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ABSTRACT
In Japan, the working group for the Mars Exploration Aircraft continues to research and
develop a Mars aircraft aiming to a future survey mission. To ensure the success of the
flight mission, a self-localisation system with low-computational complexity is necessary. In
the present research, a new self-localisation method is proposed using multispectral images.
The algorithm is based on the simple mapping of image moment invariants and gradients
calculated from several images at different wavelengths. The numerical simulations revealed
the sufficient robustness of the proposed method to image noise. The estimation accuracy can
be improved by increasing the number of the spectral images.
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NOMENCLATURE

C1, . . . ,C7 normalised invariants
d focal length
E direction cosine matrix
fDZ dead zone function
fk function that calculates index value from image data
F sm smoothing filter
g(x, y) pixel value at (x, y)
h altitude of focal spot
Mk maximum value of index value k
nC number of evaluated moment invariants
pi camera position of divided area i
(x, y) position
(ximage, yimage) position on image plane axis
(xG, yG ) position on ground plane axis

Greek Symbols
αi,k index value of look-up table
βk index value calculated from image data received from onboard camera
γ j averaged image data gradient at wavelength number j
�γ directional difference of gradient
ηpq central moments of order p and q
λ1, . . . ,λ7 invariants with respect to translation, scale, and rotation
μpq invariant with respect to translation and scale
σnoise ratio of standard deviations of added noise to error between maximum and

minimum pixel values in field of view
φ, θ and ψ roll, pitch, and yaw angle, respectively
� image data
� j image data at wavelength number j
�̂ transformed image data of onboard camera
� Mars surface
�i divided Mars surface

Abbreviations
CRISM Compact Reconnaissance Imaging Spectrometer for Mars
EDL Entry, Descent, and Landing
FPGA Field-Programmable Gate Arrays
GNC Guidance, Navigation, and Control
HiRISE High Resolution Science Experiment
IMU Inertial Measurement unit
MRO Mars Reconnaissance Orbiter
THEMIS Thermal Emission Imaging System
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Subscript
i divided area segments number
j wavelength number
k index value number
l pixel number

Operators
∇ gradient
∠ angle of vector
∼ smoothed image data

1.0 INTRODUCTION
The Mars aircraft has been developed as a tool for Mars explorations, and enables long-
distance observations at high resolution(1,2). In Japan, the working group for the Mars
Exploration Aircraft has been developing a Mars aircraft, and high-altitude experiments have
been performed(3–11). Specifically, fundamental aircraft performances on the Mars atmosphere
have been investigated, such as high-lift coefficients and lightweight structures. However, the
guidance, navigation, and control (GNC) and the self-localisation systems are important to
guide the aircraft along the desired path on Mars.

The inertial measurement unit (IMU) and the Doppler radar have been mainly used in
the entry, descent, and landing (EDL) systems of past Mars missions(12). Aiming towards
the achievement of more precise navigation, the terrain relative navigation has been under
investigation for the Mars 2020 mission(13,14). Specifically, the obtained images are matched
with a prepared map, and the results are fused with IMU data using an extended Kalman filter.
These processes are carried out in real time using field-programmable gate arrays (FPGA).

Generally, real-time image-matching algorithms requires high computational performance.
Because our developing Mars aircraft is lightweight and small, a small avionics system with
a relatively low performance will be used. Therefore, a localisation method requiring low-
computational performance is necessary(15). In Ref. 16, the real-time navigation was proposed
for the final approach and EDL phase using the Mars network orbiter. However, it is difficult
to maintain the network to a Mars orbiter during the entire duration of the flight of the Mars
aircraft. A new localisation method with low-computational complexity is required that can
be executed using the onboard devices only.

In the present research, a new self-localisation method using multispectral images is
proposed. Prior to the flight, the look-up table is constructed connecting the position to the
index values, which are calculated from the image moment invariants and averaged gradient
information, estimated from images acquired from the Mars surface at different wavelengths.
The aircraft position can be estimated by matching the images taken by the onboard broadband
camera to the look-up tables.

The estimated errors of the proposed method with specific camera altitude and angle are
validated using the multispectral images of the Mars surface. Additionally, the robustness of
the proposed methods to image noise is analysed.
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2.0 SELF-LOCALISATION METHOD VIA
MULTISPECTRAL IMAGE

2.1 Index-matching algorithm using observed data of the Mars
exploration

Prior knowledge that relates the local information obtained by the Mars aircraft to the global
position on Mars is necessary for self-localisation. It should depend on the exploration data
of past missions. The Mars Reconnaissance Orbiter (MRO) performed the extended survey
using several instruments. The High Resolution Science Experiment (HiRISE) obtained
detailed images with a resolution of 0.3 m at an altitude of 300 km. Additionally, the Compact
Reconnaissance Imaging Spectrometer for Mars (CRISM) obtained spectrum data within the
wavelength range of 370 to 3,920 nm. It has a resolution of 18 m at an altitude of 300 km and
is used to produce a map of surface mineralogy. The MRO is also equipped with a grayscale
image camera and a low-resolution camera. The Mars odyssey was equipped with the Thermal
Emission Imaging System (THEMIS) with a resolution of 100 m used for the analysis of
minerals.

These observed data have potential applicability to the self-localisation of the aircraft.
In the present research, the spectral image obtained by CRISM is applied to the self-
localisation because it contains image information spanning a wide wavelength range with
sufficient resolution, thereby resulting in high-estimation precision. The localisation algorithm
is constructed based on the simple mapping of index values calculated using several images
at different wavelengths.

2.2 Index values using Hu moment invariants

The proposed algorithm requires index values estimated from the spectral image. The index
values are required to be substantial to account for the variation of the camera angle and
position. Therefore, the Hu moment invariants(17) are applied for the self-localisation. It is
used mainly for pattern recognition. Let the pixel value at the position from the centroid (x, y)
be g(x, y). Central moments of order p and q are defined as:

μpq =
∫∫

xpyqg (x, y) dxdy … (1)

This calculation is invariant with respect to translations. Invariants ηpq with respect to both
translation and scale are defined as:

ηpq = μpq

μ00
p+q+2

2

… (2)

Invariants with respect to translation, scale, and rotation, are defined as:

λ1 = η20 + η02, … (3)

λ2 = (η20 − η02)2 + 4η2
11, … (4)

λ3 = (η30 − 3η12)2 + (3η21 − η03)2, … (5)

λ4 = (η30 + η12)2 + (η21 + η03)2, … (6)
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λ5 = (η30 − 3η12) (η30 + η12)
{

(η30 + η12)2 − 3(η21 + η03)2
}

+ (3η21 − η03) (η21 + η03)
{

3(η30 + η12)2 − (η21 + η30)2
}

, … (7)

λ6 = (η20 − η02)
{

(η30 + η12)2 − (η21 + η03)2
}

+ 4η11 (η30 + η12) (η21 + η03) , … (8)

λ7 = (3η21 − η03) (η30 + η12)
{

(η30 + η12)2 − 3(η21 + η03)2
}

− (η30 − 3η12) (η21 + η03)
{

3(η30 + η12)2 − (η21 + η03)2
}

, … (9)

Finally, these are normalised for the robustness to noise(18), and indices C1, . . . , C7 are
defined as:

C1 = λ1

λ1
= 1, C2 = λ2

λ1
2 , C3 = λ3

λ1
3 , C4 = λ4

λ1
3 , C5 = λ5

λ1
6 , C6 = λ6

λ1
4 , C7 = λ7

λ1
6

… (10)
These indices are invariant with respect to translation, scale, and rotation.

2.3 Index values using the gradient of pixel values

Hu moment invariants evaluate the distribution of the pixel values as a function of the distance
from the centroid. Because this estimate is invariant with respect to rotation, the direction of
the distribution that constitutes meaningful information for the self-localisation cannot be
evaluated. The direction of the distribution, exhibiting unidirectional decreasing or increasing
tendencies, can potentially constitute another index value. However, calculating the direction
in the acquired image requires the heading angle of the aircraft, which is difficult to be
measured on Mars. Therefore, the differences between the directions of the distributions of
several spectral images acquired at different wavelengths are estimated without the heading
angle of the aircraft. Herein, the gradients of the images are used. Specifically,

(1) Let the spectral image data be � = [�1,�2, . . . , � j, . . .], where j is the wavelength
number.

(2) The image data are smoothed using a moving average filter in accordance to �̃ =
[�̃1, �̃2, . . . , �̃ j, . . .], where #̃ = Fsm{#} is a smoothing filter for the image data #.

(3) The gradients of the smoothed images are then calculated using the Prewitt operator, and
the average value is estimated and used as the gradient of the image,

γ j =
∑

l
∇�̃ j,l , … (11)

where l is a pixel number of the divided area, and ∇�̃ j,l is a gradient vector at the pixel number
l of the image data �̃ j . The directional difference between the different images acquired at
different wavelengths is defined as:

l ( j1, j2 ) = ∠γ j1 − ∠γ j2 , … (12)
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Figure 1. Transformation of image.

where ∠ is the operator that calculates the angle of the vector, such that ∠a = tan−1(ax/ay),
and ax and ay are the x and y components of vector a, respectively.

Hereafter, the angle values are mapped within the range of (−π,π]. Because the index value
in Equation (12) is the difference of the directions of the two images, the aircraft heading angle
information is not required. Obviously, this estimate is invariant with respect to the rotation of
the images.

2.4 Compensation of geometric distortion

The localisation algorithm is constructed assuming that the image obtained from the camera
is directed perpendicularly downward. However, the image is distorted based on the aircraft
attitude. In addition, the ground size in the field of view depends on the altitude of the aircraft.
Before the calculation of the index values, the obtained image should be transformed to the
image obtained from the camera directed perpendicularly downward and having the same
ground size and shape in the field of view.

The Mars aircraft will be equipped with an altitude sensor and an attitude estimation
system(19). The transformation algorithm compensating of attitude and altitude is as follows
(Fig. 1):

Let the pixel position on the image plane axis of the image obtained from the onboard
camera be (ximage, yimage) and the pixel value at (ximage, yimage) be g(ximage, yimage).

Let the focal length of the onboard camera be d ; the altitude of the focal spot be h; and the
roll, pitch, and yaw angles of the aircraft be φ, θ, and ψ, respectively.

The position of the pixel on the ground (xG, yG ) corresponding to the pixel on
the image plane at (ximage, yimage) can be calculated as the solution of the following
equation:

⎡
⎣xG

yG

0

⎤
⎦ =

⎡
⎣ 0

0
−h

⎤
⎦ + k × E (φ, θ, 0) ×

⎡
⎣ximage

ximage

d

⎤
⎦ , … (13)
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E (φ, θ,ψ)

=
⎡
⎣ cos θ cos ψ cos θ sin ψ − sin θ

sin φ sin θ cos ψ − cos φ sin ψ sin φ sin θ sin ψ + cos θ cos ψ sin φ cos θ

cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ − sin θ cos ψ cos φ cos θ

⎤
⎦

… (14)

This transformation compensates the aircraft attitude to the ground, i.e., roll and pitch
angles. It is difficult to measure the yaw angle on Mars. However, the index values of the
Hu momentum invariant and gradient error between different wavelengths are invariant with
respect to the rotation. Therefore, the compensation of the yaw angle is not required. Finally,
the image data set having the same area size and shape is extracted from the calculated image
data with position (xG, yG ) and pixel value g(ximage, yimage).

2.5 Localisation procedure

The proposed method depends on a simple matching algorithm. The look-up table mapping
the position to the index values was constructed. The index values were calculated by shifting
the assumed camera position in the spectral images of the Mars surface, which contain the
flight area. In the flight mission, the multispectral images are obtained by the onboard camera,
and the index values are calculated in real time. The aircraft position is estimated by matching
the index values to the look-up table. The self-localisation procedures are shown below, as
follows:
(Preprocessing)

(1) The Mars surface � is divided into �i, i = 1, 2, . . . , n such that � = ∪�i. Let the
camera position of the image area �i be pi. In this case, i is the number of the
divided area segments mapping to the camera’s position. Let the spectral image data
obtained by CRISM with a wavelength w j for the divided area �i be �i, j , and �i =
[�i,1,�i,2, . . . , �i, j, . . .].

(2) The index values αi,k = fk(�i ), k = 1, 2, . . . are calculated for each divided area �i.
fk(#) is a function that calculates the index values from the image data #, and k is the
number of the index values.

(3) The look-up table mapping the camera position pi to the index values αi,k is constructed.

(Real-time processing)

(1) The spectral image is obtained from the onboard spectral camera. The obtained image is
transformed to have the camera angle directed perpendicularly downward and obtain an
image of same size as the look-up table. Let the transformed image data be �̂.

(2) The index functions are calculated for the acquired spectral image data �̂. The calculated
index values fk(�̂) are denoted by βk.

(3) Find the position pi from the look-up table whose index values αi,k are close to the
calculated index values βk, k = 1, 2, . . . by minimizing the cost function Ji. Ji is defined
by representing the error of the index values between the images obtained by the onboard
camera and the look-up table at position pi.
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(a) 442 nm (b) 533 nm (c) 592 nm

(d) 1,080 nm (e) 1,500 nm (f) 2,503 nm

Figure 2. Spectral images of the Mars surface(20).

This algorithm utilises several indices calculated from the images acquired at different
wavelengths. The estimation precision can be improved by using additional indices and
additional spectral images acquired at different wavelengths.

3.0 NUMERICAL SIMULATIONS
3.1 Cost function and matching criteria

The proposed self-localisation method is validated using the images taken by CRISM of MRO
near Holden crater(20). The position of the original image is at a latitude of −26.8°– −26.608°
(587 pixels) and at an East longitude of 325.338°–325.596° (701 pixels). From the original
image, 400×400 pixels2 were extracted and used for the validation. Since the size of one pixel
equals 19.4 m, the extracted area is 7,760×7,760 m2. The observed images were acquired
within the period of February 24, 2007 at 11:11:48–February 24, 2007 at 11:13:39. The
images were acquired at six different wavelengths, that is, the wavelengths of 442 nm, 533 nm,
592 nm, 1,080 nm, 1,500 nm, and 2,503 nm, were used to construct the look-up table. The
wavelengths 442 nm, 533 nm, and 592 nm, are in the violet, green, and orange light regions of
the visible spectrum, respectively. The wavelengths 1,080 nm, 1,500 nm, and 2,503 nm, are in
the infrared range. The extracted images of each wavelength are shown as grayscale images
(Fig. 2). It can be seen that both visible images and infrared images reflect the landform.
However, comparing the visible and infrared images, different patterns appear.

The moment invariants C2, . . . , C7 of the wavelengths 442 nm and 2,503 nm are shown
in Fig. 3. The distribution patterns vary with respect to the degrees of the moments and
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Figure 3. (Colour online) Distributions of moment invariants.
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Figure 5. (Colour online) Difference of the gradient directions.

the wavelengths. The direction of the gradient ∠γi, j for the images of the wavelengths
442 nm and 2,503 nm are shown in Fig. 4. Figure 5 shows the difference of the directions
(Equation (12)). The direction of the gradient of Fig. 4 varies globally as compared to the
distribution of the moment invariants shown in Fig. 3. Therefore, moment invariant has a few
local minima, and it is suitable as a cost function for the minimisation problem.

To construct the cost function, two typical images were selected, that is, the image at a
wavelength of 442 nm from the visible spectrum, and the image at a wavelength of 2,503 nm
from the infrared spectrum. The moment invariants C5, C6, and C7 were used. Because the
undulation of the distributions of C2, C3, and C4 were low, they were eliminated from the cost
function. (Case 1)

The cost function can be expressed using the following:

Ji = 1
nC

∑nC

k=1

(∣∣αi,k − βk

∣∣ /Mk
) + fDZ

(∣∣αi,nC+1 − βnC+1
∣∣) /π, … (15a)

fDZ (x) =
⎧⎨
⎩

x − ρ (x ≥ ρ)
0 (|x| < ρ)

x + ρ (x ≤ ρ)
… (15b)

� nC is the number of the evaluated moment invariants. Mk is the maximum value of the
moment invariant in each image, and the size of the dead zone ρ is 0.1 rad.
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Figure 6. (Colour online) Distribution of cost function (O: actual self-location).

� The index values αi,1 − αi,nC (nC = 6) correspond to the three moment invariants C5,
C6, and C7, calculated from the image acquired at the two wavelengths of 442 nm and
2,503 nm.

� The index value αi,nC+1 is the difference of the gradient direction between the images
acquired at 442 nm and 2,503 nm (Equation (12)).

The divided area �i is assumed to be 100×100 pixels squared. The cost function is
calculated and the look-up table is constructed by shifting the centre of �i by one pixel. It
is assumed that the onboard camera is at the centre of each divided area �i. Additionally, it
is assumed that the onboard camera is directed perpendicularly downward, and the obtained
image has the same size and shape of field of views as that of the look-up table.

The following optimisation problem is solved to find the self-location in accordance with:

min
i

Ji … (16)

Let the optimised i be iopt. The symbol piopt is the estimated self-location.
In the present research, the cost function was calculated for all the pixels, and the minimum

value was calculated.

3.2 Simulation results

In these simulations, it was assumed that the self-position was at central pixel of the searched
area of 400×400 pixels2 at location (200, 200). The optimisation problem for the cost function
for Case 1 was solved and the self-location was estimated. The obtained position which
minimised the cost function was at the pixel location (200, 200). The estimated error was
zero. The calculation was performed by PC with Intel Core i7-6700HQ CPU and MATLAB®.
The calculation time was approximately 2.9s. The distribution of the cost functions is shown in
Fig. 6. In the present research, all pixels were examined in the effort to estimate the minimum
cost function. Obviously, the true position can be obtained using this method. However, as
it can be seen in Fig. 6, the distribution of the cost function varies globally, and few local
minima exist. Therefore, gradient methods may be effective to search for the minimum cost
function based on an appropriate initial position.
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Figure 8. Estimated error (the size of one pixel equals 19.4 m).
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Figure 9. (Colour online) Distributions of moment invariants for noised images (σnoise = 0.6).
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Figure 10. (Colour online) Directions of gradient of noised images (σnoise = 0.6).
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Figure 11. (Colour online) Difference of the directions of gradient of noised images (σnoise = 0.6).

3.3 Robustness to image noise

In the actual mission, it is expected that the acquired image will contain noise, such as
electrical noise and noise due to dust in the atmosphere. Correspondingly, the estimated errors
under the variation of the image noise were studied. In the simulations, Gaussian noise was
added to the original image. The noise level is defined by σnoise, which is the ratio of the
standard deviations of the added noise to the error between the maximum and minimum
pixel values in the field of view. The value of σnoise varied from 0 to 1. Figure 7 shows
examples of noised images from where the self-locations were estimated. The average and
standard deviations of the estimated errors are evaluated based on 50 independent calculations
performed with the same size of σnoise. In addition to the cost function in Case 1, the cost
functions that included all the moment invariants (Case 2), and the cost function that included
only moment invariant (Case 3) were studied.
(Case 2)
The cost function is expressed by Equation (13).

� The index values αi,1 − αi,nC (nC = 36) are six moment invariants C2, . . . , C7 calculated
from the images acquired at six different wavelengths, namely, 442 nm, 533 nm, 592 nm,
1,080 nm, 1,500 nm, and 2,503 nm

� The index value αi,nC+1 is the difference of the gradient direction between the images
acquired at 442 nm and 2,503 nm.

(Case 3)
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(c)  Case 3 (without noise) (d)  Case 1 ( = 0.3) 
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Figure 12. (Colour online) Distributions of cost functions (O: actual self-location).
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The cost function is as follows:

Ji = 1
nC

∑nC

k=1

(∣∣αi,k − βk

∣∣ /Mk
)

… (17)

� The index values αi,1 − αi,nC (nC = 6) are the three moment invariants C5, C6 and C7,
calculated from the images acquired at wavelengths 442 nm and 2,503 nm.

Figure 8 shows the mean value and the standard deviation of the estimated error. The
estimated error in Case 2 is approximately half the value of Case 1 for all the noise levels
studied. In Case 1, the cost function contains three moment invariants for the acquired images
at the two distinct wavelengths. In Case 2, the cost function contains six moment invariants
for the images acquired at the six different wavelengths. In Case 2, the number of the index
values is larger than that for Case 1, thereby resulting in a more precise estimation. The cost
function in Case 3 does not contain the gradient information of the multispectral images. It
results in a larger estimated error compared to Case 1.

Figure 9 shows the distributions of the moment invariants calculated from noised images
(σnoise = 0.6). Compared to Fig. 3, it can be seen that the distributions of the moment
invariants for the noised images are slightly jagged. However, global trends do not differ
considerably. Figures 10 and 11 show the directions of the gradients and the difference of
the directions of the gradients calculated from the noised images, respectively. Compared to
Figs. 4 and 5, it can be seen that the global trends are similar. Figure 12 shows the distribution
of the cost functions as a function of variations of the noise level. It can be seen that the
distributions of the cost functions are hardly affected by image noise. The distributions of
the cost functions in Cases 1 and 2 differ considerably from those in Case 3. The cost
functions of Cases 1 and 2 contain moment invariants and gradient information that show
global undulations, which is suitable for optimisation problems. However, the distributions of
the cost functions in Case 3 that contain only the moment invariants are comparatively flat.
This results in an overestimation of the error for the noised images.

4.0 CONCLUSIONS
In this work, a new self-localisation method was proposed using multispectral images. The
look-up table mapping the position and the index values was constructed. The index values
were defined from the image moment invariants and the gradient of the pixel values, which
are calculated for the numerous spectral images acquired at different wavelengths.

The self-location was determined by mapping the index values calculated from the
multispectral images obtained by the onboard camera to the entries of the look-up table.
The estimation precision and the robustness to image noise were analysed through numerical
simulations using the actual Mars surface image of the MRO. It was revealed that the proposed
method is robust to image noise and can be improved by using additional images acquired at
different wavelengths. The proposed method can introduce various types of information using
multispectral images with simple indexes requiring low-computational complexity. It is an
advantage for the implementation to the flight model of the actual Mars mission.

The performance of the fundamental algorithm under specific conditions was discussed in
the present research. It is important that the proposed method is improved for its planned
application to the actual mission. The condition of image acquisition, such as the directions
of the sun and dust, should be compensated. Combining additional sensors with the proposed
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system, such as the IMU, implementation of the self-localisation algorithm with increased
time-efficiency and precision may be achieved.
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