of the wall-normal
coordinate. In the transient growth computations with PSE, the wall-normal direction
is discretized using Nη = 201. The nodes are clustered towards the wall (Paredes
et al. 2013). The clustering of points is dependent on the boundary-layer thickness,
with half of the grid points located below 10 × δ, where δ is the similarity scale.
No-slip, isothermal boundary conditions are used at the wall, i.e. û= v̂ = ŵ= T̂ = 0.
The amplitude functions are forced to decay at the far-field boundary by imposing
the Dirichlet conditions ρ̂ = û = ŵ = T̂ = 0. The far-field boundary coordinate is set
just below the shock layer.

The plane-marching PSE are used to predict the nonlinear evolution of finite-
amplitude transient growth disturbances as well as the linear amplification characteri-
stics of modulated Mack-mode waves and streak instability waves sustained by
the nonlinear streak disturbances. The plane-marching PSE are integrated using the
same streamwise and wall-normal discretizations as that of the linear optimal growth
analysis by using classic PSE, although depending on the initial amplitude, the number
of wall-normal nodes is increased up to Nη = 241. In addition to the streamwise and
wall-normal directions, the azimuthal direction is discretized with Fourier collocation
points. Note that the PSE amplitude function of (2.1), q̂(ξ , η), depends only on the
streamwise and wall-normal coordinates, while that corresponding to plane marching
of (2.5), q̂(ξ , η, ζ ) depends on all three spatial directions. Depending on the amplitude
of the optimal growth perturbation, the number of azimuthal points is varied from
Nζ = 16 to Nζ = 64. Similar to the streamwise and wall-normal grids, the same
azimuthal grids are used to compute the evolution of both finite-amplitude streaks
and their modal instabilities. However, a non-periodic finite-difference discretization
(FD-q) of sixth order is also used in the azimuthal direction during a subset of the
calculations for improved computational efficiency. With the non-periodic scheme,
only one half of the streak azimuthal wavelength, λST = 2π/mST , where mST denotes
the streak wavenumber, needs to be discretized and the boundary conditions in ζ = 0
and ζ = λST/2 determine the instability mode to be studied, i.e. sinuous (S) or
varicose (V) mode types with a fundamental (m = mST), subharmonic (m = 1/2 mST)
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Wavenumber (×mST ) Mode type ζ = 0 ζ = λST/2

1 S (ρ̂, û, v̂, ŵζ , T̂)T = 0 (ρ̂, û, v̂, ŵζ , T̂)T = 0
1 V (ρ̂ζ , ûζ , v̂ζ , ŵ, T̂ζ )T = 0 (ρ̂ζ , ûζ , v̂ζ , ŵ, T̂ζ )T = 0
1/2, 3/2 S (ρ̂ζ , ûζ , v̂ζ , ŵ, T̂ζ )T = 0 (ρ̂, û, v̂, ŵζ , T̂)T = 0
1/2, 3/2 V (ρ̂, û, v̂, ŵζ , T̂)T = 0 (ρ̂ζ , ûζ , v̂ζ , ŵ, T̂ζ )T = 0

TABLE 1. Azimuthal boundary conditions used in the plane-marching PSE analysis. The
mode types S and V refer to sinuous and varicose mode shapes, respectively, with respect
to the half-symmetry plane of the streak, ζ = λST/2. Also, note that qζ ≡ ∂q/∂ζ .

and m= 3/2 mST wavenumbers. Table 1 shows the boundary conditions used in each
case.

The number of discretization points in all three directions and the wall-normal
domain size were varied to ensure that the relevant flow quantities were insensitive
to further improvement in grid resolution and enlargement of the domain size.
Verification of the present linear optimal growth module against available transient
growth results from the literature is shown in Paredes et al. (2016d). Verification
of the present plane-marching PSE module against line-marching PSE and direct
numerical simulation (DNS) results for various flows and disturbance types is shown
in De Tullio et al. (2013) and Paredes et al. (2015b).

3. Results

Next, we study the axisymmetric boundary layer over a nearly sharp, 7◦ half-angle
circular cone at zero angle of attack in a hypersonic free-stream flow. The details
of the basic state and its modal instability characteristics are introduced first. Then,
the linear transient growth analysis and the evolution of finite-amplitude optimal
perturbations are presented. Finally, the instability characteristics of the perturbed
boundary-layer flows and the overall effects of the streaks on the estimated transition
onset location are analysed.

3.1. Basic state solution
The present analysis is performed for a 7◦ half-angle circular cone at zero angle
of attack in a hypersonic free-stream flow. The length of the nearly sharp cone is
L∗c = 2.0 m, and the nose radius is r∗n = 2.5 mm so that the front half of the cone
matches the HIFiRE-1 geometry. The extended cone length is used in the present
investigation to assess the extent of potential delay in laminar–turbulent transition
due to the streaks. The basic state, laminar boundary-layer flow over the cone
surface is computed by using a second-order accurate algorithm as implemented in
the finite-volume compressible Navier–Stokes flow solver VULCAN-CFD (Litton,
Edwards & White 2003). (Visit http://vulcan-cfd.larc.nasa.gov for further information
about the VULCAN-CFD solver.) The VULCAN-CFD solution is based on the full
Navier–Stokes equations and uses the solver’s built-in capability to iteratively adapt
the computational grid to the shock. The basic state solution is computed by using
the steady state module of the solver. Sutherland’s law is assumed for the viscosity,
with Sutherland’s constant set equal to 110.4 K. The Prandtl number is set to 0.72
for air, and γ is equal to 1.4, as the perfect gas model is considered.
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FIGURE 2. (Colour online) Streamwise evolution of (a) wall temperature, (b) edge Mach
number and (c) boundary-layer thickness. The wall temperature values measured in the
flight experiments are included.

The free-stream conditions are selected to replicate those of the HIFiRE-1 flight
experiment at time equal to 21.5 s during the ascent phase (Kimmel et al. 2015),
i.e. Mach 5.30 flow with a unit Reynolds number of 13.42 × 106 m−1, free-stream
temperature of T∗∞ = 201.4 K and a prescribed surface temperature distribution that
corresponds to a wall-to-adiabatic temperature ratio of approximately 0.35 over most
of the vehicle (Li et al. 2015a). Figure 2(a) shows the prescribed wall temperature
along the surface of the cone. As explained by Li et al. (2015a), the surface
temperature distribution was obtained by combining the results of thermal analysis
based on axisymmetric, finite-element calculations using the US Air Force Research
Laboratory (AFRL) TOPAZ code (Kimmel et al. 2007) and the experimental data
based on thermocouple measurements (Kimmel et al. 2015). The edge Mach number
Me and boundary-layer thickness δh, which is defined as the wall-normal position
where ht/ht,∞ = 0.995, where ht is the total enthalpy, are plotted in figures 2(b) and
2(c), respectively.

The computational grid has 865 points in the streamwise direction and 513 points
in the wall-normal direction. A minimum of 120 points is clustered next to the cone
surface to resolve the thickness of the boundary layer. This grid resolution is based
on the work of Li et al. (2015a), who computed the laminar flow over the HIFiRE-1
geometry at selected flight experiment conditions with the VULCAN-CFD solver and
performed a grid-convergence test by doubling the number of points in each directions
and a verification of the results by comparing the solution with that computed with
a different Navier–Stokes solver, i.e. the CFL3D code (Rumsey, Biedron & Thomas
1997).

In what follows, free-stream values are used as reference values for non-
dimensionalization. The reference length scale is defined as δ = √Lν/u∞, where
L∗ = 1.0 m. For this problem, the computational coordinates, (ξ , η, ζ ), are defined as
an orthogonal body-fitted coordinate system. The metric factors are defined as

hξ = 1+ κη, (3.1)
hζ = rb + η cos(θ), (3.2)

where κ denotes the streamwise curvature, rb is the local radius and θ is the local
half-angle along the axisymmetric surface, i.e. sin(θ)=drb/dξ . For the present straight
circular cone (with exception of the nose region that is not included in this analysis),
κ ≡ 0 and θ is the cone half-angle equal to 7◦.
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FIGURE 3. (Colour online) (a) N-factors and (b) growth-rate isolines of planar
Mack-mode disturbances in the unperturbed boundary layer. The thick blue line in (a)
denotes the mode that reaches largest N-factor value (Ntr) at the experimentally measured
transition location (xtr) and corresponds to a disturbance frequency of ω= 0.603.

3.2. Modal instability characteristics of the unperturbed flow
Experimental measurements and theoretical predictions based on PSE have confirmed
that laminar–turbulent transition in this flow is driven by the modal growth of
planar Mack-mode instabilities (Li et al. 2015a). The instability of the unperturbed
flow was examined by PSE to establish the transition behaviour in the absence
of stationary streak perturbations. The onset of laminar–turbulent transition in the
unperturbed boundary-layer flow is estimated using N-factor evolution of the planar
Mack modes computed with the PSE. For the conditions of the experiment (Kimmel
et al. 2015), transition onset in the unperturbed cone boundary layer was measured to
occur near ξtr/L= 0.85 m. Figure 3(a) shows that the peak N-factor at the measured
transition location corresponds to Ntr= 14.7, which is reached by a planar Mack-mode
disturbance with frequency ω = 0.603. Figure 3(b) shows the growth-rate isolines of
planar Mack-mode instabilities. The neutral stability curve corresponds to the black
line with σ = 0.0. Neither planar nor oblique first-mode instabilities were found in
the present boundary-layer flow because of the low surface temperature relative to
the adiabatic temperature.

3.3. Stationary transient growth and streak development
Herein, transient growth calculations are performed with the initial and final
disturbance locations set to ξ0/L = 0.5 and ξ1/L = 1.1, respectively. The initial
location ξ0 has been selected near the first neutral branch of the planar Mack mode
that first reaches Ntr (see figure 3a). The range [ξ0, ξ1] has been chosen to obtain
appreciable streak amplitudes over a majority of the cone length, as will be shown
in what follows.

Linear transient growth predictions are presented first. Figure 4(a) shows the
mean energy gain as a function of the azimuthal wavenumber. The optimal azimuthal
wavenumber corresponding to maximum energy gain is found to be equal to mop=180.
The components of the initial optimal perturbation with azimuthal wavenumbers of
m = 90, 180 and 360 are plotted in figures 4(b), 4(c) and 4(d), respectively. Larger
azimuthal wavenumbers lead to optimum initial profiles with a slightly shorter
wall-normal extension than the initial profiles for lower wavenumbers. Furthermore,
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FIGURE 4. (Colour online) (a) Linear optimal mean energy gain, G, for initial and final
disturbance locations at ξ0/L = 0.5 and ξ1/L = 1.1, respectively. Also, initial optimal
amplitude vectors for (b) m=90, (c) m=180 and (d) m=360. The horizontal, dash-double
dot line in panels (b)–(d) indicates the edge of the boundary layer based on total enthalpy
(ht/ht,∞ = 0.995).

the peaks of the initial profiles with larger azimuthal wavenumbers are located slightly
closer to the wall.

The nonlinear form of the plane-marching PSE is used to monitor the nonlinear
development of optimal initial disturbances with specified amplitudes. These
disturbances evolve into streamwise elongated streaks; and figure 5(a) shows the
evolution of the streak amplitude based on ũ,

Asu(ξ)= 1
2 [maxη,ζ (ũ(ξ , η, ζ ))−minη,ζ (ũ(ξ , η, ζ ))], (3.3)

for selected initial amplitudes of the m= 180 disturbance from figure 4(c). Unlike the
energy norm in (2.3), the velocity amplitude Asu is expected to be more closely related
to the growth of streak instabilities. The streak amplitude parameter A corresponds to
the maximum streak amplitude Asu achieved by a linear perturbation with the same
initial amplitude, which is given by

A0 = A×√Elin,A=1. (3.4)

As indicated by (3.4), the amplitude parameter A provides a convenient measure of
the initial disturbance amplitude. As seen in figure 5(a), nonlinear effects reduce
the streak amplitude relative to the linear prediction; hence, for any given case,
max(Asu) < A. The streamwise location of this maximum moves progressively
upstream as the amplitude parameter A is increased. Figure 5(b), shows the evolution
of the disturbance amplitude defined as the square root of the energy norm defined
in (2.3) normalized by the initial energy. The deviation from the linear trend starts
to become noticeable for A > 0.20.

Figures 6(a–d), 6(e–h), and 6(i–l) show the isocontours of the total streamwise
velocity component in the cross-planes at selected streamwise locations for A= 0.10,
A= 0.20 and A= 0.40, respectively. At the symmetry plane, ζ = λST/2, the near-wall,
low-momentum fluid is lifted upward by the counter-rotating vortices, resulting in
a localized region of increased boundary-layer thickness and lower wall shear. At
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FIGURE 5. (Colour online) (a) Evolution of streak amplitudes based on u, Asu,
and (b) evolution of disturbance amplitude,

√
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perturbations initialized at ξ0/L= 0.5 with ξ1/L= 1.1 and m= 180.
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FIGURE 6. (Colour online) Isocontours of streamwise velocity with isolines at ū = 0 :
0.1 : 0.9 for streak amplitude parameters equal to (a,b,c,d) A= 0.10, (e,f,g,h) A= 0.20 and
(i,j,k,l) A= 0.40, and streamwise locations equal to (a,e,i) ξ/L= 0.75, (b,f,j) ξ/L= 1.00,
(c,g,k) ξ/L= 1.50 and (d,h,l) ξ/L= 2.00.

the lateral symmetry plane, ζ = 0 (or equivalently, ζ = λST), the effect of the initial
streamwise vortices is exactly the opposite, yielding a localized region of reduced
boundary-layer thickness and increased wall shear. As the streak amplitude becomes
larger, the associated azimuthal gradients in the form of a detached three-dimensional
shear layer can support the growth of streak instabilities, as studied by Paredes et al.
(2016a,c, 2017c), in the context of bypass transition in supersonic and hypersonic
boundary layers.

Finally, the effect of streaks on the skin friction coefficient is studied in figure 7.
Figure 7(a) shows the ratio of the spanwise-averaged local skin friction coefficient
with respect to that in the unperturbed case (A= 0.00). A peak skin friction increment
of 6.1 % is observed for the A= 0.20 case and of 22.5 % for the A= 0.40 case. The
skin friction coefficient is calculated with the wall-normal gradient of the mean flow
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FIGURE 7. (Colour online) (a) Evolution of spanwise-averaged local skin friction
coefficient ratio between those corresponding to perturbed flows and unperturbed flow,
cf /cf ,A=0.00. Also, mean-flow-distortion streamwise velocity profiles (ũMFD) at streamwise
positions (b) ξ/L = 0.75, (c) 1.0 and (d) 1.5. The horizontal, solid black line in panels
(b)–(d) indicates the edge of the unperturbed boundary layer based on total enthalpy
(ht/ht,∞ = 0.995).

distortion (MFD) of the streamwise velocity perturbation, ũMFD, which is defined as

ũMFD(ξ , η)= 1
λST

∫ λST

0
ũ(ξ , η, ζ ) dζ . (3.5)

Figures 7(b), 7(c) and 7(d) show the MFD streamwise velocity perturbation profiles
at streamwise locations ξ/L = 0.75, 1.0 and 1.5, respectively. The profiles exhibit
a positive peak close to the wall and a negative peak in the vicinity of the
boundary-layer edge. The negative peak grows from ξ/L= 0.75 to ξ/L= 2.0, although
the positive peak of ũMFD decreases as the skin friction coefficient decreases from
ξ/L≈ 0.85.

3.4. Modal instability characteristics of the perturbed flow with optimal disturbances
The instability characteristics of the modified, streaky boundary-layer flow are
examined next. First, the streaks plotted in figure 5 corresponding to finite-amplitude
linearly optimal disturbances initiated at ξ0/L = 0.5 with ξ1/L = 1.1 and mST = 180
are studied. After that, the effect of the streak azimuthal wavenumber mST on the net
stabilization of Mack-mode waves is analysed.

3.4.1. Effect of streaks on Mack-mode waves
Herein, we consider both nominally planar and oblique Mack-mode waves that

are analysed to unravel what disturbances are more amplified in the presence of the
azimuthally periodic streaks. By nominally planar, we refer to disturbances that are
originally two-dimensional in the unperturbed boundary layers and are modulated by
the presence of the streaks. For any oblique modes with a given, non-zero azimuthal
wavenumber, there exists a pair of oblique modes with equal but opposite wave
angles. For oblique Mack modes with wavenumbers equal to m=mST (fundamental),
m = 1/2 mST (subharmonic) and m = 3/2 mST , the spanwise structure of the mode
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FIGURE 8. (Colour online) Spatial growth rates (−αi) of (a) planar Mack modes (MM0),
(b) oblique Mack modes with subharmonic (m= 1/2 mST) sinuous (MM1/2,S) and varicose
(MM1/2,V) mode shapes, (c) oblique Mack modes with fundamental (m = mST) sinuous
(MM1,S) and varicose (MM1,V) mode shapes and (d) oblique Mack modes with m =
3/2 mST sinuous (MM3/2,S) and varicose (MM3/2,S) mode shapes, for selected streak
amplitudes at ξ/L= 1.0.

shape is phase locked to the streaks. As a result, there exist both varicose (symmetric)
and sinuous (antisymmetric) modes with different amplification rates. For all other
wavenumbers, there is no such phase locking, and hence, both oblique modes with
the same value of m have the same amplification rate and their mode shapes satisfy
the condition q̂−(ξ , η, ζ )= q̂+(ξ , η,−ζ ), where the superscripts + and − denote the
signs of the spanwise components of phase velocities associated with the two modes
constituting the pair.

Figure 8 shows the frequency dependence of spatial growth rates computed with
quasiparallel PDE-based eigenvalue problem (EVP) at a fixed streamwise location of
ξ/L= 1.0. Results are plotted for five different families of modes that can presumably
be relevant in the presence of the streaks: MM0, MM1/2,S, MM1/2,V , MM1,S, MM1,V ,
MM3/2,S and MM3/2,V . The mode MM0 reduces to a planar Mack-mode disturbance in
the limit of A→ 0. Modes MM1/2,V and MM1/2,S correspond to oblique Mack-mode
disturbances (with azimuthal wavenumber equal to one half of the streak spacing) of
varicose and sinuous type, respectively. The fundamental varicose and sinuous modes,
MM1,V and MM1,S, respectively, correspond to oblique Mack-mode disturbances with
azimuthal wavenumber equal to the streak spacing. Similarly, the modes MM3/2,V and
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Im(û)
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FIGURE 9. (Colour online) Isocontours of the real and imaginary parts and magnitude of
streamwise velocity perturbations for A= 0.10 at ξ/L= 1.0 and frequencies (a) ω= 0.455
for MM0, (b) ω= 0.501 for MM1/2,S, (c) ω= 0.455 for MM1/2,V , (d) ω= 0.506 for MM1,S,
(e) ω = 0.546 for MM1,V , ( f ) ω = 0.580 for MM3/2,S, (g) ω = 0.552 for MM3/2,V . The
isolines of basic state streamwise velocity, ū= 0 : 0.1 : 0.9, are added for reference.

MM3/2,S correspond to oblique Mack-mode disturbances with azimuthal wavenumber
equal to 3/2 times the fundamental wavenumber, i.e. three Mack-mode wavelengths
within two streak wavelengths, with the second suffix denoting the mode types
as varicose and sinuous, respectively. Mode shapes for each family at frequencies
corresponding to respective peak local growth rate are shown in figure 9(a)–(g) for a
streak amplitude of A= 0.10. The varicose and sinuous characterizations of the modes
correspond to the symmetry and antisymmetry mode shapes, respectively, with respect
to the half-symmetry plane of the streak (ζ = λST/2). Figure 8(a) shows a progressive
reduction in the peak growth rate of MM0 modes with increasing streak amplitude.
Simultaneously, the growth-rate curves are displaced toward lower frequencies because
the MM0 mode shape is concentrated on the crests of the modified flow (i.e. regions
of increased boundary-layer thickness) as shown by figure 9(a). Similar to the MM0
mode, both of the subharmonic modes (MM1/2,V and MM1/2,S) have mode shape
distributions that peak in the neighbourhood of the crests (figures 9(b,c). Accordingly,
their peak growth frequencies decrease as the streak amplitude is increased. While the
peak amplification rates of both subharmonic modes also decrease with an increasing
streak amplitude, the stabilizing influence is substantially stronger for the sinuous
mode MM1/2,S. Figure 8(c) indicates that the effect of the streaks is somewhat
different in the case of the MM1,V modes, which are strongest within the valley
regions of the streaks. The growth rates of these MM1,V modes initially increase
with the streak amplitude parameter up to A = 0.05, and then decrease at higher A.
Furthermore, the peak growth frequencies of the MM1,V modes increase with A. In
contrast, the streaks have a stabilizing influence on the MM1,S modes (figure 9d)
for all A. Finally, both the MM3/2,S and MM3/2,V modes are destabilized with streak
amplitude parameter up to A = 0.10, although the varicose mode MM3/2,V does not
reach the neutral stability threshold, i.e. zero growth rate. The mode shapes of the
modes MM3/2,S and MM3/2,V are shown in figures 9( f ) and 9(g), respectively.
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FIGURE 10. (Colour online) Isocontours of the real and imaginary parts and magnitude
of streamwise velocity perturbation for A = 0.10 at ξ/L = 1.0 and frequency ω = 0.501
for MM3/5. The isolines of basic state streamwise velocity, ū= 0 : 0.1 : 0.9, are added for
reference.

As explained before, the instability waves with wavenumbers different from those
studied in figures 8 and 9 (namely, m = 1/2 mST , mST and 3/2 mST) are not phase
locked by the presence of the streaks, and hence, both oblique modes with the
same value of m have the same amplification rate and their mode shapes satisfy
q̂−(ξ , η, ζ ) = q̂+(ξ , η, −ζ ). Figure 10 shows the mode shape of the Mack mode
wave with m = 3/5 mST . These waves have an azimuthal wavelength of 5/3 times
the azimuthal wavelength of the streaks. The three perturbation wavelengths within
five streak wavelengths are visible in the mode shapes corresponding to the real
and imaginary parts of the perturbation. The streamwise velocity magnitude is rather
similar to that corresponding to the MM1/2,S plotted in figure 9(b), but differences in
phase are observed in the real and imaginary parts of the mode shape components.

To characterize the overall effect of streaks on the amplification of the Mack-mode
disturbances, we now examine the spatial evolution of fixed-frequency planar and
oblique Mack modes with the plane-marching PSE. The N-factor defined in (2.7)
is used as a measure of the disturbance amplification. Figures 11(a) and 11(b)
illustrate the N-factor evolution of the Mack modes with frequencies ω = 0.603 and
ω = 0.421, respectively, for the unperturbed basic state (A= 0.00) and the perturbed
flow with A = 0.10. Results for the unperturbed and perturbed flows include the
planar Mack mode (MM0) and oblique Mack modes with several values of m, i.e.
m = 1/4 mST (MM1/4), m = 1/3 mST (MM1/3), m = 1/2 mST (MM1/2), m = 3/5 mST
(MM3/5), m= 2/3 mST (MM2/3) and m= mST (MM1), as well as the sinuous (S) and
varicose (V) mode types for the locked modes. As shown in figure 3, the disturbance
frequency used in figure 11(a), ω = 0.603, corresponds to the frequency of the
planar Mack mode that reaches the largest N-factor, Ntr = 14.7, at the experimentally
observed transition location, ξtr/L = 0.85 m. For the perturbed case with A = 0.10,
the MM0 disturbance frequency ω = 0.421 that is used in figure 11(b), reaches the
transition N-factor Ntr= 14.7 at the most upstream location, ξtr/L= 1.39. Figure 11(a)
shows that for the unperturbed case, the maximum value of the N-factor is reached
by the MM0 mode and is N = 14.97. For the perturbed case, the peak N-factor is
also reached by the MM0 mode, but is drastically reduced to N = 6.94. For the
perturbed flow case, the unlocked oblique modes MM1/4, MM1/3, MM3/5 and MM2/3
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FIGURE 11. (Colour online) Evolution of N-factors with frequencies (a) ω=0.603 and (b)
ω= 0.421 of planar and selected oblique Mack-mode waves for the unperturbed boundary-
layer flow (A= 0.00) and the perturbed boundary-layer flow with A= 0.10.

experience a similarly stabilizing effect of the streaks as that found for the MM0
mode and their N-factor curves remain below the N-factor curve of the MM0 mode.
The phase locked modes MM1,V and MM3/2,S are destabilized, although their peak
N-factor values are approximately one half of the peak value corresponding to the
N-factor of the MM0 mode. Figure 11(b) shows that the peak N-factor values for
the disturbance frequency ω = 0.421 are reduced from N = 25.26 to N = 15.11 by
the introduction of the streak. The N-factor curves of the MM1/4, MM1/3, MM1/2,V
modes become nearly coincident but remain below the curve corresponding to the
MM0 mode. The rest of oblique Mack modes plotted in figure 11(b), i.e. MM1/2,V ,
MM3/5, MM2/3, MM1,S, MM1,V , MM3/2,S and MM3/2,V , are also less amplified than
the MM0. Therefore, we can conclude that the planar Mack mode, MM0, dominates
the instability characteristics of both the unperturbed and perturbed boundary-layer
flows.

Herein, the primary mechanism for the effect of the streak on the reduced
amplification of the planar Mack mode is investigated. Figures 12(a) and 12(b)
illustrate the N-factor evolution of the MM0 mode with frequencies ω = 0.603 and
ω = 0.421, respectively, for the unperturbed basic state (A= 0.00) and the perturbed
flow with A= 0.10. The extra three curves plotted in figures 12(a) and 12(b) indicate
the N-factor evolution for the same frequencies using three ‘artificial’ basic states: a
two-dimensional basic state corresponding to the azimuthal average of the A = 0.10
flow, which corresponds to the unperturbed flow (A = 0.00) plus the mean-flow
distortion (MFD) due to the streak, A= 0.00+MFD, the perturbed flow with A= 0.10
minus the MFD of the perturbation, A= 0.10−MFD and the two-dimensional profile
at the half-symmetry plane (ζ = λST/2) of the perturbed flow, A = 0.10 : ζ = λ/2.
These extra cases are introduced to understand the primary mechanism for the effect
of the streak on the reduced amplification of the planar Mack mode. By comparing
the N-factor of the first extra case (A = 0.00 +MFD) with that for the unperturbed
flow (A= 0.00), we can see that the MFD has a modestly stabilizing influence on the
planar Mack mode, which is in qualitative agreement with the findings reported by
Ren et al. (2016) for weak streaks (Asu < 0.05) and by Paredes et al. (2016b) for a
broader range of streak amplitudes for a boundary-layer flow representative of wind
tunnel conditions (Tw/Tw,ad = 0.68). However, the N-factor evolution for the second
‘artificial’ case (A = 0.10 − MFD) indicates a stronger stabilizing influence on the
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FIGURE 12. (Colour online) Evolution of N-factors of planar Mack-mode waves with
frequencies (a) ω = 0.603 and (b) ω = 0.421 for the unperturbed basic state (A = 0.00),
the perturbed basic state (A = 0.10), the unperturbed basic state plus the MFD of the
A = 0.10 perturbation (A = 0.10 + MFD), the perturbed basic state without the MFD
(A= 0.10−MFD) and the ζ =λST/2 plane of the perturbed basic state (A= 0.10 : ζ =λ/2).

planar Mack mode by the three-dimensional modulation of the boundary layer, or,
equally, the spanwise varying component of the stationary streak. The N-factor curve
for the A= 0.10−MFD case closely approximates the result for the total perturbed
flow (A = 0.10), i.e. has similar neutral locations and maximum peak amplifications.
Therefore, the three-dimensional modulation of the boundary layer caused by the
streaks dominates the overall modification of the instability characteristics of the
planar Mack-mode waves. Because the MM0 mode shape is concentrated on the
crests of the undulating velocity contours of the modified flow (figure 9a), the
analysis of the third ‘artificial’ case (A = 0.10 : ζ = λ/2) intends to resolve whether
the instability characteristics of the boundary layer along the half-symmetry plane
reflects the instability features of the total flow field. Figures 12(a) and 12(b) show
that as the streak amplitude becomes significant for ξ/L> 0.5 (figure 5), the N-factor
curve of the A = 0.10 : ζ = λ/2 case strongly differs from that corresponding to the
A= 0.10 case, which implies that the three-dimensional effects need to be considered.

Finally, to further understand the dominant mechanism of the instability modes, the
production terms associated with the local kinetic energy transfer as a function of the
streamwise location are calculated; see Malik et al. (1999) and Paredes et al. (2017a)
for further details. Figures 13(a) and 13(b) show the evolution of the normalized
production terms associated with the streamwise velocity gradients in the three
directions (ξ , η, ζ ) for disturbance frequencies ω= 0.603 and ω= 0.421, respectively.
These terms are written as

Puξ (ξ)=−
∫
ζ

∫
η

Re(ûûc)ρ̄ūξhξhζ dη dζ , (3.6)

Puη(ξ)=−
∫
ζ

∫
η

Re(ûv̂c)ρ̄ūηhξhζ dη dζ , (3.7)

Puζ (ξ)=−
∫
ζ

∫
η

Re(ûŵc)ρ̄ūζhξhζ dη dζ , (3.8)

where the superscript c denotes complex conjugate. Figure 13(a,b) shows that the
production term associated with the wall-normal gradient clearly dominates for both
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FIGURE 13. (Colour online) Evolution of the ratio between the production terms
associated with the streamwise velocity gradients and the kinetic energy of the planar
Mack-mode waves with frequencies (a) ω= 0.603 and (b) ω= 0.421.

the unperturbed and perturbed cases, because the streamwise and azimuthal terms are
negligible. Furthermore, the Puη term for the perturbed boundary-layer flow remains
positive over a relatively shorter streamwise domain, which explains the shorter
range of amplification and the lower N-factor peak of the MM0 mode observed in
figure 12(a,b).

3.4.2. Streak instabilities
In the previous subsections, we discussed the effect of streaks on the unstable

eigenmodes of the unperturbed boundary layer. However, as the streak amplitude
is increased, some of the stable (i.e. damped) modes of the original, axisymmetric
boundary layer become increasingly less stable, and eventually, cross-over into the
unstable portion of the spectrum. Indeed, at large enough streak amplitudes, these
streak instabilities (denoted as SI modes following the nomenclature of Li et al.
2016) can become the most amplified modes, and hence, can dominate the process
of laminar–turbulent transition. The PDE-based EVP analysis is used to obtain
the growth rates (figure 14) and eigenfunctions (figure 15) of subharmonic and
fundamental sinuous and varicose streak instability modes (SI1/2,S, SI1/2,V , SI1,S and
SI1,V) at ξ/L = 1.0 for the selected streak amplitudes. Figure 14 shows that the
SI1/2,S mode is the first streak instability mode to become unstable for A = 0.20.
The SI1/2,S is also the most unstable streak instability mode for streak amplitude
parameters A 6 0.40. The SI1,S becomes unstable for A = 0.30 and is the most
amplified mode for A= 0.50. Varicose modes, SI1/2,V and SI1,V become unstable for
A = 0.50. Summarizing, the SI1/2,S mode is the most unstable mode for moderate
streak amplitudes and, therefore, may play an important role in the transition process.
Mode shapes for each family at frequencies corresponding to peak local growth
rate are shown in figure 15(a–d) for a streak amplitude parameter of A= 0.50. The
streamwise velocity magnitude isocontours are rather similar between the fundamental
and subharmonic sinuous modes, SI1/2,S and SI1,S, as well as between the varicose
modes, SI1/2,V and SI1,V . These modes differ in the phase, which is observed in the
real and imaginary parts of the mode shape perturbation. We note that, as shown
by Dennisen & White (2011) and Choudhari et al. (2009) for low- and high-speed
boundary layers, respectively, the streak instabilities for suboptimal streaks induced
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FIGURE 14. (Colour online) Spatial growth rates (−αi) of streak instability modes (SI1/2,S,
SI1/2,V , SI1,S and SI1,V) for selected streak amplitudes at ξ/L= 1.0.
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FIGURE 15. (Colour online) Isocontours of real and imaginary parts and magnitude of
streamwise velocity perturbations for A= 0.50 at ξ/L= 1.0 and frequencies (a) ω= 0.0853
for SI1/2,S, (b) ω= 0.142 for SI1/2,V , (c) ω= 0.0967 for SI1,S and (d) ω= 0.119 for SI1,V .

by discrete roughness elements can be more unstable for lower streak amplitudes
than the optimal streaks studied herein.

3.4.3. Overall effect on predicted transition onset
The overall effect of the streaks on the instability characteristics of the hypersonic

boundary-layer flow is summarized in figures 16(a) and 16(b), where the neutral
stability curves and the N-factor envelopes, respectively, of the MM0 and SI1/2,S modes
are plotted for selected streak amplitudes. Figure 16(a) shows how the streaks affect
the range of unstable frequencies. As explained in § 3.4.1, the neutral stability curves
are displaced toward lower frequencies because the MM0 mode shape concentrates
on the crests of the modified flow (i.e. regions of increased boundary-layer thickness)
as shown by figure 9(a). The sinuous subharmonic streak instabilities, which arise
from the stable oblique first-mode disturbance with the same azimuthal wavelength,
as documented by Paredes et al. (2016b,c, 2017a) for supersonic and hypersonic
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FIGURE 16. (Colour online) (a) Neutral stability curves and (b) N-factor envelopes for
planar Mack-mode disturbances (MM0) and sinuous, subharmonic streak instability modes
(SI1/2,S).

boundary-layer flows, become unstable for streak amplitude parameter A= 0.20, with
associated frequencies lower than those associated with the MM0 mode. For each of
the selected streak amplitudes, the stability regions of the MM0 and SI1/2,S modes are
separate from each other.

The primary focus of this work corresponds to the stabilizing effect of streaks on
Mack-mode disturbances, which have been shown to cause transition in the present
flow configuration (Li et al. 2015a). For the conditions of the experiment (Kimmel
et al. 2015), transition onset in the unperturbed cone boundary layer was measured
to occur near ξtr/L= 0.85, where the peak N-factor of the MM0 modes is Ntr = 14.7.
Selecting this value as the transition threshold, figure 16(b) shows how the transition
onset due to MM0 modes would be displaced downstream by the introduction of
the finite-amplitude optimal disturbances. For the highest streak amplitude considered
herein (A= 0.40 with max(Asu)= 0.34), the MM0 modes reach the threshold N-factor
at ξtr,MM0/L= 1.84, although the sinuous, subharmonic streak instability SI1/2,S reaches
the threshold N-factor at ξtr,SI1/2,S/L = 1.76. Assuming that the threshold N-factor is
equivalent for Mack mode and streak instabilities, the laminar flow region would
be 2.07 times larger than for the unperturbed case. These results for high altitude
conditions present an interesting comparison with the findings by Paredes et al.
(2016b) for a 7◦ half-angle circular cone at the flow conditions of a ground test
experiment in the VKI H3 hypersonic tunnel (Grossir, Musutti & Chazot 2015),
namely M∞= 6, Re′= 18× 106 m−1, T∞= 60.98 K and wall-to-adiabatic temperature
ratio equal to Tw/Tw,ad = 0.68. In the case of Paredes et al. (2016b), the higher value
of the Tw/Tw,ad allows for the growth of oblique first-mode instability waves, which
are destabilized by the presence of the streaks and eventually become the streak
instability modes. The amplification due to the modulated unstable first-mode waves
leads to a lower threshold streak amplitude beyond which streak instability becomes
the dominant cause for the onset of transition. Paredes et al. (2016b) predicted that
the subharmonic sinuous mode dominates the transition onset above A≈ 0.20 for the
ground test case with Tw/Tw,ad = 0.68, while the streak amplitude analogous value
of threshold for the flight test case with Tw/Tw,ad = 0.35 is A≈ 0.40 as observed in
figure 16(b).

The N-factor threshold to cause transition can be lower in the presence of the
streaks than that in the uncontrolled case. The present analysis is solely based on
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the effect of the streaks on the linear amplification stage and because of the role
of the streaks (or the device used to excite those streaks) on the receptivity and/or
nonlinear phases of transition, lower N-factors at the onset of transition can be
possible. However, the results in figure 16(b) suggest that even if the transition
N-factor for the boundary layer with streaks were to be as low as N = 10 (as against
the value of N = 14.7 in the uncontrolled case), transition onset may still be delayed
until ξ/L= 1.34 for a streak amplitude of A= 0.30.

The present results show a potential increase in the length of the laminar flow that
is comparable to the length of the laminar region in the unperturbed case, i.e. the
laminar flow acreage is potentially doubled. Considering that the ratio of local skin
friction coefficients for turbulent and laminar flows is in the range of cf ,tur/cf ,lam ∈
[5, 7] (Schlichting 1979), the maximum total skin friction reduction for the present
geometry with a total length corresponding to ReLc = 26.84× 106, at the present flow
conditions (M∞ = 5.3, Re′ = 13.42× 106 m−1, Tw/Tw,ad = 0.35) and with a transition
threshold of N= 14.7, would be of the order of 60 % relative to the unperturbed case.
As mentioned in the preceding paragraph, even if one assumes that transition in the
controlled flow occurs at a significantly lower N-factor of 10 (instead of at N = 14.7
in the baseline case), the total reduction in skin friction would still be approximately
35 per cent. Based on Reynolds analogy, comparable reduction may also be expected
in the total heat load experienced by the cone surface.

3.4.4. Effect of streak wavenumber on transition onset
A parameter study for additional streak wavenumbers mST is conducted to help with

identifying the optimal flow control setting to maximize the transition delay for a
given flow configuration. Figure 17(a) shows the evolution of N-factor envelopes for
the unperturbed boundary layer (A = 0.00) and the perturbed boundary layers for a
streak amplitude parameter of A = 0.10 and selected azimuthal wavenumbers. Note
that the initial streak disturbance amplitude A0 is different for each perturbed case with
selected azimuthal wavenumbers following (3.4). The N-factor envelope curves show
a strong effect of the streak azimuthal wavenumber. For the azimuthal wavenumber
(mST = 135) smaller than the optimal streak wavenumber (mST = mop = 180), the N-
factor values are larger than those corresponding to mST = mop along most of the
streamwise domain, but slightly smaller near the initial disturbance location (ξ0/L =
0.5). For the present configuration, streaks with mST <mop would be less effective for
transition delay than mST =mop. For azimuthal streak wavenumbers larger than mop, the
effect of the streaks is weaker near the initial disturbance location, resulting in larger
N-factor values than those corresponding to the mST =mop case, but the N-factor values
decrease further downstream and the N-factor envelopes for mST >mop remains below
that corresponding to mST = mop along most of the domain. Streak instabilities were
not found for any of the selected cases, even though the initial disturbance amplitude
at these suboptimal wavenumbers must be larger than that for mST =mop in order to
reach the same maximum streak amplitude. Therefore, for the same value of maximum
streak amplitude, streaks with azimuthal wavenumbers larger than that are larger than
the wavenumber corresponding to optimal transient growth are likely to result in a
longer delay in the onset of transition. To help determine the most convenient streak
azimuthal wavenumber for transition delay, figure 17(b) shows the predicted transition
location as a function of the azimuthal wavenumbers for optimal disturbances initiated
at ξ/L = 0.5 with same streak amplitude parameter A = 0.10 and with same initial
amplitude A0, which is set to the relatively modest value for A = 0.10 with mST =
mop = 180. Results show that the streaks with mST = 256 (mST = 1.42 mop) lead to a
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FIGURE 17. (Colour online) (a) N-factor envelopes for the unperturbed boundary-layer
flow (A= 0.00) and for perturbed boundary-layer flows with A= 0.10 and selected streak
azimuthal wavenumbers mST = 135, 180, 270, 360, 450 and 540. (b) Effect of predicted
transition location with streak azimuthal wavenumber for same streak amplitude parameter
A = 0.10, and for same initial disturbance amplitude A0 corresponding to A = 0.10 for
mST =mop= 180. The experimentally measured transition location for the unperturbed case
(A= 0.00) is included. The suffix ST is excluded in the figures for simplification.

further downstream displacement of the transition location with same initial amplitude;
specifically, the predicted transition location is ξtr/L= 1.39 for mST = mop = 180 and
ξtr/L= 1.52 for mST = 256 with same initial amplitude A0.

4. Summary and concluding remarks
Optimal growth theory based on the stationary form of parabolized stability

equations (PSE) is used to identify the range of modulating wavenumbers that
would benefit the most from the intrinsic ‘lift-up’ mechanisms within a high-speed
boundary-layer flow over a 7◦ half-angle circular cone at zero angle of attack. The
plane-marching PSE have been used to monitor the nonlinear disturbance evolution
of finite-amplitude, linearly optimal perturbations. Subsequently, the linear stability
characteristics of the perturbed streaky boundary-layer flow are studied using the
linear form of the plane-marching PSE. The present results have demonstrated that the
introduction of finite-amplitude optimal growth streaks in a Mach 5.3 axisymmetric
flow over a cone at realistic flight conditions from the HIFiRE-1 experiment will
reduce the peak linear amplification of boundary-layer instabilities, indicating the
possibility of a delayed onset of laminar–turbulent transition. The current predictions
show that the planar Mack-mode waves are the most amplified instabilities for both
the unperturbed and perturbed cases up to a threshold amplitude of the stationary
streaks. A detailed analysis of the primary mechanism for the effect of the streaks
on the reduced amplification of the planar Mack modes provides further evidence
that the MFD of the nonlinear stationary streak perturbation has a stabilizing effect
on the Mack modes as previously reported by Ren et al. (2016) for small streak
amplitudes and by Paredes et al. (2016b) for a broad range of streak amplitudes. More
interestingly, however, the present calculations demonstrate that the spanwise varying
component of the stationary streak has an even larger effect of the amplification
characteristics of the Mack modes. Yet, in general, the production of disturbance
kinetic energy associated with the boundary layer instabilities is dominated by the
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wall-normal gradients of the boundary layer flow with or without the streaks. For
sufficiently large streak amplitudes, intrinsic instabilities of the streaks can reach the
threshold N-factor for transition onset before the Mack-mode instabilities.

The results indicate that, if suitable stationary disturbances can be excited in the
originally axisymmetric boundary-layer flow, then the net stabilization of planar
Mack-mode instabilities due to the stationary streaks may lead to a notable delay in
transition onset, provided that the N-factor values correlating with transition onset
remain similar in both unperturbed and perturbed cases. The streaks with azimuthal
wavenumber corresponding to the optimal transient growth yield a downstream
movement of the laminar–turbulent transition onset that is comparable to the
uncontrolled transition length, which translates into a reduction of the total skin
friction of the order of the 60 % relative to the uncontrolled case. Furthermore, the
parametric study for additional streak wavenumbers has shown that a larger streak
wavenumber of approximately 1.4 times the optimal growth value, may actually result
in an increased delay in transition.

Detailed laboratory experiments are required to establish the effect of streaks, if
any, on the N-factor correlation. The physical source responsible for the excitation
of transient growth disturbances has not been addressed in this study and, in turn,
the effect of this source on the generation (i.e. receptivity) of the unsteady modal
instabilities is also not addressed in the present investigation. The disturbances induced
via wall-mounted devices would have shorter wall-normal extensions than the optimal
disturbances and therefore their effect on the boundary-layer instabilities may differ
from that presented herein. A study of both these aspects would represent an important
extension of the present work.
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