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Using the two-scale convergence approach, we derive equations which govern transversal

time-harmonic waves through a layered medium taking the form of a poroelastic composite

saturated with a viscous fluid. To improve convergence, we construct a corrector. We study

how wave speed and attenuation time depend on porosity and frequency. We prove that the

Darcy permeability and the acoustic permeability in the Biot equations do not coincide.
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1 Introduction

We consider acoustics of a fluid-saturated porous medium. A number of publications have

been devoted to the question. Equations of poroelasticity were first formulated by Biot [5].

His theory predicted a second (slower) compressional wave in a poroelastic medium [6].

Later, such a wave was confirmed experimentally in [7, 17]. To determine the empirical

coefficients of the Biot equations, one should use experimental data. On the other hand,

these macro-coefficients can be calculated numerically by the two-scale homogenization

approach starting from the micro-coefficients of the elastic and fluid components. The

potential of such a calculation was proved first by the two-scale expansion technique

[4, 9, 14, 18] and then by the method of two-scale convergence [16].

We restrict ourselves to a medium with a periodic layered structure when it consists

of alternating elastic and fluid layers. We study time-harmonic transversal waves that

are sufficiently long. Using the two-scale convergence approach, we investigate the limit

problem when the total thickness of both the solid and fluid layers goes to zero. We prove

that the limit waves are elastic or viscoelastic depending on whether the fluid viscosities

are low or high. It is a novelty of the present study that we not only find governing

equations for waves but we determine both the wave speed and its attenuation for

different acoustic and geometrical data of the constitutive components of the composite

medium. We construct a corrector which improves weak convergence into strong.

As far as the general solid–fluid geometry of the composite is concerned, it is well-known

that, to determine homogenized macro-equations explicitly, one should solve numerically

micro-equations reduced to a representative periodicity cell [14]. In our simplified layered

composite, the micro-equations are one-dimensional and, consequently, they can be solved

in a straightforward manner. This is why we are able to perform an exhaustive acoustic
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analysis of the homogenized media. Particularly, when the solid and fluid components

are acoustically semi-equivalent, i.e. they have the same compressional sound speed, we

prove that the sound wave propagates through the homogenized layered media in the

transversal direction slower than in the homogeneous components.

We also establish a frequency dispersion effect both for the sound speed and for

the attenuation time. Moreover, we study how these parameters depend on porosity.

Particularly, we show that sound speed depends on porosity non-monotonically.

We comment also on recent attempts to identify formation permeability by acoustic

methods (see for example US Patent No. 2814017). We demonstrate some pitfalls in the

approach by showing that permeability in the Biot theory does not coincide with those

in the Darcy equation.

Waves in layered media have been studied in a number of publications. We refer the

reader to several textbooks [1, 8, 13, 20] and recent articles [3, 19].

2 Problem formulation

We consider small oscillations of a composite material consisting of an elastic porous

solid saturated with a viscous fluid. The solid phase is governed by the elasticity equations

ρs
∂2ui

∂t2
=

∂σij
∂xj

+ ρfi, (2.1)

σij = λsε
u
kkδij + 2µsε

u
ij , εuij ≡ εij(u) ≡ 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, ρs = const.

Here, u is the displacement vector, εu is the strain tensor of small deformations, σ is the

stress tensor, ρ is the density, λs and µs are the Lamé moduli, f (t) is the mass force density.

The equations of a fluid phase are

ρf
∂2ui

∂t2
=

∂σij
∂xj

+ ρfi, σij =

(
−p+ λf

∂εukk
∂t

)
δij + 2µf

∂εuij
∂t
, (2.2)

p = −c2fρfεukk, ρf = const. (2.3)

Here, cf is the sound speed corresponding to the fluid density ρf , p is the pressure deviation

from the equilibrium pressure pf = c2fρf , the constants λf and µf are the viscosities. One

can derive equation (2.3) integrating the linearized mass conservation law ∂t(ρ − ρf) =

−ρfdiv ∂tu written for density deviation from the initial constant density. Indeed, (2.3)

results from the equalities ρ − ρf = −ρfdiv u and p = c2f(ρ − ρf). Both the displacement

vector and the stress vector are continuous at the surface which separates the solid phase

from the fluid one:

[ui] = 0, [σijnj] = 0. (2.4)

Here, n is the unit normal to the surface; given a function F , we denote its jump at a

point of discontinuity lying on the surface by [F].

In what follows, we assume that the composite has a layered structure. The solid

horizontal layers an < z < bn have the same thickness and alternate with the fluid
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horizontal layers bn < z < an+1 which are also all of the same thickness, n = 0, 1, 2, . . . , k.

With hs =bn − an and hf = an+1 − bn standing for sizes of solid and fluid layers, we

introduce the total thickness L = kh and h = hf+hs.

Let u be the displacement along the vertical direction. We impose the following boundary

conditions

u(0, t) = u0e
−iωt, u(L, t) = 0, (2.5)

which prescribe a vibration with the frequency ω. Assuming f = 0, we look for a solution

as a one-dimensional time-harmonic wave:

u = e−iωtU(z), p = e−iωtP (z).

Then system (2.1)–(2.3) can be reduced to the equations

−ρsω2U =
∂

∂z
(λsUz + 2µsUz), an < z < bn, (2.6)

−ρfω2U = − ∂

∂z
(P + iωλfUz + 2iωµfUz), P = −c2fρfUz, bn < z < an+1. (2.7)

We pass to the dimensionless variables

z′ =
z

L
, U ′ =

U

L
, P ′ =

P

p0
, ω′ =

ω

ω0
,

where the denominators are characteristic reference values of the dimension variables.

The system (2.6)–(2.7) for the functions U ′, P ′ (we drop the primes in what follows) takes

the following dimensionless form:

−α1ω
2U =

∂

∂z

(
α2

∂U

∂z

)
,

an

L
< z <

bn

L
, (2.8)

−α3ω
2U = − ∂

∂z
(P + iα4ωUz) , P = −α5Uz,

bn

L
< z <

an+1

L
, (2.9)

where the dimensionless constants are defined by the formulae

α1 =
ρsω

2
0L

2

p0
, α2 =

λs + 2µs
p0

, α3 =
ρfω

2
0L

2

p0
,

α4 =
ω0(λf + 2µf)

p0
, α5 =

c2fρf

p0
.

An exact solution of the system (2.8)–(2.9) is given by the formula

U(z) =

⎧⎨
⎩
cs1,ne

λs1z + cs2,ne
λs2z ≡ Us

n(z), an/L < z < bn/L,

c
f
1,ne

λ
f
1z + c

f
2,ne

λ
f
2z ≡ Uf

n (z), bn/L < z < an+1/L,
(2.10)

where λsj and λfj are roots of the equations

α2λ
2 + ω2α1 = 0 and (α5 − iωα4)λ

2 + α3ω
2 = 0
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respectively. The constants csj,n, c
f
j,n, (j = 1, 2; n = 1, 2, . . . , k), can be determined from the

boundary conditions (2.5) and the continuity conditions (2.4). The latter imply that the

solid displacements Us
n coincide with the fluid displacements Uf

n , and the solid fluxes

α2dU
s
n/dz coincide with the fluid fluxes (α5 − iωα4)dU

f
n /dz at the points bn/L, 0 � n < k,

and the points an/L, 1 � n < k.

These continuity conditions and the boundary conditions can be written as a linear

system A(k)c = F for the 4k-dimensional vector c consisting of the coefficients csj,n, c
f
j,n,

(j = 1, 2; n = 1, 2, . . . , k). Hence, the frequency ω obeys the restriction

detA(k)(ω)� 0, k = 1, 2, . . . . (2.11)

The resonance equation detA(k)(ω∗) = 0 implies that

max
z

|U(z)| → ∞ as ω → ω∗.

Assuming that δ = h/L = 1/k is a small number, we perform an asymptotic analysis

for δ → 0. The formula (2.10) is of no help in such an analysis, since the representation

formulae for the vector c are not manageable. Observe that one should verify an infinite

number of the conditions (2.11) with k = 1, 2, . . . . We apply the homogenization theory

to study the limit as δ → 0. We consider a viscous and a ‘weakly viscous fluid’. For the

viscous fluid, none of the constants αi depends on δ. For the weakly viscous fluid, none

of the constants αi depends on δ except for α4, which obeys the law α4 = ᾱ4δ
m, m > 1,

ᾱ4 > 0. For the sake of convenience, we introduce the function α4(δ) which is equal to the

constant α4 in the viscous case and is given by the formula α4(δ) = ᾱ4δ
m in the weakly

viscous case. In the limit, as δ → 0, we have α4(0) = α4 in the viscous case and α4(0) = 0

in the weakly viscous case.

We introduce the micro-variable y = z/δ and the characteristic function of the fluid

phase

1f(y) =

{
1, 1 − φ < y < 1,

0, 0 < y < 1 − φ,
y ∈ Y = {y : 0 < y < 1},

where φ = hf/h is the porosity. The function 1s(y) = 1−1f(y) stands for the characteristic

function of the solid phase. We extend these characteristic functions periodically onto the

real line �. Clearly, 1δf(z) = 1f(z/δ) is a periodic function with the period δ. We introduce

the dimensionless density

ρδ(z) = ρ̃(y)|y=z/δ , ρ̃(y) ≡ α31f(y) + α11s(y).

Let us pass to a reduced displacement with homogeneous boundary conditions. We

introduce the following notation:

u1(z) = (1 − z)u0, w = U − u1, z ∈ Ω ≡ {z : 0 < z < 1}.

The system (2.8)–(2.9) can be written as an equation

−ω2ρδ(w + u1) = σz, w|z∈∂Ω = 0, (2.12)
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where

σ = −P − iωα4(δ)(wz − u0)1
δ
f + α2(wz − u0)1

δ
s , P (z) = −α5(wz − u0)1

δ
f . (2.13)

Due to the solid–fluid boundary conditions (2.4), equation (2.12) admits the following

weak formulation. We look for functions w ∈ W
1,2
0 (Ω) and P ∈ L2(Ω) such that equality

(2.13) holds jointly with the condition

∫ 1

0

ω2ρδ(w + u1)ϕdz =

∫ 1

0

σϕz dz ∀ϕ ∈ W
1,2
0 (Ω). (2.14)

3 Asymptotic analysis

Given δ > 0, the problem (2.12)–(2.13) has a unique weak solution. It follows from the

Lax–Milgram theorem. Indeed, let us denote

Rδ(z) = [α5 − iωα4(δ)] 1δf(z) + α21
δ
s (z).

We eliminate pressure by formula (2.13)2 and find equation (2.14) is reduced to the

following problem: one should find a complex-valued function wδ(z) such that wδ ∈
W

1,2
0 (Ω) and

A(wδ, ϕ) ≡
∫
Ω

wδz ϕ̄zR
δ − ω2ρδwδϕ̄ dz =

∫
Ω

ω2ρδu1ϕ̄+ u0ϕ̄zR
δ dz ∀ϕ ∈ W

1,2
0 (Ω). (3.1)

The form A is sesquilinear and continuous on the Hilbert space W
1,2
0 (Ω) equipped

with the scalar product (u, v) =
∫
Ω
uzv̄z dz. For small ω, the form is coercive. It follows

from the inequalities

|w(z)|2 � z

∫
Ω

|wz |2 dz, |A(w,w)| �

∫
Ω

(
α51

δ
f + α21

δ
s

)
|wz |2 − ω2ρδ |w|2 dz �

�

[
min(α2, α5) − ω2 max(α1, α3)

2

] ∫
Ω

|wz |2 dz.

Since the right-hand side of (3.1) is a linear continuous functional on the space W 1,2
0 (Ω),

the above properties of the form A enable us to apply the Lax–Milgram theorem [18] and

conclude that a solution of (3.1) does exist and it is unique provided the frequencies are

small enough.

To describe the homogenized layered media, one should find equations for the principal

terms (w0 and P 0) of the expansion series

wδ(z) = w0(z) + O(δ), P δ(z) = P 0(z) + O(δ), z ∈ Ω.

While calculating w0 and P 0, we apply the notion of two-scale convergence [2, 15]. We
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recall that a sequence uδ ⊂ L2(Ω) is said to be two-scale convergent to a limit u ∈ L2(Ω×Y )

if for any test function ψ ∈ C(Ω;Cper(Y )) one has

lim
δ→0

∫
Ω

uδ(z)ψ
(
z,
z

δ

)
dz →

∫
Ω

∫
Y

u(z, y)ψ(z, y) dz dy. (3.2)

For brevity, we write the property (3.2) as uδ(z)
t.s.
⇁ u(z, y).

The two-scale limit has the following property [15]. From each bounded sequence

in L2(Ω) one can extract a subsequence which two-scale converges to a function from

L2(Ω × Y ). Moreover, if uδ(z)
t.s.
⇁ u(z, y) we have uδ →

∫
Y
u(z, y) dy ≡ ũ(z) weakly in

L2(Ω).

As for derivatives, we will use the following assertion [15]. Let uδ(z) and uδz (z) be

bounded sequences in L2(Ω). Then there exist a subsequence, still denoted by uδ(z), and

functions u ∈ W 1,2(Ω), v ∈ L2(Ω;W 1,2
per (Y )) such that both uδ(z) and uδz (z) two-scale

converge to u(z) and uz(z) + vy(z, y) respectively. Moreover, uδ → u weakly in W 1,2(Ω).

Assume that frequencies satisfy the following restriction:

min(α2, α5) − 3ω2 max(α1, α3)

4
> 0. (3.3)

We show that, under this constraint, solutions of (3.1) are uniformly bounded in δ in the

norm of the space W 1,2
0 (Ω). Indeed, setting ϕ = wδ in (3.1) we derive that

Re

∫
Ω

Rδ |wδz |2 dz = ω2

∫
Ω

ρδ |wδ |2 dz + Re

∫
Ω

(
ω2ρδu1w̄

δ + u0w̄
δ
z R

δ
)
dz. (3.4)

Due to the inequalities

2

∫
Ω

|w|2 dz �

∫
Ω

|wz |2 dz, |xy| �
εx2

2
+
y2

2ε
∀ε,

we find that the right-hand side of (3.4) is bounded from above by(
3ω2 max(α1, α3)

4
+
ε

2

)∫
Ω

|wδz |2 dz +
u2

0

2
+

∫
Ω

u2
0|Rδ |2
2ε

dz.

Thus,

‖wδ‖
W

1,2
0 (Ω) � c, ‖Pδ‖L2(Ω) � c,

uniformly in δ. In view of these estimates, there are functions w0(z), w1(z, y), P 0(z, y)

and subsequences, still denoted by wδ(z) and Pδ(z), such that w0 ∈ W
1,2
0 (Ω), w1 ∈

L2(Ω;W 1,2
per (Y )), P 0 ∈ L2(Ω × Y ), and

wδ → w0 weakly in W
1,2
0 (Ω),

P δ → P̃ ≡
∫
Y

P 0(z, y) dy weakly in L2(Ω),
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wδ(z)
t.s.
⇁ w0(z), P δ(z)

t.s.
⇁ P 0(z, y), wδz (z)

t.s.
⇁ w0

z (z) + w1
y(z, y).

We denote

φs = 1 − φ, ρh =

∫
Y

ρ̃(y) dy = α3φ+ α1φs.

Let us show that the limit functions satisfy the equations

−ω2ρh
(
w0 + u1

)
= P̃z

(
1 − α2

α5
− iω

α4(0)

α5

)
+ α2w

0
zz ,

P̃

(
φs

α2
+
φ

α5
− iω

α4(0)φs
α2α5

)
= −φ

(
w0
z − u0

)
.

We recall that α4(0) = α4 and α4(0) = 0 in the viscous and weakly viscous cases,

respectively.

First, we prove an auxiliary result.

Lemma Let a sequence uδ(z) be bounded in L2(Ω) and uδ(z)
t.s.
⇁ u(z, y). Then 1δf(z)u

δ(z)
t.s.
⇁

1f(y)u(z, y).

Proof Let gm(y) be a continuous periodic function on Y such that ‖1f − gm‖L2(Y ) <

1/m, m > 0. From the definition (3.2) of the two-scale convergence, it follows that

gm(z/δ)uδ(z)
t.s.
⇁ gm(y)u(z, y).

With ϕ(x, y) being a test function, ϕ ∈ C(Ω;Cper(Y )), we have

∫
Ω

1δf(z)u
δϕ(z, z/δ) dz =

∫
Ω

(
1δf − gm(z/δ)

)
uδϕ(z, z/δ) dz

+

∫
Ω

gm(z/δ)uδϕ(z, z/δ) dz = I
δ,m
1 + I

δ,m
2 .

Clearly,

lim
δ→0

I
δ,m
1 = O(1/m), lim

δ→0
I2 =

∫
Ω

∫
Y

gm(y)u(z, y)ϕ(z, y) dzdy = Im2 .

Since

Im2 =

∫
Ω

∫
Y

1f(y)u(z, y)ϕ(z, y) dzdy + O(1/m),

the lemma is proved. �

The equality (2.13) is equivalent to

∫
Ω

P δ(z)v(z)dz = −
∫
Ω

α51
δ
f(w

δ
z (z) − u0)v(z) dz, ∀v ∈ D(Ω).
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By passing to the limit, as δ → 0, we obtain that

∫
Ω

∫
Y

P 0(z, y)v(z) dzdy = −α5

∫
Ω

∫
Y

1f(y)
(
w0
z (z) + w1

y(z, y) − u0

)
v(z) dzdy,

for any v ∈ D(Ω). Since the function v(z) is arbitrary, we have

P̃ (z) = −α5φ(w0
z (z) − u0) − α5

∫
Y

1f(y)w
1
y(z, y) dy. (3.5)

Eliminating pressure with the help of (2.13)2, we write the equality (2.14) as

−
∫
Ω

ω2ρδ(wδ + u1)ϕdz = −
∫
Ω

ϕz(w
0
z − u0)

[
(α5 − iωα4(δ))1

δ
f + α21

δ
s

]
dz, (3.6)

where ϕ(z) is an arbitrary function from D(Ω). Let us choose ϕ(z) = ψ(z) + δψ1(z, z/δ),

where ψ ∈ D(Ω) and ψ1 ∈ D(Ω,C∞
per(Y )). Taking ϕ as a test function in (3.6), we find that

−
∫
Ω

ω2ρδ(wδ + u1)
[
ψ(z) + δψ1(z, z/δ)

]
dz

= −
∫
Ω

[
ψz(z) + ψ1y(z, z/δ)

] [
α51

δ
f − iωα4(δ)1

δ
f + α21

δ
s

]
(wδz − u0) dz

− δ

∫
Ω

ψ1z(z, z/δ)
[
α51

δ
f − iωα4(δ)1

δ
f + α21

δ
s

]
(wδz − u0) dz.

In the limit, as δ → 0, we obtain

−
∫
Ω

∫
Y

ω2ρ̃(y)(w0 + u1)ψ dzdy

= −
∫
Ω

∫
Y

(
ψz + ψ1y

)
{[α5 − iωα4(0)]1f(y) + α21s(y)} (w0

z + w1
y − u0) dzdy. (3.7)

Setting ψ1 ≡ 0 and keeping in mind that the function ψ ∈ D(Ω) is arbitrary, we arrive

at the equality

−ω2ρh(w0(z) + u1(z)) =
d

dz

∫
Y

{[α5 − iωα4(0)]1f(y) + α21s(y)} (w0
z + w1

y − u0) dy.

Thus,

−ω2ρh(w0 + u1) = {[α5 − iωα4(0)]φ+ α2φs}w0
zz + (α5 − iωα4(0) − α2)

d

dz

∫
Y

1f(y)w
1
y(z, y) dy.

By applying (3.5), we arrive at the first macro-equation for w0(z) and P 0(z):

−ω2ρh(w0 + u1) = −P̃z
(

1 − α2

α5
− iω

α4(0)

α5

)
+ α2w

0
zz .
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Let us address (3.7), setting ψ ≡ 0, ψ1(z, y) = ϕ(z)θ(y), where φ ∈ D(Ω) and θ ∈ C∞
per(Y ).

By virtue of the fact that the function ϕ(z) is arbitrary, we have

0 = −
∫
Y

θy(y) {[α5 − iωα4(0)]1f(y) + α21s(y)} (w0
z + w1

y(z, y) − u0) dy.

We look for w1 by the method of separation of variables. Starting from the assump-

tion that w1 = (w0
z − u0)W (y), we obtain that a periodic function W (y) satisfies the

equation

0 = −
∫
Y

θy(y) {[α5 − iωα4(0)]1f(y) + α21s(y)} (1 +Wy) dy.

In terms of distributions, it implies that

d

dy
({[α5 − iωα4(0)]1f(y) + α21s(y)} (1 +Wy)) = 0.

Any constant satisfies this equation. In the interests of uniqueness, we impose the restric-

tion
∫
y
W dy = 0.

By integrating, we find that in the fluid zone the function Wy is a constant:

Wy(y) =
[α2 − α5 + iωα4(0)]φs
α2φ+ [α5 − iωα4(0)]φs

, 1 − Φ < y < 1.

By setting w1 = (w0
z − u0)W into (3.5), we obtain the second macro-equation

P̃ = − α2α5φ(w0
z − u0)

α2φ+ [α5 − iωα4(0)]φs
.

The two-scale limit w0(z) approximates the function wδ(z) for small values of δ only

weakly in W
1,2
0 (Ω). Here, we improve the approximation by finding a corrector to the

function w0(z).

Let us denote

rδ(z) = wδ(z) − w0(z) − δw1(z, z/δ),

hδ(z) = −δ(1 − z)
[
w0
z (0) − u0

]
W (0) − δz

[
w0
z (1) − u0

]
W (1).

We prove that the sequence wδ(z) − δw1(z, z/δ) converges to w0(z) strongly in W
1,2
0 (Ω).

The term δw1(z, z/δ) is called the corrector. Such an approach has been pursued by many

authors. Let us mention just a reference [10]. One can verify that the function

rδ1 (z) = rδ(z) − hδ(z)

vanishes at ∂Ω. It is the crucial property of rδ1 that it solves weakly the equation

d

dz

(
Rδ(z)

d

dz
rδ1

)
+ ω2ρδrδ1 = −ω2ρδhδ + fδ1 +

d

dz
fδ2 , (3.8)
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where

fδ1 (z) = −ω2
[
(ρδ(z) − ρh)(w0(z) + u1) + δρδ(z)(w0

z (z) − u0)W (z/δ)
]
,

fδ2 (z) = −Rδ(z) d
dz
hδ(z) + iω1δf(z)(w

0
z (z) − u0)

[
1 +Wy

( z
δ

)]
[α4(δ) − α4(0)]

+ δw0
0zzR

δW (z/δ).

Observe that hδ → 0 strongly in L2(Ω), fδ1 → 0 weakly in L2(Ω) and fδ2 → 0 strongly in

L2(Ω) as δ → 0.

It follows from (3.8) that

Re

∫
Ω

Rδ
∣∣rδ1z∣∣2 dz =

∫
Ω

ω2ρδ
∣∣rδ1 ∣∣2 + Re

[
(ω2ρδhδ − fδ1 )rδ1 + fδ2 r

δ
1z

]
dz.

Hence, by the Young inequality

[
min(α2, α5) − ε

2

] ∫
Ω

∣∣rδ1z∣∣2 dz �

∫
Ω

ω2ρδ
∣∣rδ1 ∣∣2+

∣∣fδ2 ∣∣2
2ε

dz+

∣∣∣∣∣∣Re

∫
Ω

(ω2ρδhδ − fδ1 )rδ1 dz

∣∣∣∣∣∣ . (3.9)

Assume that the sequence rδ1 does not converge strongly to zero. Hence, there is

subsequence still denoted by rδ1 such that

‖rδ1‖
W

1,2
0 (Ω) � ε0 > 0 (3.10)

for some ε0 and any δ. By compact imbedding ofW 1,2
0 (Ω) into L2(Ω), there is a subsequence

still denoted by rδ1 such that rδ1 → 0 in L2(Ω) strongly. Thus, the right-hand side of (3.9)

converges to zero in contradiction with the assumption (3.10).

Let us write down the macro-equations for U = U0(z) and P = P̃ (z) in terms of

dimensional variables. We introduce the notation

cs =

√
λs + 2µs
ρs

, ρ̄ = φρf + φsρs.

Clearly, they stand for compressional velocity in the homogeneous elastic medium and

average density, respectively. The equations that govern propagation of time-harmonic

waves in a homogenized layered medium, with a porous fluid having low viscosities, are

of the form

−ω2ρ̄U = −Pz

(
1 − c2s ρs

c2fρf

)
+ c2s ρsUzz, −P

(
φ

c2fρf
+

φs

c2s ρs

)
= φUz. (3.11)

As for the fluid with high viscosities, the equations are

−ω2ρ̄U = −Pz

(
1 − c2s ρs

c2fρf
− iω

λf + 2µf

c2fρf

)
+ c2s ρsUzz, (3.12)

P (φc2s ρs + φsc
2
fρf) − iωφs(λf + 2µf)P = −c2fρfc2s ρsφUz. (3.13)
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Let c0 be a reference sound speed, say cs or cf . The frequency restriction condition (3.3)

can be formulated in terms of the wave length Lw = c0/ω as follows

L2
w

L2
>

3c20 max(ρs, ρf)

4min(c2s ρs, c
2
fρf)

. (3.14)

4 Sound waves in a homogenized medium

First, we consider the case of a weakly viscous fluid. The harmonic-wave equations (3.11)

suggest that the general wave equations are of the form

ρ̄utt = c2s ρsuzz −
(

1 − c2s ρs

c2ρf

)
pz, −p

(
φ

c2fρf
+

φs

c2s ρs

)
= φuz. (4.1)

Though these equations do not result from above calculations we present them to see

that the effective homogenized medium is an elastic solid. Rigorously, equations (4.1) can

be derived by the technique developed in [11, 15, 18]. In the special case that a solution

of (4.1) depends on the variable ei(kz−ωt) only, one can determine the wave number k. We

find the wave number k directly from equations (3.11) looking for the solution in the form

U = U0e
ikz , P = P0e

ikz . Calculations reveal that

k2 = ρ̄ω2

(
φ

c2fρf
+

φs

c2s ρs

)
.

Hence, the sound speed ch = ω/k in the homogenized layered medium is defined by the

formula

ch =
1√

ρ̄
[
φ/(c2fρf) + φs/(c2s ρs)

] . (4.2)

Let us restrict ourselves to the case cf = cs = c. By analysing (4.2), we find that the

composite sound speed ch is lower than the sound speed in the components, with a

minimal value achieved at φ = 1/2 and being equal to

min
φ
ch = c

√
ρfρs

(ρf + ρs)/2
.

Generally, the dependence of ch on φ is not monotone (Figure 1).

Now we pass to the case when the fluid viscosities are not small. As equations (3.12)

and (3.13) suggest, the homogenized medium is a viscoelastic medium which is governed,

generally, by the equations

ρ̄utt = c2s ρsuzz −
(

1 − c2s ρs

c2fρf

)
pz − λf + 2µf

c2fρf
pzt,

p(φc2s ρs + φsc
2
fρf) + φs(λf + 2µf)pt = −c2fρfc2s ρsφuz.
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Figure 1. (Colour online) The dimensionless sound speed ch/cs versus the porosity φ for the

composite consisting of Berea sand stone and water. The data are ρf = 1 g/cm3, ρs = 2.65 g/cm3,

cf = 1.5323 × 102 cm/s, cs = 0.9558 × 105 cm/s.

Equations (3.12) and (3.13) admit the solution U = U0e
ikz , P = P0e

ikz provided the

dispersion relation

ρ̄V 2 = χ, ω/k ≡ V = V1 + iV2,

holds, where

χ =
1 − iω

λf+2µf

c2fρf

φs
λs+2µs

+ Φ
c2fρf

− iω
φs(λf+2µf )

c2fρf (λs+2µs)

.

We pass to the dimensionless variables

v =
V

cs
, f =

ω

ω0
, ω0 ≡

c2fρf

λf + 2µf
.

Now, the dispersion relation becomes

v2 =
1 − if

d1(d2 + d3(1 − if))
,

where

d1 = φs +
ρf

ρs
φ, d2 = φ

c2s
c2f

ρs

ρf
, d3 = φs.

Writing down v in the complex form v = v1 + iv2, we find the representation formulae

v1(f) =

√√√√d2 + d3 + d3f2 +
√

(d2 + d3 + d3f2)2 + d2
2f

2

2d1

[
(d2 + d3)2 + d2

3f
2
] ,
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Figure 2. (Colour online) The dimensionless attenuation time Tω0 versus the porosity φ for resin

particles dispersed in liquid paraffin for different values of dimensionless frequency f = ω/ω0. The

curves from the bottom upwards correspond to f taking values f = 0.5, 1 and 300, respectively.

v2(f) = − d2f

2v1(f)d1

[
(d2 + d3)2 + d2

3f
2
] .

These formulae enable us to calculate the sound speed and find the attenuation time

for different frequencies. We introduce the variables

c0 =
|V |2
V1

, ξ = z − c0t,

which stand for the sound speed and the phase variable, respectively. Simple calculations

give

ei(kz−ωt) = eiωV1ξ/|V |2eωV2ξ/V
2

eωV2c0t/|V |2 .

Since in our case V2 < 0, the wave dies out. The time T satisfying the relation eωV2c0T/|V |2 =

e−1 is called the attenuation time. One can see that both the attenuation time and the

wave speed can be calculated by the formulae

T = − v1(f)

fv2(f)ω0
, c0 =

cs
[
v21(f) + v22(f)

]
v1(f)

.

As an example, we show how these formulae can be applied to tell the concentration

of resin particles that are dispersed in a fluid. The drug industry calls for concentra-

tion measurement while developing encapsulation technology [12]. Encapsulation is a

process of enclosing micron-sized particles of solids or droplets of liquids or gasses in

an inert shell, which in turn isolates and protects them from the external environment.

Microencapsulation can be done to protect the sensitive substances from the external

environment, to mask the organoleptic properties like colour, taste and odour of the

substance, to obtain controlled release of the drug substance and so on. Figures 2 and
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Figure 3. (Colour online) The dimensionless sound speed c0/cs versus the porosity φ for resin

particles dispersed in liquid paraffin for different values of dimensionless frequency f = ω/ω0. The

curves from the bottom upwards correspond to f taking values f = 0.5, 1 and 300, respectively.

3 depict the attenuation time and wave speed versus porosity for the mixture of liquid

paraffin with resin particles. The component data are ρf = 0.8 g/cm3, ρs = 1.2 g/cm3,

cf = 14.5 · 104 cm/s, cs = 16 × 104 cm/s, λf = 0 and 2µf/ρf = 25 cm2/s. One can see that

there is a good correlation between the porosity (volume fraction of the fluid phase) and

both the attenuation time and the wave speed. Hence, one can measure concentration

by acoustic methods. Clearly, there is a limitation on the use of the above calculations

to particle concentration measurements since we are restricted in the present study to an

idealized layered medium. However, this study suggests that the two-scale homogenization

approach to three-dimensional poroelasticity equations can be of use in the topic.

5 Acoustic Darcy’s permeability

We introduce the fluid phase velocity Vδ
f (z) = −iωUδ(z)1δf(z). Let us calculate a two-scale

limit of Vδ
f as δ → 0. Given an arbitrary function ϕ(z) from D(Ω), we have

∫
Ω

V δ
f ϕ dz → −iω

∫
Ω

∫
Y

(w0 + u1)1f(y)ϕ(z) dzdy = −iωφU(z).

Therefore, Vδ
f (z)

t.s.
⇁ −iωφU(z) ≡ Vf(z). The relative velocity of fluid and solid phases [14]

Q = φ[Vf − (−iωU)] = φφsiωU

is called the filtration or Darcy’s velocity. Equations (3.11) valid for the case of weakly

viscous fluid enable us to represent U via Pz . On this way we arrive at the following

https://doi.org/10.1017/S0956792512000204 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000204


Elastic waves in layered media 705

formula for Darcy’s velocity:

Q = − k

µf
(Pz − ω2ρfU), k = i

µfφφs

ω(ρf − φρ̄)
. (5.1)

The fact that k is pure imaginary implies that, with porosity being small and satisfying

the restriction ρf >φρ̄, the phase shift γ in the complex representations of Q and pz−
ω2ρfu is equal to π/2:

q = Re
(
Qe−i(ωt+β1)

)
, pz − ω2ρfu = Re

(
[Pz − ω2ρfU]e−i(ωt+β2)

)
, γ = β1 − β2.

It results from (5.1) that time-harmonic waves satisfy the equation

q = − ka

µf
(pz − ω2ρfu), ka =

µfφφs

ω(ρf − φρ̄)
.

Observe that Biot derived this equation for a general poroelastic medium, with ka being

an empiric constant [5]. The variable ka has the same dimension as permeability. This is

why one may call it acoustic Darcy’s permeability.

If the fluid viscosities are not small, we derive from (3.12) and (3.13) that the Darcy

velocity is given by the formula

Q = − k

µf

(
Pz − ω2ρfU

)
, k =

iµfφφs

[
c2fρf − iω(λf + 2µf)

]
ω

[
c2fρf(ρf − φρ̄) − iωρf(λf + 2µf)

] .
In this case the acoustic Darcy’s law is of the form

q = − ka

µf

(
pz − ω2ρfu

)
,

where

ka =
µfφφs

√
ω2φ2c4fρ̄

2(λf + 2µf)2 +
(
c4fρf(ρf − φρ̄) + ω2(λf + 2µf)2

)2

ρfω
[
c4f(ρf − φρ̄)2 + ω2(λf + 2µf)2

] .

The above study has been performed for the case when fluid layers are isolated from each

other. Clearly, the homogenized layered medium has zero permeability in the transversal

direction. However, the acoustic permeability does not vanish and enjoys the frequency

dispersion effect. It should be noted that some authors do not make distinction between

hydrodynamic and acoustic permeabilities (see [14]). The above analysis demonstrates

that such a distinction should be recognized especially if one tries to define permeability

by an acoustic method.

6 Conclusions

Using the two-scale homogenization approach, we study propagations of time-harmonic

transversal waves in a layered medium when elastic layers alternate with compressible
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viscous fluid layers. The effective homogenized equations describe elastic waves or vis-

coelastic waves depending on whether the fluid viscosities are low or high. To improve the

two-scale convergence, we construct a corrector. We study how the wave speed and the

attenuation time depend on the fluid volume fraction and frequencies. We are restricted

to the case when the wave length is great enough. When the viscosities are not small,

we establish the frequency dispersion effect both for the sound speed and the attenuation

time. We find a representation formula for the acoustic Darcy’s permeability and show

that it does not coincide with the hydraulic Darcy’s permeability.
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