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EXTREMES FOR THE INRADIUS IN THE
POISSON LINE TESSELLATION
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Abstract

A Poisson line tessellation is observed in the window Wρ := B(0, π−1/2ρ1/2) for ρ > 0.
With each cell of the tessellation, we associate the inradius, which is the radius of the
largest ball contained in the cell. Using the Poisson approximation, we compute the limit
distributions of the largest and smallest order statistics for the inradii of all cells whose
nuclei are contained in Wρ as ρ goes to∞. We additionally prove that the limit shape of
the cells minimising the inradius is a triangle.
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1. Introduction

The Poisson line tessellation. Let X̂ be a stationary and isotropic Poisson line process of
intensity γ̂ = π in R

2 endowed with its scalar product 〈·, ·〉 and its Euclidean norm | · |. By A,
we shall denote the set of affine lines which do not pass through the origin 0 ∈ R

2. Each line
can be written as

H(u, t) := { x ∈ R
2 : 〈x, u〉 = t} (1.1)

for some t ∈ R, u ∈ S, where S is the unit sphere in R
2. When t > 0, this representation is

unique. The intensity measure of X̂ is then given by

μ(E) :=
∫

S

∫
R+

1{H(u,t)∈E} dt σ (du) (1.2)

for all Borel subsets E ⊆ A, where A is endowed with the Fell topology (see, for example, [23,
p. 563]) and where σ(·) denotes the uniform measure on S with the normalisation σ(S) = 2π .
The set of closures of the connected components of R

2 \ X̂ defines a stationary and isotropic
random tessellation with intensity γ (2) = π (see, for example, [23, Equation (10.46)]) which
is the so-called Poisson line tessellation, mPHT. By a slight abuse of notation, we also write X̂

to denote the union of lines. An example of the Poisson line tessellation in R
2 is depicted in

Figure 1. Let B(z, r) denote the (closed) disc of radius r ∈ R+, centred at z ∈ R
2 and let K be

the family of convex bodies (i.e. convex compact sets in R
2 with nonempty interiors), endowed

with the Hausdorff topology. With each convex bodyK ∈K , we may now define the inradius

R(K) := sup{r : B(z, r) ⊂ K, z ∈ R
2, r ∈ R+}.
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Figure 1: A realisation of the Poisson line tessellation truncated to a window.

When there exists a unique z′ ∈ R
2 such that B(z′, R(K)) ⊂ K , we define z(C) := z′ to

be the incentre of K . If no such z′ exists, we take z(K) := 0 ∈ R
2. Note that each cell

C ∈ mPHT has a unique z′ almost surely. In the rest of the paper we shall use the shorthand
B(K) := B(z(K),R(K)). To describe the mean behaviour of the tessellation, we recall the
definition of the typical cell as follows. LetW be a Borel subset of R

2 such thatλ2(W) ∈ (0,∞),
where λ2 is the two-dimensional Lebesgue measure. The typical cell C of a Poisson line
tessellation mPHT is a random polytope whose distribution is characterised by

E[f (C)] = 1

πλ2(W)
E

[ ∑
C∈mPHT,
z(C)∈W

f (C − z(C))
]

(1.3)

for all bounded measurable functions on the set of convex bodies f : K → R. The typical
cell of the Poisson line tessellation has been studied extensively in the literature, including
calculations of mean values [16], [17], and distributional results [2] for a number of different
geometric characteristics. A long standing conjecture due to Kendall concerning the asymptotic
shape of the typical cell conditioned to be large was proved in [12]. The shape of small cells was
also considered in [1] for a rectangular Poisson line tessellation. Related results have also been
obtained in [11] concerning the approximate properties of random polytopes formed by the
Poisson hyperplane process. Global properties of the tessellation have also been established,
including, for example, central limit theorems [8], [9].

In this paper we focus on the extremal properties of geometric characteristics for the cells
of a Poisson line tessellation whose incentres are contained in a window. The general theory
of extreme values deals with stochastic sequences [10] or random fields [15] (more details may
be found in the reference works [6] and [21].) To the best of the authors’ knowledge, it appears
that the first application of extreme value theory in stochastic geometry was given by Penrose;
see [19, Chapters 6–8]. More recently, Schulte and Thäle [24] established a theorem to derive
the order statistics of a general functional fk(x1, . . . , xk) of k points of a homogeneous Poisson
point process, a work which is related to the study of U -statistics. Calka and Chenavier [3]
went on to provide a series of results for the extremal properties of cells in the Poisson–
Voronoi tessellation, which were then extended by Chenavier [5], who gave a general theorem
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for establishing this type of limit theorem in tessellations satisfying a number of conditions.
Unfortunately, none of these methods are directly applicable to the study of extremes for the
geometric properties of cells in the Poisson line tessellation, due in part to the fact that even
cells which are arbitrarily spatially separated may share lines.

Potential applications. We remark that in addition to the classical references, such as
the work by Goudsmit [7] concerning the trajectories of particles in bubble chambers, a
number of new and interesting applications of random line processes are emerging in the
field of computer science. In particular, recent work by Plan and Vershynin [20] concerns
the use of random hyperplane tessellations for dimension reduction with applications to high-
dimensional estimation and machine learning, which are important and practical problems
facing the computational geometry community at the moment. Notably, [20] points to a lack of
results concerning the global properties of tessellations in the traditional stochastic geometry
literature, which are of particular interest to this community. Other recent applications for
random hyperplanes in computational geometry may also be found in the context of locality
sensitive hashing [4]. We believe that our techniques will provide useful tools for the analysis
of algorithms in these contexts.

Another potential application field is statistics of point processes in R
2. The key idea

would be to identify a point process � from the extremes of its underlying line process �̂ :=
{H(x), x ∈ �}, whereH(x) := H(u, t) for anyx = tu ∈ �with t ∈ R+ andu ∈ S. Numerous
inference methods have been developed for spatial point processes [18]. A comparison based
on the extremes of line tessellations may or may not provide stronger results.

Finally, we note that investigating the extremal properties of cells could also provide a way
to describe the regularity of tessellations. For instance, in the finite element method, the quality
of the approximation depends on some consistency measurements over the partition; see, for
example, [13].

1.1. Contributions

Formally, we shall consider the case in which only a part of the tessellation is observed in
the window Wρ := B(0, π−1/2ρ1/2) for ρ > 0. Given a measurable function f : K → R

satisfying f (C + x) = f (C) for all C ∈ K and x ∈ R
2, we consider the order statistics of

f (C) for all cells C ∈ mPHT such that z(C) ∈ Wρ in the limit as ρ → ∞. In this paper we
focus on the f (C) := R(C) case in particular because the inradius is one of the rare geometric
characteristics for which the distribution of f (C) can be made explicit. More precisely, we
investigate the asymptotic behaviour of mWρ [r] and MWρ [r], which we use respectively to
denote the inradii of the rth smallest and the rth largest inballs for fixed r ≥ 1. Thus for r = 1,
we have

mWρ [1] = min
C∈mPHT,
z(C)∈Wρ

R(C) and MWρ [1] = max
C∈mPHT,
z(C)∈Wρ

R(C).

The asymptotic behaviours of mWρ [r] and MWρ [r] are given in the following theorem.

Theorem 1.1. Let mPHT be a stationary, isotropic Poisson line tessellation in R
2 with inten-

sity π and let r ≥ 1 be fixed. Then

(i) for any t ≥ 0,

P

(
mWρ [r] ≥

t

2π2ρ

)
→ e−t

r−1∑
k=0

tk

k! as ρ →∞;
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(ii) for any t ∈ R,

P

(
MWρ [r] ≤

1

2π
(log(ρ)+ t)

)
→ e− exp(−t)

r−1∑
k=0

(e−t )k

k! as ρ →∞.

When r = 1, the limit distributions are of type II and type III, so mWρ [1] and MWρ [1]
belong to the domains of attraction of Weibull and Gumbel distributions, respectively. The
techniques we employ to investigate the asymptotic behaviours of mWρ [r] and MWρ [r] are
quite different. For the cells minimising the inradius, we show that asymptotically mWρ [r] has
the same behaviour as the rth smallest value associated with a carefully chosen U -statistic.
This will allow us to apply the theorem in [25]. The main difficulties we encounter will be
in checking the conditions for their theorem, and to deal with boundary effects. The cells
maximising the inradius are more delicate since the random variables in question cannot easily
be formulated as aU -statistic. Our solution is to use a Poisson approximation, with the method
of moments, in order to reduce our investigation to finite collections of cells. We then partition
the possible configurations of each finite set using a clustering scheme and conditioning on the
inter-cell distance.

The shape of cells with a small inradius. It was demonstrated that with high probability the
cell which minimises the circumradius for a Poisson–Voronoi tessellation is a triangle [3]. In
the following theorem we demonstrate that the analogous result holds for the cells of a Poisson
line tessellation with a small inradius. We begin by observing that almost surely there exists
a unique cell in mPHT with incentre in Wρ , say CWρ [r], such that R(CWρ [r]) = mWρ [r]. We
then consider the random variable n(CWρ [r]), where, for any (convex) polygon P in R

2, we
use n(P ) to denote the number of vertices of P .

Theorem 1.2. Let mPHT be a stationary, isotropic Poisson line tessellation in R
2 with inten-

sity π and let r ≥ 1 be fixed. Then

P

( ⋂
1≤k≤r

{n(CWρ [k]) = 3}
)
→ 1 as ρ →∞.

Remark 1.1. The asymptotic behaviour for the area of all triangular cells with a small area
was given in [24, Corollary 2.7]. Applying similar techniques to those which we use to obtain
the limit shape of the cells minimising the inradii, and using the fact that

P(λ2(C) < v) ≤ P

(
R(C) <

(
v

π

)1/2)
for all v > 0,

we can also prove that with high probability the cells with a small area are triangles. As
mentioned in [24, Remark 4] (where a formal proof is not provided), this implies that [24,
Corollary 2.7] makes a statement not only about the area of the smallest triangular cell but also
about the area of the smallest cell in general.

Remark 1.2. Our theorems are given specifically for the two-dimensional case with a fixed
disc-shaped window Wρ in order to keep our calculations simple. However, Theorem 1.1 holds
when the window is any convex body. We believe that our results concerning the largest order
statistics may be extended into higher dimensions and more general anisotropic (stationary)
Poisson processes using standard arguments. For the case of the smallest order statistics, these
generalisations become less evident and may require alternative arguments in places.
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1.2. Layout

In Section 2 we shall introduce the general notation and background that will be required
throughout the rest of the paper. In Section 3 we provide the asymptotic behaviour of mWρ [r],
proving the first part of Theorem 1.1 and Theorem 1.2. In Section 4 we establish some technical
lemmas that will be used to derive the asymptotic behaviour of MWρ [r]. We conclude in
Section 5 by providing the asymptotic behaviour ofMWρ [r], finalising the proof of Theorem 1.1.

2. Preliminaries

In this paper we adopt the following notation.

• We shall use Po(τ ) as a place-holder for a Poisson random variable with mean τ > 0.

• For any pair of functions f, g : R→ R, we write f (ρ) ∼ g(ρ) as ρ →∞ and f (ρ) =
O(g(ρ)) to respectively mean that f (ρ)/g(ρ) → 1 as ρ → ∞ and f (ρ)/g(ρ) is
bounded for large enough ρ.

• By B(R2) we mean the family of Borel subsets in R
2.

• For any A ∈ B(R2) and any x ∈ R
2, we write x + A := {x + y : y ∈ A} and

d(x,A) := infy∈A |x − y|.
• Let E be a measurable set and K ≥ 1.

• For any K-tuple of points x1, . . . , xK ∈ E, we write x1:K := (x1, . . . , xK).

• By EK�= , we mean the set of K-tuples of points x1:K such that xi �= xj for all
1 ≤ i �= j ≤ K .

• For any function f : E → F , where F is a set, and for any A ⊂ F , we write
f (x1:K) ∈ A to imply that f (xi) ∈ A for each 1 ≤ i ≤ K . In the same spirit,
f (x1:K) > v will be used to mean that f (xi) > v given v ∈ R.

• If ν is a measure on E, we write ν(dx1:K) := ν(dx1) · · · ν(dxK).
• Given three linesH1:3 ∈ A3�= in general position (in the sense of [23, p. 128]), we denote

by �(H1:3) the unique triangle that can be formed by the intersection of the half-spaces
induced by the linesH1,H2, andH3. In the same spirit, we denote by B(H1:3), R(H1:3),
and z(H1:3) the inball, the inradius, and the incentre of �(H1:3), respectively.

• Let K ∈ K be a convex body with a unique inball B(K) such that the intersection
B(K)∩K contains exactly three points, x1, x2, x3. In which case we define T1, T2, T3 to
be the lines tangent to the border of B(K) intersecting x1, x2, x3, respectively. We now
define �(K) := �(T1:3), observing that B(�(K)) = B(K).
• For any lineH ∈ A, we writeH+ to denote the half-plane delimited byH and containing

0 ∈ R
2. According to (1.1), we haveH+(u, t) := { x ∈ R

2 : 〈x, u〉 ≤ t } for given t > 0
and u ∈ S.

• For any A ∈ B(R2), we take A(A) ⊂ A to be the set

A(A) := {H ∈ A : H ∩ A �= ∅}.
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We also define φ : B(R2)→ R+ as

φ(A) := μ(A(A)) =
∫

A
1{H∩A�=∅} μ(dH). (2.1)

Remark 2.1. Because X̂ is a Poisson process, we have, for any A ∈ B(R2),

P(X̂ ∩ A = ∅) = P(#X̂ ∩A(A) = 0) = e−φ(A). (2.2)

Remark 2.2. When A ∈ B(R2) is a convex body, from the Crofton formula [23, Theo-
rem 5.1.1], we have

φ(A) = �(A), (2.3)

where �(A) denotes the perimeter of A. In particular, when A = B(z, r) for some z ∈ R
2 and

r ≥ 0, we have φ(B(z, r)) = μ(A(B(z, r))) = 2πr.

A well-known representation of the typical cell. The typical cell of a Poisson line tessellation,
as defined in (1.3), can be made explicit in the following sense. For any measurable function
f : K → R, from [23, Theorem 10.4.6], we have

E[f (C)] = 1

24π

∫ ∞
0

∫
S3

E[f (C(X̂, u1:3, r))]e−2πra(u1:3) σ (du1:3) dr, (2.4)

where

C(X̂, u1:3, r) :=
⋂

H∈X̂∩(A(B(0,r)))c

{
H+ ∩

3⋂
j=1

H+(uj , r)
}

(2.5)

and where a(u1:3) is taken to be the area of the convex hull of {u1, u2, u3} ⊂ S when 0 ∈ R
2

is contained in the convex hull of {u1, u2, u3} and 0 otherwise. With standard computations, it
may be demonstrated that

∫
S3a(u1:3) σ (du1:3) = 48π2, so when f (C) = R(C), we have the

following well-known result (see, for example, [23, Theorem 10.4.8]):

P(R(C) ≤ v) = 1− e−2πv for all v ≥ 0. (2.6)

We note that in the following, we occasionally omit the lower bounds in the ranges of sums
and unions, and the arguments of functions when they are clear from the context. Throughout
this paper we also use c to signify a universal positive constant not depending on ρ but which
may depend on other quantities. When required, we assume that ρ is sufficiently large.

3. Asymptotics for cells with a small inradii

3.1. Intermediary results

Let r ≥ 1 be fixed. In order to avoid boundary effects, we introduce a function q(ρ) such
that

log ρ · q(ρ)
ρ2 → 0 as ρ →∞ and

(q(ρ)1/2 − ρ1/2)

π1/2 − ε log ρ →+∞ as ρ →∞
(3.1)

for some ε > 0. We also introduce two intermediary random variables, the first of which
relates collections of 3-tuples of lines in X̂. Let

�
mWρ [r] represent the rth smallest value of

R(H1:3) over all 3-tuples of lines H1:3 ∈ X̂3�= such that z(H1:3) ∈ Wρ and �(H1:3) ⊂ Wq(ρ).
Its asymptotic behaviour is given in the following proposition.
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Proposition 3.1. For any r ≥ 1 and any t ≥ 0,

P

(
�
mWρ [r] ≥

t

2π2ρ

)
→ et

r−1∑
k=0

tk

k! as ρ →∞.

The second random variable concerns the cells in mPHT. More precisely, we define mWρ [r]
to be the rth smallest value of the inradius over all cells C ∈ mPHT such that z(C) ∈ Wρ and
�(C) ⊂ Wq(ρ). We observe that mWρ [r] ≥

�
mWρ [r] and mWρ [r] ≥ mWρ [r]. Actually, in the

following result we show that the deviation between these quantities is negligible as ρ goes
to∞.

Lemma 3.1. For any fixed r ≥ 1,

(i) P(mWρ [r] �=
�
mWρ [r])→ 0 as ρ →∞,

(ii) P(mWρ [r] �= mWρ [r])→ 0 as ρ →∞.

Finally, to prove Theorem 1.2, we also investigate the tail of the distribution of the perimeter
of a random triangle. To do this, for any 3-tuple of unit vectors u1:3 ∈ (S3) �=, we write
�(u1:3) := �(H1:3), where Hi = H(ui, 1) for any 1 ≤ i ≤ 3.

Lemma 3.2. With the above notation, as v goes to∞, we have∫
S3
a(u1:3) 1{l(�(u1:3))>v} σ(du1:3) = O(v−1).

3.2. Main tool

As stated above, Schulte and Thäle established a general theorem to deal withU -statistics [24,
Theorem 1.1]. In this work we make use of a new version of their theorem (see [25]), which
we modify slightly to suit our requirements. Let g : A3 → R be a measurable symmetric
function and take

�
mg,Wρ [r] to be the rth smallest value of g(H1:3) over all 3-tuples of lines

H1:3 ∈ X̂3�= such that z(H1:3) ∈ Wρ and�(H1:3) ⊂ Wq(ρ) (for q(ρ) as in (3.1).) We now define
the following quantities for a given a, t ≥ 0:

α(g)ρ (t) := 1

6

∫
A3

1{z(H1:3)∈Wρ } 1{�(H1:3)⊂Wq(ρ)} 1{g(H1:3)<ρ−a t} μ(dH1:3), (3.2a)

r
(g)
ρ,1(t) :=

∫
A

(∫
A2

1{z(H1:3)∈Wρ } 1{�(H1:3)⊂Wq(ρ)} 1{g(H1:3)<ρ−a t} μ(dH2:3)
)2

μ(dH1), (3.2b)

r
(g)
ρ,2(t) :=

∫
A2

(∫
A

1{z(H1:3)∈Wρ } 1{�(H1:3)⊂Wq(ρ)} 1{g(H1:3)<ρ−a t} μ(dH3)

)2

μ(dH1:2). (3.2c)

Theorem 3.1. (Schulte and Thäle [24].) Let t ≥ 0 be fixed. Assume that αρ(t) converges to
αtβ > 0 for some α, β > 0, and rρ,1(t), rρ,2(t)→ 0 as ρ →∞. Then

P(
�
m
(g)
Wρ
[r] ≥ ρ−at)→ e−αtβ

r−1∑
k=0

(αtβ)k

k! as ρ →∞.

Remark 3.1. Actually, Theorem 3.1 is stated in [25] for a Poisson point process in more
general measurable spaces with intensity going to∞. By scaling invariance, we have written
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their result for a fixed intensity (equal to π ) and for the window Wq(ρ) = B(0, π−1/2q(ρ)1/2)

with ρ →∞. We also adapt their result by adding the indicator function 1{z(H1:3)∈Wρ } to (3.2a),
(3.2b), and (3.2c).

3.3. Proofs

Proof of Proposition 3.1. Let t ≥ 0 be fixed. We apply Theorem 3.1 with g = R and
a = 1. First, we compute the quantity αρ(t) := α(R)ρ (t) as defined in (3.2a). Applying a
Blaschke–Petkantschin-type change of variables (see, for example, [23, Theorem 7.3.2]), we
obtain

αρ(t) = 1

24

∫
R2

∫ ∞
0

∫
S3
a(u1:3) 1{z∈Wρ } 1{z+r�(u1:3)⊂Wq(ρ)} 1{r<ρ−1t} σ(du1:3) dr dz

= 1

24

∫
R2

∫ ∞
0

∫
S3
a(u1:3) 1{z∈W1} 1{z+rρ−3/2�(u1:3)⊂Wq(ρ)/ρ } 1{r<t} σ(du1:3) dr dz.

We note that the normalisation of μ1, as defined in [23], is such that μ1 = (1/π)μ, where μ is
given in (1.2). It follows from the monotone convergence theorem that

αρ(t)→ 1

24

∫
R2

∫ ∞
0

∫
S3
a(u1:3) 1{z∈W1} 1{r<t} σ(du1:3) dr dz = 2π2t as ρ →∞ (3.3)

since λ2(W1) = 1 and
∫
S3 a(u1:3) σ (du1:3) = 48π2. We must now check that

rρ,1(t)→ 0 as ρ →∞, (3.4)

rρ,2(t)→ 0 as ρ →∞, (3.5)

where rρ,1(t) := r(R)ρ,1 (t) and rρ,2(t) := r(R)ρ,2 (t) are defined in (3.2b) and (3.2c).

Proof of convergence (3.4). Let H1 be fixed and define

Gρ(H1) :=
∫

A2
1{z(H1:3)∈Wρ } 1{�(H1:3)⊂Wq(ρ)} 1{R(H1:3)<ρ−1t} μ(dH2:3).

Bounding 1{�(H1:3)⊂Wq(ρ)} by 1, and applying Lemma A.1(i) (given in Appendix A) to R :=
ρ−1t , R′ := π−1/2ρ1/2, and z′ = 0, we obtain, for large enough ρ,

Gρ(H1) ≤
c 1{d(0,H1)<ρ1/2}

ρ1/2 .

Noting that rρ,1(t) =
∫
AGρ(H1)

2μ(dH1), from (1.2), it follows that

rρ,1(t) ≤
c
∫
A 1{d(0,H1)<ρ1/2} μ(dH1)

ρ
= O

(
1

ρ1/2

)
. (3.6)

This completes the proof of (3.4). �
Proof of convergence (3.5). Let H1 and H2 be such that H1 intersects H2 at a unique point,

v(H1:2). The setH1∪H2 divides R
2 into two double-cones with supplementary anglesCi(H1:2),

1 ≤ i ≤ 2; see Figure 2. We then denote by θi(H1:2) ∈ [0, π/2) the half-angle of Ci(H1:2) so
that 2(θ1(H1:2)+ θ2(H1:2)) = π . Moreover, we write

Ei(H1:2) :=
{
H3 ∈ A : z(H1:3) ∈ Wρ ∩ Ci(H1:2),�(H1:3) ⊂ Wq(ρ), R(H1:3) <

t

ρ

}
.
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Figure 2: Construction of the double-cone for a change of variables.

We provide below a suitable upper bound for Gρ(H1, H2) defined as

Gρ(H1, H2) :=
∫

A
1{z(H1:3)∈Wρ } 1{�(H1:3)⊂Wq(ρ)} 1{R(H1:3)<ρ−1t} μ(dH3)

=
2∑
i=1

∫
A

1{H3∈Ei(H1:2)} μ(dH3). (3.7)

To do this, we first establish the following lemma.

Lemma 3.3. Let H1, H2 ∈ A be fixed and let H3 ∈ Ei(H1:2) for some 1 ≤ i ≤ 2. Then

(i) H3 ∩Wcρ �= ∅ for some c,

(ii) H3 ∩ B(v(H1:2), cρ−1/sin θi(H1:2)) �= ∅,

(iii) |v(H1:2)| ≤ cq(ρ)1/2 for some c.

Proof. The first statement is a consequence of the fact that

d(0, H3) ≤ |z(H1:3)| + d(z(H1:3),H3) ≤
(
ρ

π

)1/2

+ t

ρ
≤ c · ρ1/2.

For the second statement, we have

d(v(H1:2),H3) ≤ |v(H1:2)− z(H1:3)| + d(z(H1:3),H3) ≤ R(H1:3)
sin θi(H1:2)

+ t

ρ
.

Since R(H1:3) = |v(H1:2)− z(H1:3)| sin θi(H1:2), it follows that

d(v(H1:2),H3) ≤ cρ−1

sin θi(H1:2)
.

Finally, the third statement comes from the fact that v(H1:2) ∈ Wq(ρ) since �(H1:3) ⊂ Wq(ρ).
This completes the proof of Lemma 3.3. �
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We apply below the first statement of Lemma 3.3 when θi(H1:2) is small enough, and the
second one otherwise. More precisely, from (3.7) and Lemma 3.3, it follows that

Gρ(H1, H2) ≤
2∑
i=1

φ(Wcρ) 1{|v(H1:2)|≤cq(ρ)1/2} 1{sin θi (H1:2)≤ρ−3/2}

+ φ
(
B

(
v(H1:2),

cρ−1

sin θi(H1:2)

))
1{|v(H1:2)|≤cq(ρ)1/2} 1{sin θi (H1:2)>ρ−3/2},

where φ(·) has been defined in (2.1). Applying (2.3) to

B := Wcρ = B(0, c1/2ρ1/2) and B ′ := B
(
v(H1:2),

cρ−1

sin θi(H1:2)

)
,

it follows that

Gρ(H1, H2) ≤ c
2∑
i=1

(
ρ1/2 1{sin θi (H1:2)≤ρ−3/2} +

ρ−1

sin θi(H1:2)
1{sin θi (H1:2)>ρ−3/2}

)

× 1{|v(H1:2)|≤cq(ρ)1/2} . (3.8)

Applying the fact that

rρ,2(t) =
∫

A
Gρ(H1, H2)

2μ(dH1:2) and

( 2∑
i=1

(ai + bi)
)2

≤ 4
2∑
i=1

(a2
i + b2

i )

for any a1, a2, b1, b2 ∈ R, it follows from (3.8) that

rρ,2(t) ≤ c
2∑
i=1

∫
A2

(
ρ 1{sin θi (H1:2)≤ρ−3/2} +

ρ−2

sin2 θi(H1:2)
1{sin θi (H1:2)>ρ−3/2}

)

× 1{|v(H1:2)|≤cq(ρ)1/2} μ(dH1:2).

For any couple of lines (H1, H2) ∈ A2 such thatH1 = H(u1, t1) andH2 = H(u2, t2) for some
u1, u2 ∈ S and t1, t2 > 0, let θ(H1, H2) ∈ [−π/2, π/2) be the oriented half-angle between the
vectors u1 and u2. In particular, the quantity |θ(H1:2)| is equal to θ1(H1:2) or θ2(H1:2). This
implies that

rρ,2(t) ≤ 4c
∫

A2

(
ρ 1{sin θ(H1:2)≤ρ−3/2} +

ρ−2

sin2 θ(H1:2)
1{sin θ(H1:2)>ρ−3/2}

)
1{θ(H1:2)∈[0,π/2)}

× 1{|v(H1:2)|≤cq(ρ)1/2} μ(dH1:2). (3.9)

With each v = (v1, v2) ∈ R
2, β ∈ [0, 2π), and θ ∈ [0, π/2), we associate two lines H1 and

H2 as follows. We first define L(v1, v2, β) as the line containing v = (v1, v2) with normal
vector β, where for any α ∈ [0, 2π), we write α = (cosα, sin α). Then we define H1 and
H2 as the lines containing v = (v1, v2) with angles θ and −θ with respect to L(v1, v2, β),
respectively. These lines can be written as H1 = H(u1, t1) and H2 = H(u2, t2) with

u1 := u1(β, θ) := −−−→β − θ,
t1 := t1(v1, v2, β, θ) := |−sin(β − θ)v1 + cos(β − θ)v2|,
u2 := u2(β, θ) := −−−→β + θ,
t2 := t2(v1, v2, β, θ) := |sin(β + θ)v1 + cos(β + θ)v2|.
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Denoting by α, the unique real number in [0, 2π) such that α ≡ α mod 2π , we define

ψ : R2 × [0, 2π)×
[

0,
π

2

)
−→ R+ × [0, 2π)× R+ × [0, 2π),

(v1, v2, β, θ) �−→ (t1(v1, v2, β, θ), β − θ, t2(v1, v2, β, θ), β + θ).
Modulo null sets, ψ is a C1 diffeomorphism with Jacobian Jψ given by |Jψ(v1, v2, β, θ)| =
2 sin 2θ for any point (v1, v2, β, θ), where ψ is differentiable. Taking the change of variables
as defined above, we deduce from (3.9) that

rρ,2(t) ≤ c
∫

R2

∫ 2π

0

∫ π/2

0
sin(2θ)

(
ρ 1{sin θ≤ρ−3/2} +

ρ−2

sin2 θ
1{sin θ>ρ−3/2}

)
× 1{|v|≤cq(ρ)1/2} dθ dβ dv

= O
(

log ρ · q(ρ)
ρ2

)
. (3.10)

As a consequence of (3.1), the last term converges to 0 as ρ goes to∞, completing the proof
of (3.5). �

The above combined with (3.3), (3.6), and Theorem 3.1 concludes the proof of Proposi-
tion 3.1. �

Proof of Lemma 3.1(i). Almost surely, there exists a unique triangle with incentre contained
in Wq(ρ), denoted by �Wρ [r], such that

z(�Wρ [r]) ∈ Wρ and R(�Wρ [r]) =
�
mWρ [r].

Also, z(�Wρ [r]) is the incentre of a cell of mPHT if and only if X̂ ∩ B(�Wρ [r]) = ∅. Since
mWρ [r] ≥

�
mWρ [r], this implies that

mWρ [r] =
�
mWρ [r] ⇐⇒ there exists 1 ≤ k ≤ r such that X̂ ∩ B(�Wρ [k]) �= ∅.

In particular, for any ε > 0, we obtain

P(mWρ [r] �=
�
mWρ [r]) ≤

r∑
k=1

(P(X̂ ∩ B(�Wρ [k]) �= ∅, R(�Wρ [k]) < ρ−1+ε)

+ P(R(�Wρ [k]) > ρ−1+ε)). (3.11)

The second term of the series converges to 0 as ρ goes to∞ thanks to Proposition 3.1. For the
first term, we obtain, for any 1 ≤ k ≤ r ,

P(X̂ ∩ B(�Wρ [k]) �= ∅, R(�Wρ [k]) < ρ−1+ε)

≤ P

( ⋃
H1:4∈X̂4�=

{z(H1:3) ∈ Wρ, R(H1:3) < ρ−1+ε,H4 ∩ B(z(H1:3), ρ−1+ε) �= ∅}
)

≤ E

[ ∑
H1:4∈X̂4�=

1{z(H1:3)∈Wρ } 1{R(H1:3)<ρ−1+ε} 1{H4∩B(z(H1:3),ρ−1+ε)�=∅}
]

=
∫

A4
1{z(H1:3)∈Wρ } 1{R(H1:3)<ρ−1+ε} 1{H4∩B(z(H1:3),ρ−1+ε)�=∅} μ(dH1:4),
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where the last line comes from the Mecke–Slivnyak formula [23, Corollary 3.2.3]. Applying
the Blaschke–Petkantschin change of variables, we obtain

P(X̂ ∩ B(�Wρ [k]) �= ∅, R(�Wρ [k]) < ρ−1+ε)

≤ c
∫

Wρ

∫ ρ−1+ε

0

∫
S3

∫
A
a(u1:3) 1{H4∩B(z,ρ−1+ε)�=∅} μ(dH4)σ (du1:3) dr dz.

As a consequence of (2.1) and (2.3), we have∫
A

1{H4∩B(z,ρ−1+ε)�=∅} μ(dH4) = cρ−1+ε for any z ∈ R
2.

Integrating over z ∈ Wρ , r < ρ−1+ε, and u1:3 ∈ S3, we obtain

P(X̂ ∩ B(�Wρ [k]) �= ∅, R(�Wρ [k]) < ρ−1+ε) ≤ cρ−1+2ε (3.12)

since λ2(Wρ) = ρ. Taking ε < 1
2 , we deduce Lemma 3.1(i) from (3.11) and (3.12). �

Proof of Lemma 3.2. Let u1:3 = (u1, u2, u3) ∈ (S3) �= be in general position and such that 0
is in the interior of the convex hull of {u1, u2, u3}, and let vi(u1:3), 1 ≤ i ≤ 3, be the three
vertices of �(u1:3). If �(�(u1:3)) > v for some v > 0 then there exists 1 ≤ i ≤ 3 such that
|vi(u1:3)| > v/6. In particular, we obtain

∫
S3
a(u1:3) 1{l(�(u1:3))>v} σ(du1:3) ≤

3∑
i=1

∫
S3
a(u1:3) 1{|vi (u1:3)|>v/6} σ(du1:3)

≤ c
∫

S2
1{|v(u1:2)|>v/6} σ(du1:2), (3.13)

where v(u1:2) is the intersection point between H(u1, 1) and H(u2, 2). Besides, if u1 = α1
and u2 = α2 for some α1, α2 ∈ [0, 2π) such that α1 �≡ α2 mod π , we obtain with standard
computations,

|v(u1:2)| = (2(1+ cos(α2 − α1)))
1/2

|sin(α2 − α1)| ≤ 2

|sin(α2 − α1)| .

This together with (3.13) shows that∫
S3
a(u1:3) 1{l(�(u1:3))>v} σ(du1:3) ≤ c

∫
[0,2π)2

1{|sin(α2−α1)|<12·v−1} dα1:2 = O(v−1).

This concludes the proof of Lemma 3.2. �

Proof of Theorem 1.2. Let ε ∈ (0, 1
3 ) be fixed. For any 1 ≤ k ≤ r , we write

P(n(CWρ [k]) �= 3)

= P(n(CWρ [k]) ≥ 4,mWρ [k] ≥ ρ−1+ε)+ P(n(CWρ [k]) ≥ 4,mWρ [k] < ρ−1+ε).
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According to Proposition 3.1, Lemma 3.1(i), and the fact that mWρ [k] ≥ mWρ [k], the first term
of the right-hand side converges to 0 as ρ goes to∞. For the second term, from (1.3), we obtain

P(n(CWρ [k]) ≥ 4,mWρ [k] < ρ−1+ε) ≤ P

(
min

C∈mPHT,
z(C)∈Wρ, n(C)≥4

R(C) < ρ−1+ε
)

≤ E

[ ∑
C∈mPHT,
z(C)∈Wρ

1{R(C)<ρ−1+ε} 1{n(C)≥4}
]

= πρ P(R(C) < ρ−1+ε, n(C) ≥ 4). (3.14)

We provide below a suitable upper bound for P(R(C) < ρ−1+ε, n(C) ≥ 4). Let r > 0 and
u1, u2, u3 ∈ S be fixed. We note that the random polygon C(X̂, u1:3, r), as defined in (2.5),
satisfies n(C(X̂, u1:3, r)) ≥ 4 if and only if X̂ ∈ A(�(u1:3, r) \ B(0, r)). According to (2.2)
and (2.4), this implies that

πρ P(R(C) < ρ−1+ε, n(C) ≥ 4)

= ρ

24

∫ ρ−1+ε

0

∫
S3
(1− e−φ(r�(u1:3)\B(0,r)))e−2πra(u1:3)σ (du1:3) dr

≤ cρ
∫ ρ−1+ε

0

∫
S3
(1− e−ρ−1+ε�(�(u1:3)))e−2πra(u1:3)σ (du1:3) dr (3.15)

since φ(r�(u1:3) \ B(0, r)) ≤ φ(r�(u1:3)) ≤ ρ−1+ε�(�(u1:3)) for all r ≤ ρ−1+ε. First,
bounding 1− e−ρ−1+ε�(�(u1:3)) by 1 and applying Lemma 3.2, we obtain, for any α > 0,

ρ

∫ ρ−1+ε

0

∫
S3
(1− e−ρ−1+ε�(�(u1:3)))e−2πra(u1:3) 1{�(�(u1:3))>ρα} σ(du1:3) dr

≤ cρ1−α
∫ ρ−1+ε

0
e−2πr dr

= O(ρε−α). (3.16)

Moreover, bounding this time 1− e−ρ−1+ε�(�(u1:3)) by ρ−1+ε�(�(u1:3)), we obtain

ρ

∫ ρ−1+ε

0

∫
S3
(1− e−ρ−1+ε�(�(u1:3)))e−2πra(u1:3) 1{�(�(u1:3))≤ρα} σ(du1:3) dr

≤ ρε+α
∫ ρ−1+ε

0

∫
S3

e−2πra(u1:3) 1{�(�(u1:3))≤ρα} σ(du1:3) dr

= O(ρ−1+2ε+α). (3.17)

Taking α = (1− ε)/2, from (3.15), (3.16), and (3.17), it follows that

πρ P(R(C) < ρ−1+ε, n(C) ≥ 4) = O(ρ−(1−3ε)/2).

Using this equation this together with (3.14), we obtain

P(n(CWρ [k]) ≥ 4,mWρ [k] < ρ−1+ε)→ 0 as ρ →∞. �
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Proof of Lemma 3.1(ii). Since mWρ [r] �= mWρ [r] if and only if �(CWρ [k]) ∩ W c
q(ρ) is

nonempty for some 1 ≤ k ≤ r , we obtain, for any ε > 0,

P(mWρ [r] �= mWρ [r])

≤
r∑
k=1

(P(R(CWρ [k]) ≥ ρ−1+ε)+ P(n(CWρ [k]) �= 3)

+ P(�(CWρ [k]) ∩W c
q(ρ) �= ∅, n(CWρ [k]) = 3, R(CWρ [k]) < ρ−1+ε)). (3.18)

As in the proof of Theorem 1.2, the first term of the series converges to 0. The same fact is also
true for the second term as a consequence of Theorem 1.2. Moreover, for any 1 ≤ k ≤ r , we
have

P(�(CWρ [k]) ∩W c
q(ρ) �= ∅, n(CWρ [k]) = 3, R(CWρ [k]) < ρ−1+ε)

≤
∫

A3
P(X̂ ∩ �(H1:3) = ∅) 1{z(H1:3)∈Wρ } 1{�(H1:3)∩W c

q(ρ)
�=∅} 1{R(H1:3)<ρ−1+ε} μ(dH1:3)

≤
∫

A3
e−�(�(H1:3)) 1{z(H1:3)∈Wρ } 1{�(�(H1:3))>π−1/2(q(ρ)1/2−ρ1/2)} 1{R(H1:3)<ρ−1+ε} μ(dH1:3)

according to the Mecke–Slivnyak formula and (2.2), respectively. Using the fact that

e−�(�(3H1:3)) ≤ e−π−1/2(q(ρ)1/2−ρ1/2),

and applying the Blaschke–Petkantschin formula, we obtain

P(�(CWρ [k]) ∩W c
q(ρ) �= ∅, n(CWρ [k]) = 3) ≤ cρεe−π−1/2(q(ρ)1/2−ρ1/2).

According to (3.1), the last term converges to 0. This together with (3.18) completes the proof
of Lemma 3.1(ii). �

Proof of Theorem 1.1(i). The proof is immediate and follows from Proposition 3.1 and
Lemma 3.1. �

Remark 3.2. As mentioned in Section 3.1, we introduce an auxiliary function q(ρ) to avoid
boundary effects. This addition was necessary to prove the convergence of rρ,2(t) in (3.10).

4. Technical results

In this section we establish two results which will be needed in order to derive the asymptotic
behaviour of MWρ [r].
4.1. Poisson approximation

Consider a measurable function f : K → R and a threshold vρ such that vρ → ∞ as
ρ →∞. The cellsC ∈ mPHT such that f (C) > vρ and z(C) ∈ Wρ are called the exceedances.
A classical tool in extreme value theory is to estimate the limiting distribution of the number
of exceedances by a Poisson random variable. In our case, we achieve this with the following
lemma.
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Lemma 4.1. Let mPHT be a stationary, isotropic Poisson line tessellation embedded in R
2 and

suppose that for any K ≥ 1,

E

[ ∑
C1:K∈(mPHT)

K�= ,
z(C1:K)∈Wρ

1{f (C1:K)>vρ }
]
τK as ρ →∞. (4.1)

Then

P(Mf,Wρ [r] ≤ vρ)→
r−1∑
k=0

τ k

k! e
−τ as ρ →∞.

Proof of Lemma 4.1. Let the number of exceedance cells be denoted by

U(vρ) :=
∑

C∈mPHT,
z(C)∈Wρ

1{f (C)>vρ }.

Let 1 ≤ K ≤ n and let
{
n
K

}
denote the Stirling number of the second kind. According to (4.1),

we have

E[U(vρ)n] = E

[ n∑
K=1

{
n

K

}
U(vρ)(U(vρ)− 1)(U(vρ)− 2) · · · (U(vρ)−K + 1)

]

=
n∑

K=1

{
n

K

}
E

[ ∑
C1:K∈mPHT

K�= ,
z(C1:K)∈Wρ

1{f (C1:K)>vρ }
]

→
n∑

K=1

{
n

K

}
τK as ρ →∞

= E[Po(τ )n].

Thus by the method of moments, U(vρ) converges in distribution to a Poisson random variable
with mean τ . We note that Mf,Wρ [r] ≤ vρ if and only if U(vρ) ≤ r − 1. This concludes the
proof. �

Lemma 4.1 can be generalised for any window Wρ and for any tessellation in any dimension.
A similar method was used to provide the asymptotic behaviour for couples of random variables
in the particular setting of a Poisson–Voronoi tessellation; see [3, Proposition 2]. The main
difficulty is applying Lemma 4.1, and we deal partially with this in the following section.

4.2. A uniform upper bound for φ for the union of discs

Let φ : B(R2) → R+ as in (2.1). We evaluate φ(B) in the particular case where B =⋃K
1≤i≤K B(zi, ri) is a finite union of balls centred in zi and with radius ri , 1 ≤ i ≤ K . Closed-

form representations for φ(B) could be provided but these formulas are not of practical interest
to us. We provide below (see Proposition 4.1) some approximations for φ(

⋃K
1≤i≤K B(zi, ri))

with simple and quasi-optimal lower bounds.
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Figure 3: Example of connected components for K = 5 and (n1, . . . , nK) = (0, 1, 1, 0, 0).

4.2.1. Connected components of cells. Our bound will follow by splitting collections of discs
into a set of connected components. Suppose we are given a threshold vρ such that vρ →∞
as ρ → ∞ and K ≥ 2 discs B(zi, ri), satisfying zi ∈ R

2, ri ∈ R+, and ri > vρ for all
i = 1, . . . , K . We take R := max1≤i≤K ri . The connected components are constructed from
the graph with vertices B(zi, ri), i = 1, . . . , K and edges

B(zi, ri)←→ B(zj , rj ) ⇐⇒ B(zi, R
3) ∩ B(zj , R3) �= ∅.

On the right-hand side, we have chosen radii of the form R3 to provide a simpler lower bound
in Proposition 4.1. The size of a component is the number of discs in that component.

Notation. To refer to the above components, we use the following notation which we
highlight for ease of reference.

• For all k ≤ K , write nk := nk(z1:K,R) to denote the number of connected components
of size k. Observe that in particular,

∑K
k=1knk = K .

• Suppose that with each component of size k is assigned a unique label 1 ≤ j ≤ nk . We
then write B(j)k := B(j)k (z1:K,R) to refer to the union of balls in the j th component of
size k.

• Within a component, we write B(j)k [�] := B(j)k (z1:K,R)[�], 1 ≤ � ≤ k, to refer to the
ball having the �th largest radius in the j th cluster of size k. In particular, we have
B
(j)
k =

⋃k
�=1 B

(j)
k [�]. We also write z(j)k [�] and r(j)k [�] as shorthand to refer to the centre

and radius of the ball B(j)k [�].
An example is given in Figure 3.

4.2.2. The uniform upper bound. In extreme value theory, a classical method to investigate
the behaviour of the maximum of a sequence of random variables relies on checking two
conditions of the sequence. One such set of conditions is given by Leadbetter [14], who defines
the conditionsD(un) andD′(un), which represent an asymptotic property and a local property
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of the sequence, respectively. We shall make use of analogous conditions for the Poisson line
tessellation, and it is for this reason that we motivate the different cases concerning spatially
separated and spatially close balls in Proposition 4.1.

Proposition 4.1. Consider a collection ofK disjoint ballsB(zi, ri) for i = 1, . . . , K such that
r1:K > vρ and R := max1≤i≤K ri .

(i) Whenn1:K = (K, 0, . . . , 0), i.e. min1≤i,j≤K |zi−zj | > R3, we obtain for large enoughρ,

φ

( ⋃
1≤i≤K

B(zi, ri)

)
≥ 2π

K∑
i=1

ri − c

vρ
. (4.2)

(iia) For large enough ρ,

φ

( ⋃
1≤i≤K

B(zi, ri)

)
≥ 2πR +

( K∑
k=1

nk − 1

)
2πvρ − c

vρ
;

(iib) when R ≤ (1+ ε)vρ for some ε > 0, we have for large enough ρ,

φ

( ⋃
1≤i≤K

B(zi, ri)

)
≥ 2πR +

( K∑
k=1

nk − 1

)
2πvρ +

K∑
k=2

nk(4− επ)vρ − c

vρ
.

Remark 4.1. Suppose that n1:K = (K, 0, . . . , 0).

(i) We observe that (4.2) is quasi-optimal since we also have

φ

( ⋃
1≤i≤K

B(zi, ri)

)
≤

K∑
i=1

φ(B(zi, ri)) = 2π
K∑
i=1

ri . (4.3)

(ii) Thanks to (2.2), (4.2), and (4.3), we remark that∣∣∣∣P
( ⋂

1≤i≤K
{X̂ ∩ B(zi, ri) = ∅}

)
−

∏
1≤i≤K

P(X̂ ∩ B(zi, ri) = ∅)

∣∣∣∣ ≤ c

vρ
,

which converges to 0 as ρ goes to∞.

The fact that the events considered in the probabilities above tend to be independent is well
known and is related to the fact that the tessellation mPHT satisfies a mixing property; see,
for example, the proof of [23, Theorem 10.5.3]. Our contribution is to provide a uniform
rate of convergence (in the sense that it does not depend on the centres and the radii) when
the balls are distant enough (Proposition 4.1(i)), and a suitable uniform upper bound for the
opposite case (Proposition 4.1(ii)). Proposition 4.1 will be used to check (4.1). Before attacking
Proposition 4.1, we first state two lemmas. The first of which deals with the case of just two
balls.

Lemma 4.2. Let z1, z2 ∈ R
2 and R ≥ r1 ≥ r2 > vρ such that |z2 − z1| > r1 + r2.

(i) If |z2 − z1| > R3, we have for large enough ρ,

μ(A(B(z1, r1)) ∩A(B(z2, r2))) ≤ c

vρ
.

https://doi.org/10.1017/apr.2016.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.14


Extremes for the inradius in the Poisson line tessellation 561

(ii) If R ≤ (1+ ε)vρ for some ε > 0, we have for large enough ρ,

μ(A(B(z1, r1)) ∩A(B(z2, r2))) ≤ 2πr2 − (4− επ)vρ.
Actually, closed-form equations for the measure of all lines intersecting two convex bodies

can be found in [22, p. 33]. However, Lemma 4.2 is more practical since it provides an upper
bound which is independent of the centres and the radii. The following lemma is a generalisation
of the previous result.

Lemma 4.3. Let z1:K ∈ R
2K and R such that for all 1 ≤ i �= j ≤ K , we have R ≥ ri > vρ

and |zi − zj | > ri + rj .

(i) We have

μ

( ⋃
1≤i≤K

A(B(zi, ri))

)
≥

K∑
k=1

nk∑
j=1

2πr(j)k [1] −
c

vρ
.

(ii) If R ≤ (1+ ε)vρ for some ε > 0, we have the following more precise inequality:

μ

( ⋃
1≤i≤K

A(B(zi, ri))

)
≥

K∑
k=1

nk∑
j=1

2πr(j)k [1] +
K∑
k=2

nk(4− επ)vρ − c

vρ
.

4.3. Proofs

Proof of Proposition 4.1. The proof of (i) follows immediately from (2.1) and Lemma 4.3(i).
Using the fact that r(j)k [1] > vρ for all 1 ≤ k ≤ K and 1 ≤ j ≤ nk such that r(j)k [1] �= R, we
obtain (iia) and (iib) from Lemmas 4.3(i) and 4.3(ii), respectively. �

Proof of Lemma 4.2. As previously mentioned, Santaló [22] provides a general formula for
the measure of all lines intersecting two convex bodies. However, to obtain a more explicit
representation of μ(A(B(z1, r1)) ∩ A(B(z2, r2))), we write Santaló’s result in the particular
setting of two balls. According to (1.2) and the fact that μ is invariant under translations, we
obtain, with standard computations,

μ(A(B(z1, r1)) ∩A(B(z2, r2)))

=
∫

S

∫
R+

1{H(u,t)∩B(0,r1)�=∅} 1{H(u,t)∩B(z2−z1,r2)�=∅} dt σ (du)

=
∫

S

∫
R+

1{t<r1} 1{d(z2−z1,H(u,t))<r2} dt σ (du)

=
∫
[0,2π)

∫
R+

1{t<r1} 1{| cosα|z2−z1|−t |<r2} dt dα

= 2f (r1, r2, |z2 − z1|),
where

f (r1, r2, h) := (r1 + r2) arcsin

(
r1 + r2
h

)
− (r1 − r2) arcsin

(
r1 − r2
h

)

− h
(√

1−
(
r1 − r2
h

)2

−
√

1−
(
r1 + r2
h

)2)
for all h > r1 + r2.
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For any fixed r1 ≥ r2, it may be demonstrated that the function fr1,r2 : (r1 + r2,∞) →
R+, h �→ f (r1, r2, h) is positive, strictly decreasing and converges to 0 as h tends to∞. We
now consider each of the two cases given above.

(i) Suppose that |z2 − z1| > R3. Using the inequalities

r1 + r2 ≤ 2R, arcsin

(
r1 + r2
|z2 − z1|

)
≤ arcsin

(
2

R2

)
, r1 ≥ r2,

we obtain, for large enough ρ,

f (r1, r2, |z2 − z1|) < f (r1, r2, R
3) ≤ 4R arcsin

(
2

R2

)
≤ c

R
≤ c

vρ
.

(ii) Suppose that R ≤ (1+ ε)vρ . Since |z2 − z1| > r1 + r2, we obtain

f (r1, r2, |z2 − z1|) < f (r1, r2, r1 + r2) = 2πr2 + 2(r1 − r2) arccos

(
r1 − r2
r1 + r2

)
− 4
√
r1r2.

Using the inequalities

r1 ≥ r2 > vρ, arccos

(
r1 − r2
r1 + r2

)
≤ π

2
, r1 ≤ R ≤ (1+ ε)vρ,

we have

f (r1, r2, |z2 − z1|) < 2πr2 + (r1 − vρ)π − 4vρ ≤ 2πr2 − (4− επ)vρ. �

Proof of Lemma 4.3. (i) Using the notation defined in Section 4.2.1, we note that⋃
1≤i≤K

A(B(zi, ri)) =
⋃
k≤K

⋃
j≤nk

A(B
(j)
k ).

From Bonferroni inequalities, we obtain

μ

( ⋃
1≤i≤K

A(B(zi, ri))

)
≥

K∑
k=1

nk∑
j=1

μ(A(B
(j)
k ))−

∑
(k1,j1)�=(k2,j2)

μ(A(B
(j1)
k1
) ∩A(B

(j2)
k2
)).

(4.4)
We begin by observing that for all 1 ≤ k1 �= k2 ≤ K and 1 ≤ j1 ≤ nk1 , 1 ≤ j2 ≤ nk2 , we

have

μ(A(B
(j1)
k1
) ∩A(B

(j2)
k2
)) ≤

∑
1≤�1≤k1,1≤�2≤k2

μ(A(B
(j1)
k1
[�1]) ∩A(B

(j2)
k2
[�2])) ≤ c

vρ
(4.5)

when ρ is sufficiently large, with the final inequality following directly from Lemma 4.2(i),
taking r1 := r(j1)

k1
[�1] and r2 := r(j2)

k2
[�2]. In addition

μ(A(B
(j)
k )) ≥ μ(A(B(j)k [1])) = 2πr(j)k [1]. (4.6)

We then deduce Lemma 4.3(i) from (4.4)–(4.6).
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(ii) We proceed along the same lines as in the proof of Lemma 4.3(i). The only difference
concerns the lower bound for μ(A(B(j)k )). We shall consider two cases. For each of the n1
clusters of size 1, we have μ(A(B(j)1 )) = 2πr(j)1 [1]. Otherwise, we obtain

μ(A(B
(j)
k )) = μ

( k⋃
�=1

A(B
(j)
k [�])

)

≥ μ(A(B(j)k [1]) ∪A(B
(j)
k [2]))

= 2πr(j)k [1] + 2πr(j)k [2] − μ(A(B(j)k [1]) ∩A(B
(j)
k [2]))

≥ 2πr(j)k [1] + (4− επ)vρ,
which follows from Lemma 4.2(ii). We then deduce Lemma 4.3(ii) from the previous inequality,
(4.4), and (4.5). �

5. Asymptotics for cells with large inradii

Notation. We begin this section by introducing the following notation. Let t ≥ 0 be
fixed.

• We shall denote the threshold and the mean number of cells having an inradius larger
than the threshold respectively as

vρ := vρ(t) := 1

2π
(log(πρ)+ t) and τ := τ(t) := et . (5.1)

• For any K ≥ 1 and for any K-tuple of convex bodies C1, . . . , CK such that each Ci has
a unique inball, define the events

EC1:K :=
{

min
1≤i≤K R(Ci) ≥ vρ, R(C1) = max

1≤i≤K Ci
}
, (5.2)

E◦C1:K := {for all 1 ≤ i �= j ≤ K,B(Ci) ∩ B(Cj ) = ∅}. (5.3)

• For any K ≥ 1, we take

I (K)(ρ) := K E

[ ∑
C1:K∈(mPHT)

K�= ,
z(C1:K)∈WK

ρ

1EC1:K

]
.

The proof for Theorem 1.1(ii) will then follow by applying Lemma 4.1 and showing that
I (K)(ρ)→ τ k as ρ → ∞ for every fixed K ≥ 1. To begin, we observe that I (1)(ρ)→ τ as
ρ →∞ as a consequence of (2.6) and (5.1). The rest of this section is devoted to considering
the case when K ≥ 2. Given a K-tuple of cells C1:K in mPHT, we use L(C1:K) to denote the
number lines of X̂ (without repetition) which intersect the inballs of the cells. It follows that
3 ≤ L(C1:K) ≤ 3K since the inball of every cell in mPHT intersects exactly three lines (almost
surely.) We shall take

{H1, . . . , HL(C1:K)} := {H1(C1:K), . . . , HL(C1:K)(C1:K)}
to represent the set of lines in X̂ intersecting the inballs of the cells C1:K . We remark that
conditional on the event L(C1:K) = 3K , none of the inballs of the cells share any lines in
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common. To apply the bounds we obtained in Section 4.2, we will split the cells up into
clusters based on the proximity of their inballs using the procedure outlined in Section 4.2.1.
In particular, we define

n1:K(C1:K) := n1:K(z(C1:K), R(C1)).

We may now write I (K)(ρ) by summing over events conditioned on the number of clusters of
each size and depending on whether or not the inballs of the cells share any lines of the process

I (K)(ρ) = K
∑

n1:K∈NK

(I
(n1:K)
Sc (ρ)+ I (n1:K)

S (ρ)), (5.4)

where the size of each cluster of size k is represented by a tuple contained in

NK :=
{
n1:K ∈ NK :

K∑
k=1

knk = K
}
,

and where for any n1:K ∈ NK , we write

I
(n1:K)
Sc (ρ) := E

[ ∑
C1:K∈(mPHT)

K�= ,
z(C1:K)∈WK

ρ

1EC1:K 1{n1:K(C1:K)=n1:K } 1{L(C1:K)=3K}
]
, (5.5)

I
(n1:K)
S (ρ) := E

[ ∑
C1:K∈(mPHT)

K�= ,
z(C1:K)∈WK

ρ

1EC1:K 1{n1:K(C1:K)=n1:K } 1{L(C1:K)<3K}
]
. (5.6)

The following proposition deals with the asymptotic behaviours of these functions.

Proposition 5.1. Using the notation given in (5.5) and (5.6),

(i) we have I (K,0,...,0)Sc (ρ)→ τKas ρ →∞;

(ii) for all n1:K ∈ NK \ {(K, 0, . . . , 0)}, we have I (n1:K)
Sc (ρ)→ 0 as ρ →∞;

(iii) for all n1:K ∈ NK , we have I (n1:K)
S (ρ)→ 0 as ρ →∞.

The convergences in Proposition 5.1 can be understood intuitively as follows. For Proposi-
tion 5.1(i), the inradii of the cells behave as though they are independent, since they are far apart
and no line in the process touches more than one of the inballs in theK-tuple (even though two
cells in the K-tuple may share a line.) For Proposition 5.1(ii), we are able to show that with
high probability the inradii of neighbouring cells cannot simultaneously exceed the level vρ ,
due to Proposition 4.1(ii). Finally, to obtain the bound in Proposition 5.1(iii), we use the fact
that the proportion of K-tuples of cells which share at least one line is negligible relative to
those that do not.

5.1. The graph of configurations

For Proposition 5.1(iii), we will need to represent the dependence structure between the
cells whose inballs share lines. To do this, we construct the following configuration graph.
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For K ≥ 2 and L ∈ {3, . . . , 3K}, let VC := {1, . . . , K} and VL := {1, . . . , L}. We consider
the bipartite graph G(VC, VL, E) with vertices V := VC � VL and edges E ⊂ VC × VL. Let

�K :=
⋃
L≤3K

�K,L,

where �K,L represents the collection of all graphs which are isomorphic up to relabelling of
the vertices and satisfying

• degree(v) = 3 for all v ∈ VC,

• degree(w) ≥ 1 for all w ∈ VL,

• neighbours(v) �= neighbours(v′) for all (v, v′) ∈ (VC)
2�=.

Taking VC to represent the cells and VL to represent the lines in a line process, with edges
representing the number of such bipartite graphs is finite since |�K,L| ≤ 2KL so that |�K | ≤
3K2(3K

2).

5.2. Proofs

Proof of Proposition 5.1. (i) For any 1 ≤ i ≤ K and the 3-tuple of lines

H
(1:3)
i := (H (1)

i , H
(2)
i , H

(3)
i ),

we recall that�i := �i (H (1)
i , H

(2)
i , H

(3)
i ) denotes the unique triangle that can be formed by the

intersection of the half-spaces induced by the lines H(1:3)
i . For brevity, we write Bi := B(�i )

and H(1:3)
1:K := (H (1:3)

1 , . . . , H
(1:3)
K ). We shall often omit the arguments when they are obvious

from the context. Since 1EC1:K = 1EB1:K and since the lines of X̂ do not intersect the inballs in
their interior, we have

I
(K,0,...,0)
Sc (ρ) = K

6K
E

[ ∑
H
(1:3)
1:K ∈X3K�=

1{{X̂\∪i≤K,j≤3H
(j)
i }∩{∪i≤KBi }=∅} 1{z(B1:K)∈WK

ρ }

× 1EB1:K 1{n1:K(B1:K)=(K,0,...,0)}
]

= K

6K

∫
A3K

e−φ(
⋃
i≤K Bi) 1{z(B1:K)∈WK

ρ }

× 1EB1:K 1{n1:K(B1:K)=(K,0,...,0)} μ(dH
(1:3)
1:K ),

where the last equality comes from (2.2) and the Mecke–Slivnyak formula. Applying the
Blaschke–Petkantschin formula, we obtain

I
(K,0,...,0)
Sc (ρ) = K

24K

∫
(Wρ×R+×S3)K

e−φ(
⋃
i≤K B(zi ,ri ))

∏
i≤K

a(u
(1:3)
i ) 1EB1:K

× 1{n1:K(B1:K)=(K,0,...,0)} dz1:K dr1:K σ(du(1:3)1:K ),
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where we recall that a(u(1:3)i ) is the area of the triangle spanned by u(1:3)i ∈ S3. From (4.2) and
(4.3), we have for any 1 ≤ i ≤ K ,

exp

(
−2π

K∑
i=1

ri

)
1EB1:K ≤ exp

(
−φ

(⋃
i≤K

B(zi, ri)

))
1EB1:K

≤ exp

(
−2π

K∑
i=1

ri

)
exp(cv−1

ρ ) 1EB1:K .

According to (5.2), this implies that

I
(K,0,...,0)
Sc (ρ) ∼ K

24K

∫
(Wρ×R+×S3)K

∏
i≤K

e−2πri a(u
(1:3)
i ) 1{ri>vρ } 1{r1=maxj≤K rj }

× 1{|zi−zj |>r3
1 for j �=i} dz1:K dr1:K σ(du(1:3)1:K ) as ρ →∞

= KτK

(24π)K

∫
(W1×R+×S3)K

∏
i≤K

e−2πr ′i a(u(1:3)i ) 1{r ′1=maxj≤K r ′j }

× 1{|z′i−z′j |>ρ−1/2r ′31 for j �=i} dz′1:K dr ′1:K σ(du
(1:3)
1:K ),

where the last equality comes from (5.1) and the change of variables z′i = ρ−1/2zi and r ′i =
ri − vρ . From the monotone convergence theorem, it follows that

I
(K,0,...,0)
Sc (ρ) ∼ KτK

(24π)K

∫
(W1×R+×S3)K

∏
i≤K

e−2πri a(u
(1:3)
i )

× 1{r1=maxj≤K rj } dz1:K dr1:K σ(du(1:3)1:K ) as ρ →∞

= τK

(24π)K

(∫
(W1×R+×S3)K

a(u1:3)e−2πr dz dr σ (du1:3)
)K

→ τK as ρ →∞,
where the last line follows by integrating over z, r , and u1:3, and by using the fact that
λ2(W1) = 1 and

∫
S3a(u1:3) σ (du1:3) = 48π2.

(ii) Beginning in the same way as in the proof of Proposition 5.1(i), we have

I
(n1:K)
Sc (ρ) = K

24K

∫
(Wρ×R+×S3)K

exp

(
−φ

(⋃
i≤K

B(zi, ri)

)) ∏
i≤K

a(u
(1:3)
i ) 1EB1:K 1E◦B1:K

× dz1:K dr1:K σ(du(1:3)1:K ),

where the event E◦B1:K is defined in (5.3). Integrating over u(1:3)1:K , we obtain

I
(n1:K)
Sc (ρ) = c

∫
(Wρ×R+)K

exp

(
−φ

(⋃
i≤K

B(zi, ri)

)) ∏
i≤K

1EB1:K 1E◦B1:K

× 1{n1:K(z1:K,r1)=n1:K } dz1:K dr1:K
= I (n1:K)

Sc,aε
(ρ)+ I (n1:K)

Sc,bε
(ρ),
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where, for any ε > 0, the terms I (n1:K)
Sc,aε

(ρ) and I (n1:K)
Sc,bε

(ρ) are defined as the term of the first line
when we add the indicator that r1 is larger than (1+ ε)vρ in the integral and the indicator for
the complement, respectively. We provide below a suitable upper bound for these two terms.
For I (n1:K)

Sc,aε
(ρ), from Proposition 4.1(iia), we obtain

I
(n1:K)
Sc,aε

(ρ) ≤ c
∫
(Wρ×R+)K

exp

(
−

(
2πr1 +

( K∑
k=1

nk − 1

)
2πvρ − cv−1

ρ

))

× 1{r1>(1+ε)vρ } 1{r1=maxj≤K rj }
× 1{n1:K(z1:K,r1)=n1:K } dz1:K dr1:K.

Integrating over r2:K and z1:K , we obtain

I
(n1:K)
Sc,aε

(ρ) ≤ c
∫ ∞
(1+ε)vρ

rK−1
1 exp

(
−

(
2πr1 +

( K∑
k=1

nk − 1

)
2πvρ

))

× λdK({z1:K ∈ WK
ρ : n1:K(z1:K, r1) = n1:K}) dr1. (5.7)

Furthermore, for each n1:K ∈ NK \ {(K, 0, . . . , 0)}, we have

λdK({z1:K ∈ WK
ρ : n1:K(z1:K, r1) = n1:K}) ≤ cρ

∑K
k=1 nk r

6(K−∑K
k=1 nk)

1 , (5.8)

since the number of connected components of
⋃K
i=1 B(zi, r

3
1 ) equals

∑K
k=1 nk . It follows from

(5.7) and (5.8) that there exists a constant c(K) such that

I
(n1:K)
Sc,aε

(ρ) ≤ c(ρe−2πvρ )(
∑K
k=1 nk)e2πvρ

∫ ∞
(1+ε)vρ

r
c(K)
1 e−2πr1 dr1 = O((log ρ)c(K)ρ−ε),

according to (5.1). For I (n1:K)
Sc,bε

(ρ), we proceed exactly as for I (n1:K)
Sc,aε

(ρ), but this time we apply
the bound given in Proposition 4.1(iib). We obtain

I
(n1:K)
Sc,bε

(ρ) ≤ c(ρ exp(−2πvρ))
(
∑K
k=1 nk) exp

(
(2πvρ −

K∑
k=2

nk(4− επ)vρ
)

×
∫ (1+ε)vρ

vρ

r
c(K)
1 exp(−2πr1) dr1

= O((log ρ)cρ−(4−επ)/2π )

since for all n1:K ∈ NK \ {(K, 0, . . . , 0)}, there exists a 2 ≤ k ≤ K such that nk is nonzero.
Choosing ε < 4/π ensures that I (n1:K)

Sc,bε
(ρ)→ 0 as ρ →∞.

(iii) Let G = G(VC, VL, E) ∈ �K , with |VL| = L and |VC| = K , be a bipartite graph as in
Section 5.1. With G, we can associate a (unique up to reordering of the lines) way to construct
K triangles from L lines by taking VC to denote the set of indices of the triangles, VL to denote
the set of indices of the lines, and the edges to represent intersections between them. Besides,
let H1, . . . , HL be an L-tuple of lines. For each 1 ≤ i ≤ K , let ei = {ei(0), ei(1), ei(2)} be
the tuple of neighbours of the ith vertex in VC. In particular,

Bi(G) := B(�i (G)) and �i (G) := �(Hei(0), Hei(1), Hei(2))
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Figure 4: Example of configuration of inballs and lines (a), with associated configuration graph (b).

denote the inball and the triangle generated by the 3-tuple of lines with indices in ei . An example
of this configuration graph is given in Figure 4. According to (5.6), we have

I
(n1:K)
S (ρ) =

∑
G∈�K

I
(n1:K)
SG

(ρ),

where for all n1:K ∈ NK and G ∈ �K , we write

I
(n1:K)
SG

(ρ) = E

[ ∑
H1:L∈XL�=

1{{X̂\∪i≤LHi }∩{∪i≤KBi(G)}=∅} 1{z(B1:K(G))∈WK
ρ } 1EB1:K(G)

× 1E◦
B1:K(G)

1{n1:K(B1:K(G))=n1:K }
]

=
∫

A|VL |
exp

(
−φ

(⋃
i≤K

Bi(G)

))
1{z(B1:K(G))∈WK

ρ } 1EB1:K(G)

× 1E◦
B1:K(G)

1{n1:K(B1:K(G))=n1:K } μ(dH1:L). (5.9)

We now prove that I (n1:K)
SG

(ρ) → 0 as ρ → ∞. Suppose first that n1:K = (K, 0, . . . , 0). In
this case, from (5.9), Proposition 4.1(iia), (5.2), and (5.3), we obtain

I
(K,0,...,0)
SG

(ρ) ≤ c
∫

AL
e−2π(R(B1(G))+(K−1)vρ) 1{z(B1:K(G))∈Wρ } 1{R(B1(G))>vρ }

× 1{R(B1(G))=maxi≤K R(Bi(G))} 1{n1:K(B1:K(G))=(K,0,...,0)} μ(dH1:L)

≤ cρ1/2
∫ ∞
vρ

rc(K)e−2πr dr

= O((log ρ)c(K)ρ−1/2),

where the second inequality is a consequence of (5.1) and Lemma A.2 applied to f (r) :=
e−2πr . Suppose now that n1:K ∈ NK \ {(K, 0, . . . , 0)}. In the same spirit as in the proof of
Proposition 5.1(ii), we shall write

I
(n1:K)
SG

(ρ) = I (n1:K)
SG,aε

(ρ)+ I (n1:K)
SG,bε

(ρ) (5.10)
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by adding the indicator that R(B1(G)) is larger than (1 + ε)vρ and the opposite in (5.9). For
I
(n1:K)
SG,aε

(ρ), we similarly apply Proposition 4.1(iia) to obtain

I
(n1:K)
SG,aε

(ρ) ≤ c
∫

AL
exp

(
−2π

(
R(B1(G))+

( K∑
k=1

nk − 1

)
vρ

))

× 1{z(B1:K(G))∈Wρ } 1{R(B1(G))>(1+ε)vρ }
× 1{R(B1(G))=maxi≤K R(Bi(G))} 1{n1:K(B1:K(G))=n1:K } μ(dH1:L)

≤ c(ρe−2πvρ )
∑K
k=1 nkρ

∫ ∞
(1+ε)vρ

rc(K)e−2πr dr

= O((log ρ)c(K)ρ−ε), (5.11)

where the second inequality follows by applying LemmaA.2. To prove that I (n1:K)
SG,bε

(ρ) converges
to 0, we proceed exactly as before but this time applying Proposition 4.1(iib). As for I (n1:K)

Sc,bε
(ρ),

we show that
I
(n1:K)
Sc,bε

(ρ) = O((log ρ)c(K)ρ−(4−επ)/2π )

by taking ε < 4/π . Using this equation together with (5.10) and (5.11), it follows that I (n1:K)
SG

(ρ)

converges to 0 for any n1:K ∈ NK \ {(K, 0, . . . , 0)}. �
Proof of Theorem 1.1(ii). According to Lemma 4.1, it is now enough to show that for allK ≥

1, we have I (K)(ρ)→ τK as ρ →∞. This fact is a consequence of (5.4) and Proposition 5.1,
thus completing the proof. �

Appendix A. Technical lemmas

The following technical lemmas are required for the proofs of Proposition 3.1 and Proposi-
tion 5.1(iii).

Lemma A.1. Let R,R′ > 0 and let z′ ∈ R
d .

(i) For all H1 ∈ A, we have

G(H1) :=
∫

A2
1{z(H1:3)∈B(z′,R′)} 1{R(H1:3)<R} μ(dH2:3) ≤ cRR′ 1{d(0,H1)<R+R′}.

(ii) For all H1, H2 ∈ A, we have

G(H1, H2) :=
∫

A
1{z(H1:3)∈B(z′,R′)} 1{R(H1:3)<R} μ(dH3) ≤ c(R + R′).

Lemma A.2. Let 3 ≤ L < 3K be fixed. For any G = G(VC, VL, E) ∈ �K , n1:K ∈ N1:K ,
and for any measurable function f : R+ → R+, let

F (n1:K) :=
∫

AL
f (R(B1(G))) 1{z(B1:K(G))∈Wρ } 1{R(B1(G))>v′ρ } 1{R(B1(G))=maxi≤K R(Bi(G))}

× 1{n1:K(B1:K(G))=n1:K } μ(dH1:L),

where v′ρ →∞. Then for some constant c(K), we have

F (n1:K) ≤ ρmin{∑K
k=1 nk,K−1/2}

∫ ∞
v′ρ

rc(K)f (r) dr.
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Proof of Lemma A.1. (i) The following proof reduces to giving the analogous version of the
Blaschke–Petkanschin-type change of variables [23, Theorem 7.3.2]) in which one of the lines
is held fixed. We proceed in the same spirit as in the proof of [23, Theorem 7.3.2]. Without
loss of generality, we can assume that z′ = 0 since μ is stationary. LetH1 ∈ A = H(u1, t1) be
fixed for some u1 ∈ S and t1 ∈ R. We denote by A2

H1
⊂ A2 the set of pairs of lines (H2, H3)

such that H1, H2, and H3 are in general position, and by PH1 ⊂ S2 the set of pairs of unit
vectors (u2, u3) such that 0 ∈ R

2 belongs to the interior of the convex hull of {u1, u2, u3}. Then
the mapping

φH1 : R2 × PH1 −→ A2
H1
, (z, u2, u3) �−→ (H(u2, t2),H(u3, t3))

with ti := 〈z, ui〉 + r and r := d(z,H1) is bijective. We can easily prove that its Jacobian
J�H1

(z, u2, u3) is bounded. Using the fact that d(0, H1) ≤ |z(H1:3)| + R(H1:3) < R + R′
provided that z(H1:3) ∈ B(0, R′) and R(H1:3) < R, it follows that

G(H1) ≤
∫

R2×PH1

|JφH1(z, u2, u3)| 1{z∈B(0,R′)} 1{d(z,H1)<R} 1{d(0,H1)<R+R′} σ(du2:3) dz

≤ cλ2(B(0, R
′) ∩ (H1 ⊕ B(0, R))) 1{d(0,H1)<R+R′}

≤ cRR′ 1{d(0,H1)<R+R′},

where A⊕ B denotes the Minkowski sum between two Borel sets A,B ∈ B(R2).

(ii) Let H1 and H2 be fixed. Let H3 be such that z(H1:3) ∈ B(z′, R′) and R(H1:3) < R. This
implies that

d(z′, H3) ≤ |z′ − z(H1:3)| + d(z(H1:3),H3) ≤ R + R′.
Integrating over H3, we obtain

G(H1, H2) ≤
∫

A
1{d(z′,H3)≤R+R′} μ(dH3) ≤ c(R + R′). �

Proof of Lemma A.2. Our proof will follow by writing the set of lines {1, . . . , |VL|} as a
disjoint union. We take

{1, . . . , |VL|} =
K⊔
i=1

e�i ,

where e�i := {ei(0), ei(1), ei(2)} \
⋃
j<i{ej (0), ej (1), ej (2)}. In this way, {e�i }i≤K may be

understood as associating lines of the process with the inballs of theK cells under consideration
so that no line is associated with more than one inball. In particular, each inball has between
zero and three lines associated with it, 0 ≤ |e�i | ≤ 3 and |e�1| = 3 by definition. We now
consider two cases depending on the configuration of the clusters, n1:K ∈ NK .

Independent clusters. To begin with, we suppose that n1:K = (K, 0, . . . , 0). For conve-
nience, we shall write

μ(dHe�i ) :=
∏
j∈e�i

μ(dHj)

for some arbitrary ordering of the elements, and defining the empty product to be 1. It follows
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from Fubini’s theorem that

F (K,0,...,0) =
∫

A3
f (R(B1(G))) 1{z(B1(G))∈Wρ } 1{R(�1(G))>v′ρ }

×
∫

A|e
�
2 |

1{z(B2(G))∈Wρ } 1{R(�2(G))≤R(B1(G))}

· · ·
×

[∫
A|e

�
K
| 1{z(BK(G))∈Wρ } 1{R(�K(G))≤R(B1(G))} μ(dHe�K )

]
× μ(dHe�K−1

) · · ·μ(dHe�1). (A.1)

We now consider three possible cases for the innermost integral in (A.1).

(i) If |e�K | = 3, the integral equals cR(B1(G))ρ after a Blaschke–Petkanschin change of
variables.

(ii) If |e�K | = 1, 2, the integral is bounded by cρ1/2R(B1(G)) thanks to Lemma A.1 applied
with R := R(B1(G)), R′ := π−1/2ρ1/2 .

(iii) If |e�K | = 0, the integral decays and we may bound the indicators by 1. To simplify our
notation we just assume the integral is bounded by cρ1/2R(B1(G)).

To distinguish these cases, we define xi := 1{|e�i |<3} for each 2 ≤ i ≤ K , giving

F (K,0,...,0) ≤ cρ1−xK/2
∫

A3
R(B1(G))

c(K)f (R(B1(G))) 1{R(�1(G))>v′ρ } 1{z(B1(G))∈Wρ }

×
∫

A|e
�
2 |

1{R(�2(G))≤R(B1(G))} 1{z(B2(G))∈Wρ }

· · ·
×

[∫
A
|e�
K−1|

1{R(�K(G))≤R(B1(G))} 1{z(BK−1(G))∈Wρ } μ(dHe�K−1
)

]
× μ(dHe�K−2

) · · ·μ(dHe�1).
Recursively applying the same bound, we obtain

F (K,0,...,0) ≤ cρ
∑K
i=2(1−xi/2)

∫
A3
R(H1:3)c(K)f (R(H1:3)) 1{R(H1:3)>v′ρ } 1{z(H1:3)∈Wρ } μ(dH1:3).

From the Blaschke–Petkanschin formula, it follows that

F (K,0,...,0) ≤ cρ(K−(1/2)
∑K
i=2 xi )

∫ ∞
v′ρ

rc(K)f (r) dr.

Since, by assumption |VL| < 3K , it follows that xi = 1 for some i > 1. This implies that

F (K,0,...,0) ≤ cρK−1/2
∫ ∞
v′ρ

rc(K)f (r) dr

as required.
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Dependent clusters. We now focus on the case in which n1:K ∈ NK \ {(K, 0, . . . , 0)}. We
proceed in the same spirit as before. For any 1 ≤ i �= j ≤ K , we write Bi(G) � Bj (G)

to specify that the balls B(z(Bi(G)), R(B1(G))
3) and B(z(Bj (G)), R(B1(G))

3) are not in
the same connected component of

⋃K
l=1 B(z(Bl(G)), R(B1(G))

3). Then we choose a unique
‘delegate’ convex for each cluster using the following indicator:

αi(B1:K(G)) := 1{for all i<j,Bj (G)�Bi(G)}.
It follows that

∑K
k=1nk =

∑K
i=1αi(B1:K(G)) and α1(B1:K(G)) = 1. The set of all possible

ways to select the delegates is given by

An1:K :=
{
α1:K ∈ {0, 1}K :

K∑
i=1

αi =
K∑
k=1

nk

}
.

Then we have

F (n1:K) =
∑

α1:K∈An1:K

∫
A3
f (R(B1(G))) 1{z(B1(G))∈Wρ } 1{R(�1(G))>v′ρ }

×
∫

A|e
�
2 |

1{z(B2(G))∈Wρ } 1{R(�2(G))≤R(B1(G))} 1{α2(B1:K(G))=α2}

· · ·
×

[∫
A|e

�
K
| 1{z(BK(G))∈Wρ } 1{R(�K(G))≤R(B1(G))} 1{αK(B1:K(G))=αK } μ(dHe�K )

]
× μ(dHe�K−1

) · · ·μ(dHe�1).
For this part, we similarly split the inner-most integral into multiple cases and recursively
bound.

(i) When αK = 1, the integral equals cR(B1(G))ρ if e�K = 3 thanks to the Blaschke–
Petkanschin formula, and is bounded by cρ1/2R(B1(G)) otherwise thanks to LemmaA.1.
In particular, we bound the integral by cR(B1(G))

c(K)ραK .

(ii) When αK = 0, the integral equals cR(B1(G))
7 if e�K = 3 and is otherwise bounded by

cR(B1(G))
5/2 for similar arguments. In this case, we can also bound the integral by

cR(B1(G))
c(K)ραK .

Proceeding in the same way and recursively for all 2 ≤ i ≤ K , we obtain

F (n1:K) ≤ c
∑

α1:K∈An1:K

ρ
∑K
i=2 αi

∫
A3
R(B1(G))

c(K)f (R(H1:3))

× 1{z(B1(G))∈Wρ } 1{R(B1(G))>v′ρ } μ(dH1:3).
From the Blaschke–Petkanschin formula, we obtain

F (n1:K) ≤ c
∑

α1:K∈An1:K

ρ
∑K
i=2 αi ρ

∫ ∞
v′ρ

rc(K)f (r) dr ≤ cρ
∑K
k=1 nk

∫ ∞
v′ρ

rc(K)f (r) dr,

since
K∑
i=2

αi + 1 =
K∑
i=1

αi =
K∑
k=1

nk. �
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