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This article solves numerically the equations of the leaky-dielectric model applied to
cone jets. The solution is a function of the properties of the fluid and its flow rate,
universal in that it does not depend on the geometry and potential of the electrodes.
This is made possible by the use of the potential field generated by a semi-infinite
Taylor cone as a far-field boundary condition. The numerical solution yields the
current emitted by the electrospray, which compares well with experimental data,
and detailed information about the velocity, surface charge, electric field and the
position of the free surface. These characteristics are generally inaccessible through
experiments, and are needed to understand the relative importance of competing
processes and the dominant physics. The simulations investigate the liquids tributyl
phosphate and propylene carbonate (dielectric constants of 8.91 and 64.9 respectively),
in a wide range of electrical conductivities and flow rates. The simulations show that
the position of the surface, expressed in units of the characteristic length rc, is
largely invariant regardless of the physical properties and flow rates of the liquids.
The surface charge falls below its equilibrium value along the transition from cone
to jet, with a deficit that increases with the ratio between the electrical relaxation
and flow residence times. Several characteristics of the cone jet are functions of the
dielectric constant, which is consistent with the importance of charge relaxation effects
(i.e. with the absence of surface charge equilibrium). The electric energy transferred
to the transition region is largely transformed into viscous and ohmic dissipation, and
conversion into kinetic energy only dominates once most of the current is fixed on
the surface.

Key words: aerosols/atomization, electrohydrodynamic effects, interfacial flows (free surface)

1. Introduction
Electrospraying is an atomization technique characterized by the strong interaction

between surface tension, electrical and hydrodynamic stresses. Typically a liquid is
fed to the tip of a tubular emitter, and an electric potential applied with respect to
a facing surface in an axisymmetric configuration. The shape adopted by the fluid
exiting the emitter electrode depends on the strength of the electrification and the
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properties and flow rate of the fluid. Multiple electrospraying modes have been studied
(Cloupeau & Prunet-Foch 1990), and several have been found useful in technological
applications such as electrospray mass spectrometry (Fenn et al. 1989), microparticle
encapsulation (Loscertales et al. 2002), nanodroplet sputtering (Borrajo-Pelaez, Saiz
& Gamero Castano 2015), space propulsion (Grustan-Gutierrez & Gamero-Castaño
2017), electrospinning (Sun et al. 2006), etc. This article focuses on the cone-jet mode
(Cloupeau & Prunet-Foch 1989; Fernández de la Mora 2007), characterized by the
formation of a steady conical region anchored at the base of the emitter, and from
which a slender steady jet is formed with a diameter orders of magnitude smaller
than that of the base of the cone. The jet is accelerated by the electric field acting
on charge migrated to its surface, and its diameter is determined by the physical
properties and flow rate of the liquid. In most applications the jet is allowed to break
by capillary instability, to produce a spray or beam of similar droplets with radii as
small as a few nanometres. Although the formation of these jets and associated sprays
do not in principle require a much larger conical meniscus, the cone-jet configuration,
with its disparity of length scales, is of interest for two reasons: first, it decouples
the diameter of the jet and associated droplets from that of the emitter, making it
possible to generate jets orders of magnitude smaller than the size of orifices that can
be practically made; and second, the much larger cone provides a distinct background
electric field for the jet, making its electrohydrodynamics largely insensitive to the
geometry and potential of the electrodes. Thus, the analysis of the cone-jet geometry
yields a solution for the electrospray current, the position of the free surface, the jet
diameter, etc. that is only a function of the physical properties of the fluid and its
flow rate.

Two distinct approaches have been used to analyse cone jets: zeroth-order models
use simplifying hypothesis and the identification of key balances to derive scaling
laws for the characteristics of cone jets; and continuum models in the form of
differential equations that need to be solved numerically. Fernández de la Mora &
Loscertales (1994) argue that the formation of the jet is caused by the departure of
the surface charge from the equilibrium, a condition that takes place when the flow
residence time becomes comparable to the electrical relaxation time. At this point
Taylor’s (1964) electrostatic solution, consisting of a cone with a 49.29◦ half-angle,
breaks down, and a different geometry such as a jet must develop. From this balance
Fernández de la Mora and Loscertales find that the diameter of the jet scales with the
characteristic length rFM = (εε0Q/K)1/3; ε0 stands for the permittivity of the vacuum,
and ε, K and Q for the dielectric constant (or relative permittivity), the electrical
conductivity and the flow rate of the liquid. Furthermore, taking into account that
in this region the net current is comparable to the surface current, and that the
surface charge is comparable to the one associated with Taylor’s solution, they find
the electrospray current to scale with (γKQ)1/2, where γ is the surface tension
of the liquid. Both scaling laws compare well with the average droplet diameter
and current measured for a variety of liquids. Alternatively, Gañán-Calvo (1997)
proposes that the surface charge is near equilibrium everywhere in the cone jet,
and finds that the diameter of the jet scales with rc = (ρε0Q3/(γK))1/6, where ρ

is the density of the liquid. This length scale is derived from a balance between
kinetic energy and electric energy in the transition region, and compares with droplet
diameter data better than the rFM scaling (Gamero-Castaño & Hruby 2002). Under
these assumptions, the dielectric constant does not play any role in the characteristics
of cone jets. Numerical solutions of continuum models have been developed by
Higuera (2003) and Herrada et al. (2012) among others. Both solve the equations
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of the leaky-dielectric model applied to cone jets (Saville 1997). Higuera simulates
a relatively small area surrounding the transition region between cone and jet, using
far-field boundary conditions derived from Taylor’s electrostatic solution (Taylor 1964).
Higuera simulates two values of the dielectric constant, 5 and 50, at flow rates that
are generally smaller than those realized experimentally. Although the simulations
are not directly validated with experiments, the reported currents compare well with
extrapolated experimental data for liquids with similar dielectric constants. Higuera
discusses that the surface charge is not in equilibrium for a dielectric constant of 50
at the lowest flow rates, but this could be an artefact of the low flow rates and may
not hold under actual electrospraying conditions. Herrada et al. include the emitter
in the simulation domain. There is not a large disparity between the diameters of the
jet and the emitter and therefore the numerical solution is a function of the geometry
and potentials of the electrodes. The position of the free surface compares well with
experimental measurements, while current values differ by 17 %.

This article solves the equations of the leaky-dielectric model in an extended area
surrounding the transition region, using Taylor’s potential as a far-field boundary
condition, and with the goal of resolving the physics of electrospraying under
operational conditions typical of experimental work. In particular, we are most
interested in examining the role played by the dielectric constant and whether the
surface charge is equilibrated on the free surface; obtaining improved expressions
for the characteristics cone jets beyond existing scaling laws; and investigating how
the electric power transferred to the cone jet is converted into kinetic energy and
dissipation.

2. Model and numerical scheme
Figure 1 shows the main features of the axisymmetric computational domain. Liquid

flows through a conical region prolonged by a jet and surrounded by a vacuum. The
cone jet is enclosed by curves Γ1, Γ

i
2 and Γ i

3 , and the surrounding vacuum by Γ1 and
the circular arc Γ o

2 . The associated surfaces of revolution are termed Σ1, Σ i
2, etc. Γ1 is

the generatrix of the free surface, {xo,Ro} and {xf ,Rf } are its upstream and downstream
end points and n and t are its normal and tangential unit vectors. The unknowns of
the model are the velocity v, pressure p and the electric potential φi fields inside
the fluid domain; the electric potential in the vacuum, φo; and the surface charge σ
and the position of the free surface, r= R(x). All fields are steady and axisymmetric.
The equations of conservation of mass and charge, the Navier–Stokes equations, and
Laplace’s equation for the electrical potential describe the electro-hydrodynamics and
geometry of the cone jet (Melcher & Taylor 1969; Saville 1997; Higuera 2003). The
following scales for length rc, electric current Ic, velocity vc, pressure pc, electric field
Ec, electric potential φc and surface charge σc are used to non-dimensionalize the
equations:

rc =

(
ρε0Q3

γK

)1/6

, Ic = (γKQ)1/2, vc =
Q

πr2
c

(2.1a−c)

pc =
γ

rc
, Ec =

Ic

πr2
c K
, φc = rcEc, σc =

Ic

2πrcvc
. (2.2a−d)

The rc scale was first proposed by Gañán-Calvo, Dávila & Barrero (1997) for the
radius of the jet, and our model employs it for both the radial and axial directions
(Gamero-Castaño 2010). The current emitted by cone jets is known to scale with Ic
(Fernández de la Mora & Loscertales 1994). All other scales follow from these two
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FIGURE 1. (Colour online) Computational domain.

choices and the goal of making the non-dimensional variables of order one in the
cone-to-jet transition region. The resulting non-dimensional equations of conservation
of mass and momentum, and Laplace’s equation inside the fluid are:

∇ · v = 0, v · ∇v =−
π2

Π
1/2
Q

∇p+
π

Π
1/2
Q Re

∇
2v, ∇2φi

= 0. (2.3a−c)

Note that the symbols used earlier for the dimensional variables denote now their
dimensionless counterparts, while dimensional variables will be henceforth topped by
a tilde. Laplace’s equation for the potential in the surrounding vacuum is:

∇
2φo
= 0 (2.4)

and the equations of conservation of charge, balance of stresses (projected on the n
and t vectors), the kinematic condition at the surface and the jump of the components
of electric field at the fluid–vacuum interface are:

d
dx
(RvSσ)= 2REi

n(1+ R′2)1/2, (2.5)

R′2 − RR′′ + 1
R(1+ R′2)3/2

= p+
2

πRe
R′R′′u
1+ R′2

+
1

2π2Π
1/2
Q

(Eo2
n − εE

i2
n )+

1

2π2Π
1/2
Q

(ε− 1)E2
t , (2.6)

t · τ · n=
2R′
(
∂v

∂r
−
∂u
∂x

)
+ (1− R′2)

(
∂u
∂r
+
∂v

∂x

)
1+ R′2

=
Re
2
σEt, (2.7)

v · n= 0, σ =
2

πΠ
1/2
Q

(Eo
n − εE

i
n), Eo

t = Ei
t = Et; (2.8a−c)

vS stands for the fluid speed at the free surface, u and v are the axial and radial
components of the velocity and τ is the viscous stress tensor. The dimensionless
equations include three independent dimensionless numbers, namely the dimensionless
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flow rate ΠQ = ρKQ/(γ εo), the group Re = (ρεoγ
2/(µ3K))1/3 referred to in the

literature as the electrohydrodynamic Reynolds number and the dielectric constant ε.
The Taylor potential

φT(x, r)=−4.2283Π 1/4
Q (x2

+ r2)1/4P1/2

(
x

√
x2 + r2

)
(2.9)

is used as boundary condition at Γ o
2 , while the upstream and downstream boundaries

of the cone jet, Γ i
2 and Γ i

3 , are modelled as equipotential surfaces. P1/2 is the
Legendre function of the first kind of degree 1/2. The Π

1/4
Q factor results from

making the Taylor potential dimensionless with the scales rc and φc. The Taylor
potential is the field outside an equipotential semi-infinite, hydrostatic cone in which
the capillary tension and the electrostatic stress fully balance each other (Taylor 1964).
The solution requires a half-angle αT of 49.29◦ for the cone, in good agreement with
observations. In experimental cone jets with jet diameters orders of magnitude smaller
than the dimensions of the electrodes, the Taylor potential is a good approximation
for an extended region far from both the base of the cone and the area where
it transitions into a jet. Furthermore its use as the far-field boundary condition
eliminates dependencies on the geometry and the potentials of the electrodes. This
agrees with the weak dependence of the electrospray current on the emitter potential
and geometry observed in experiments, as long as the diameter of the jet is orders
of magnitude smaller than that of the emitter.

A spherical velocity profile with net flow rate Q is imposed at the upstream
boundary:

v(Γ i
2)=−

1
2(1− cos αT)(x2 + r2)3/2

r. (2.10)

Finally, the initial point {xo, Ro} is modelled as a continuation of the static Taylor
cone that implicitly exists upstream of the computational domain. This fixes the radius,
the slope, the pressure (the electrostatic stress is fully balanced by capillary tension)
and the surface charge at this point:

R(xo)= xo tan αT, R′(xo)= tan αT, p(R(xo))= 0, σ (xo)=
2

πΠ
1/2
Q

dφT

dn

∣∣∣∣
R(xo)

.

(2.11a−d)
The Navier–Stokes and mass conservation equations are solved in the streamfunction/

vorticity formulation. In axisymmetric problems this reduces the system of three
coupled equations for the two velocity components and the pressure, to a system of
two coupled equation for two unknowns: the streamfunction ψ , and the vorticity ω,
ω= ∂v/∂x− ∂u/∂r. Once these two fields are calculated, the two velocity components
can be obtained from the streamfunction, u = (1/r)(∂ψ/∂r), v = −(1/r)(∂ψ/∂x)
and the pressure by integrating the momentum equation. The non-dimensional
streamfunction and vorticity equations are:

∂2ψ

∂x
+
∂2ψ

∂r2
−

1
r
∂ψ

∂r
=−rω, (2.12)

∂2ω

∂x2
+
∂

∂r

(
1
r
∂(rω)
∂r

)
=
Π

1/2
Q Re
π

(
u
∂ω

∂x
+ v

∂ω

∂r
−
v

r
ω

)
, (2.13)
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with boundary conditions:

ψ(x, 0)= 0, ψ(R(x))=
1
2
, ψ(Γ i

2)=

∫ x

xo

SU(x)(uS′U − v) dx, ψ(Γ i
3)=

1
2

(
r

R(xf )

)2

(2.14a−d)

ω(x, 0)= 0, ω(Γ1)=
2R′′

R2(1+ R′2)
dψ
dn
−

Re
2
σEt, ω(Γ i

2)= 0,
∂ω

∂x

∣∣∣∣
Γ i

3

= 0.

(2.15a−d)
The boundary conditions are associated with the imposed upstream velocity profile

(r = SU(x) defines the curve Γ i
2 ), the kinematic condition at the surface, the axial

symmetry of the problem and soft exit conditions. Equation (2.15b) is derived from
(2.7).

Finally, the Navier–Stokes equation is integrated along Γ1 to obtain the pressure at
the surface:

ps(x)= ps(xo)−
Π

1/2
Q

2π2
(v2

s (x)− v
2
s (xo))−

1
πRe

∫ x

xo

(
ω

R
+

1+ R′2

R
dω
dn

)
dx. (2.16)

Figure 2 summarizes the algorithm used to solve the system of equations. We
combine the equations into three groups referred to as the fluid problem, (2.12),
(2.13) and boundary conditions (2.14)–(2.15); the electric problem, (2.3c), (2.4), (2.5)
and boundary conditions (2.8b), (2.9), (2.12) and equipotential Γ i

2 and Γ i
3 surfaces;

and the Young–Laplace equation (2.6) with initial conditions (2.11a) and (2.11b).
The fluid and electric problems can be solved for a given surface profile Rk(x). The
equations are nonlinear and coupled through the σEt and vS terms in (2.15b) and
(2.5), and an iterative scheme is used: we assume a starting surface velocity and solve
the electric problem for the given Rk(x); the resulting σEt stress is used to solve the
fluid problem; the surface velocity is then updated. These steps are repeated until
the integrals of the square of the residue of (2.12) and (2.13) become smaller than a
desired value. Upon convergence of this inner loop, the calculated velocity, pressure
and electric fields, and the assumed surface profile Rk(x) will not in general fulfil the
Young–Laplace equation, and the least-squares weighted residual method is used to
generate an improved surface profile Rk+1(x). That is, we minimize the integral:∫

Γ1

[
R′2 − RR′′ + 1
R(1+ R′2)3/2

− RHSk(x)
]2

dx, (2.17)

RHSk(x)= p+
2

πRe
R′R′′u
1+ R′2

+
1

2π2Π
1/2
Q

(Eo2
n − εE

i2
n )+

1

2π2Π
1/2
Q

(ε− 1)E2
t , (2.18)

where (2.18) is evaluated with the solution from iteration k. The weighted residue
scheme is implemented with a surface profile discretized into n nodes, Rj, and the
integral written as a function of the vector X = {R2, R3, . . . , Rn} for given values of
RHSk(x) and the initial conditions R1, R′1. Differentiating with respect to R2, . . . , Rn
yields a system of n− 1 nonlinear equations Sj(X), and the improved profile Rk+1 is
calculated by taking a small step δ in the direction of the first iteration in a Newton–
Raphson scheme:

Xk+1 =Xk − [J−1
· S(X)]δ, J=∇S(Xk). (2.19a,b)
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k = 0, m = 0
starting values

Rk, √S

Solve electric
problem

find ßE†,m

Find new Rk by
minimizing (17)

use latest √S, m = 0

Converged
solution

p(x), √(x), ƒi(x),
ƒo(x), ß(x)

Solve fluid
problem
find √S,m

Use pm, √m, ƒm to
compute (18)

Test
(17) < Ó3

No

Yes

NoYes

Test

Residue (13)2 < Ó2

Residue (12)2 < Ó1

m = m + 1k = k + 1

FIGURE 2. Algorithm used for solving the system of equations.

The fluid and electric problems are computed again with the updated surface profile
Rk+1, and the steps are repeated until (2.17) is smaller than a desired value.

Equations (2.3c) and (2.4) for the electric potentials are solved using the boundary
element method (BEM) with linear elements (Bakr 1986). The resulting system
of linear algebraic equations is supplemented with those from the discretization of
(2.5) using centred finite differences. The electric problem is then solved at once by
direct matrix inversion. The partial differential equations (PDEs) of the fluid problem,
(2.12) and (2.13), are discretized using centred finite differences in an orthogonal grid
(Fletcher 1988). The grid is built on a generalized curvilinear coordinate {ξ, η} system
such that the free surface and the axis are lines of constant η, while Γ i

2 and Γ i
3 are

lines of constant ξ . The algebraic equations are linearized, and solved iteratively by
direct matrix inversion. Figure 3(a) shows a section of the orthogonal grid. Because
the fluid domain transitions from a two-dimensional cone to a slender jet, we employ
three successive grids with decreasing numbers of nodes in the η direction: the grid
placed in the cone typically has 20 nodes in the η direction, the central grid has 10
nodes and the grid placed in the jet has 4 nodes. The central grid is centred at the
maximum of R′′(x) and has uniform spacing in the axial direction, while the spacing
in the cone and jet grids is non-uniform. The streamfunction, vorticity and their
derivatives in the ξ direction are required to be continuous at the interface between
adjacent grids. Figure 3(b) shows a typical discretization of the boundaries for the
boundary element method. 426, 128, 34 and 4 nodes are inserted in Γ1, Γ o

2 , Γ i
2 and

Γ i
3 respectively. The nodes are distributed uniformly in Γ o

2 , Γ i
2 and Γ i

3 , and have a
variable density in Γ1: along the surface of the central grid, where the changes in the
electric field and surface charge are most intense, we place one BEM node at the
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Orthogonal grid

BEM nodes
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FIGURE 3. (a) Detail of the orthogonal grid employed in the solution of the
streamfunction and vorticity PDEs; (b) BEM discretization; (c) detail of the BEM nodes
and the orthogonal grid in the interface between central and jet grids.

position of each grid node, plus five equally spaced nodes in between (i.e. there are
six BEM elements between consecutive central grid nodes); upstream and downstream
of the central grid we place one BEM node at the position of each grid node, and
insert additional nodes near the ends of the central grid so that the length of the
BEM elements changes smoothly (see figure 3c).

3. Results and discussion

The electrospraying conditions investigated include two dielectric constants, 8.91
and 64.9; two values of the Reynolds number for each dielectric constant (Re= 0.29
and 1.12 for ε = 8.91, and Re = 0.40 and 0.74 for ε = 64.9); and a range of flow
rates for each Reynolds number. Gamero-Castaño (2010) has characterized these
electrospraying conditions with solutions of the liquids tributyl phosphate (ε = 8.91)
and propylene carbonate (ε= 64.9), and these measurements will be used to validate
the numerical results. The flow rates simulated coincide with the ranges measured
except for tributyl phosphate at Re = 1.12, for which the simulations extend the
measurements to much lower and higher flow rates (the ratio between the highest and
lowest flow rate is 350). In particular, the lowest flow rate for this solution is clearly
outside the stable range observed in our experiments, and the numerical solution may
correspond to a linearly unstable base state (Gañán-Calvo et al. 2018). A circular arc
Γ o

2 with a radius of 144.0 is employed in the simulations of tributyl phosphate, while
the radius is 200.5 for propylene carbonate.

Figures 4(a) and 4(b) show the electric current emitted by the electrospray
as a function of the dimensionless flow rate, both in dimensionless form and
in nano-amperes. Squares and circles represent experimental and numerical data
respectively. The lowest dimensionless flow rates in the experimental series are near
the minimum values at which the cone jets were stable. The current in nano-amperes
follows the linear law Ĩ(nA) ∼= aΠ 1/2

Q + b, which in dimensionless form translates to
I∼= (1/Io)(a+ bΠ−1/2

Q ), Io= (ε0γ
2/ρ)1/2. The simulations yield a negative interception

b with the ordinate, −1.96 nA for tributyl phosphate and −19.7 nA for propylene
carbonate. Thus the dimensionless current asymptotes to a constant value at large
ΠQ, and declines at the lowest ΠQ values. The current has a negligible dependence
on the Reynolds number, while is a stronger function of the dielectric constant: the
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FIGURE 4. (Colour online) Dimensionless current I and current in nano-amperes as a
function of the dimensionless flow rate parameter ΠQ, for (a) tributyl phosphate, ε= 8.91;
and (b) propylene carbonate, ε= 64.9. (c) Numerical values plotted in the form suggested
by Gañán-Calvo et al. (2018), Ĩ/Io = 2.6Π 1/2

Q .

asymptotic value of I at large flow rates is 2.5 for tributyl phosphate and 2.1 for
propylene carbonate, a difference that is only due to the different dielectric constants.
The numerical results compare well with the measurements: they coincide at flow rates
near the minimum, and the numerical values become slightly larger at increasing flow
rate. This trend occurs in all cases, and is likely due to the decreasing electrification
of the experimental cone jets at increasing flow rate, compared to the conditions
in the simulations: in the experiments the emitter potential was kept constant at
all flow rates, while in the model the Taylor potential varies as Π 1/4

Q . The reduced
electrification in the experiments manifests as a progressive enlargement of the liquid
meniscus, which evolves into an expanding acorn-like shape ending in a Taylor cone
at increasing flow rate. Although in experimental cone jets the current is a weak
function of the emitter potential (we are unaware of any work quantifying this), it
does increase with it, which qualitatively coincides with the trend in figure 4(a,b).
Finally, figure 4(c) plots the numerical results together, following Gañán-Calvo’s
universal scaling law Ĩ/Io = αΠ

1/2
Q . Note that the linear law used in figure 4(a,b)

is similar to Gañán-Calvo’s, except for the inclusion of an intercept with the y-axis
and a slope that are functions of the dielectric constant. Gañán-Calvo et al. (2018)
show that a massive number of experimental data for a large number of liquids,
covering a remarkable ΠQ range of over five orders of magnitude, distribute closely
to the universal scaling law when the constant α has a value of 2.6. Although the
ability of Gañán-Calvo’s law to approximate the data across such a broad range of
dimensionless flow rates is remarkable, it is also apparent in figure 7 of Gañán-Calvo
et al. (2018), as well as in figure 4(c) of this article, that the data for a number of
liquids separate to some extent from the universal law. For example, our results for
tributyl phosphate at the largest flow rates coincide with Gañán-Calvo’s law (compare
the asymptotic value of 2.5 for I, with the slope of 2.6 found by Gañán-Calvo et al.),
while the data for propylene carbonate fall below. Our numerical results suggest that
the Ĩ/Io = 2.6Π 1/2

Q law neglects dependencies on the dielectric constant, and that
its accuracy should increase for decreasing ε and increasing ΠQ, i.e. as the surface
charge is closer to equilibrium (to be discussed later in the article). This is to be
expected because Gañán-Calvo’s law is derived under the assumption of surface
charge equilibrium.
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FIGURE 5. (Colour online) Position of the surface and evolution of the surface and bulk
currents in the cone-to-jet transition for: (a) tributyl phosphate at fixed ΠQ and two Re;
(b) propylene carbonate at fixed ΠQ and two Re; (c) tributyl phosphate at fixed Re and
two ΠQ; (d) propylene carbonate at fixed Re and two ΠQ; and (e) tributyl phosphate and
propylene carbonate at fixed ΠQ.

Figure 5(a–e) shows the position of the surface, and the evolution of the bulk and
surface currents in the axial direction, for a variety of electrospraying conditions. The
origin of the abscissa is set at the maximum of R′′(x), xR′′max

. The surface and bulk
currents, associated with convection of surface charge and electric conduction in the
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bulk, are given by:

ĨS(x)= 2πR̃(x)ṽS(x)σ̃ (x), ĨB(x)=
∫ R(x)

0
2πr̃KẼ

i
· ∇Γ

dr̃
∂Γ /∂ x̃

. (3.1a,b)

Γ is any curve inside the cone jet that starts at the axis and ends at R(x), e.g. in
the calculations we use gridlines of constant ξ . The total current, = IS(x) + IB(x),
is constant due to conservation of charge. Figure 5(a,b) shows the effect of varying
Re at constant ΠQ and ε; ΠQ is varied at constant ε and Re in figure 5(c,d); and
figure 5(e) illustrates the dependency on ε (ΠQ is fixed while the Reynolds number
has a small effect). Charge is injected on the surface as the cone transitions into the
jet, and the surface current progressively increases at the expense of the bulk current.
The cross-over point between the surface and bulk currents is located downstream of
xR′′max

. The total current is a weak function of both Re and ΠQ for tributyl phosphate,
depends slightly on these parameters in propylene carbonate and displays a larger
variation with the dielectric constant. The profiles of the cone jets are surprisingly
similar despite the wide ranges of ΠQ, Re and ε. The overlap is unexpected because
of the presence of these parameters in the model equations, and supports the choice
of rc as the characteristic length scale in both the radial and axial directions. Note
also that the transition from cone to jet is smoother, i.e. the surface profile has larger
radii of curvature in an interval around xR′′max

, at both increasing dimensionless flow
rate and decreasing dielectric constant. The overlap of the surface profiles when they
are scaled with rc was first discovered by Gamero-Castaño (2010) on the bases of
experimental measurements of the energy deficit of electrosprayed droplets; Gamero
confirmed the overlap with numerical solutions of profiles computed by Higuera
(2003). Gañán-Calvo et al. (2018) have also confirmed the overlap using numerical
simulations.

Figure 6(a,b) shows the position of the surface and its second derivative, the bulk
and surface currents, the ratio between the surface current and the equilibrium surface
current and the different stresses in the Young–Laplace equation, for the two dielectric
constants and fixed dimensionless flow rate, ΠQ = 87.4. The Reynolds numbers are
not identical, but differences associated with this parameter are small. The equilibrium
surface current, Ĩeq= 2πε0R̃ṽsẼo

n, is the limiting value associated with a distribution of
charge that fully shields the bulk from the external electric field, i.e. that would make
Ẽi

n= 0 or equivalently σ̃ = ε0Ẽo
n. Using this definition and the surface convection time

dt =
√

1+ R′2(dx/vS), the equation of conservation of charge (2.5) can be written in
the form:

εε0/K
rc/vc

dIS

dt
=

ε

πΠ
1/2
Q

dIS

dt
= Ieq − IS. (3.2)

As a fluid particle moves down the surface the surface current approaches the
equilibrium value exponentially, with a time constant given by the ratio between the
electric relaxation time εε0/K and the flow residence time rc/vc. Fernández de la
Mora & Loscertales (1994) used this equation to explain the breakdown of Taylor’s
solution when applied to an experimental cone jet: they argued that far upstream
from the vertex the electric relaxation time is much smaller than the residence time,
the surface current adopts its equilibrium value and the electro-hydrostatic Taylor
cone solution is valid. However as the fluid approaches the vertex both times become
comparable, IS and Ieq differ and a significant electric field develops inside the liquid
which, by injecting charge onto the surface, attempts to restore equilibrium. On the
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FIGURE 6. (Colour online) Position of the surface and its second derivative, bulk and
surface current, ratio between the surface current and its equilibrium value and normal
stresses for (a) propylene carbonate, ΠQ = 87.4, Re = 0.40, and (b) tributyl phosphate,
ΠQ= 87.4, Re= 0.29. Equation (2.6) reads τγ = τP+ τµ+ τEn+ τEt in terms of the labels.

other hand, Gañán-Calvo (1997, 2004) has argued that the position of the free surface
is such that IS and Ieq are approximately equal everywhere, i.e. that the surface charge
is always relaxed or in equilibrium. More recently Gañán-Calvo, Rebollo-Muñoz &
Montanero (2013) have proposed that for liquids with εRe > 1, which is the case
in this article, the surface charge is not in equilibrium near the minimum flow rate.
Figure 6(a,b) shows that the ratio IS/Ieq departs significantly from one in the region
where the cone transitions into a jet, the deficit being larger for the larger dielectric
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constant: the minimum value of IS/Ieq is 0.62 for ε= 64.9, and 0.92 for ε= 8.91. This
is to be expected since at constant ΠQ and almost constant geometry (see figure 5e),
the ratio between the electric relaxation and flow residence times is proportional to the
dielectric constant. Figures 6(a) and 6(b) also show that, sufficiently upstream of the
vertex where the surface charge is in equilibrium (IS/Ieq

∼= 1), the electrostatic stress
component τEn fully balances the capillary tension τγ in agreement with Taylor’s
solution. As IS/Ieq decreases the stress component τEt, absent in Taylor’s equipotential
cone, becomes important in the balance of normal stresses, and the surface current
increases. the value of τEt is proportional to the dielectric constant, and its high value
for propylene carbonate makes τEt larger than τEn in the transition region of this
liquid; furthermore, to balance this large τEt stress pulling the surface, the pressure
becomes significant and negative. Downstream, as the IS/Ieq ratio returns to one
(i.e. the surface charge approaches equilibrium), the surface current asymptotes to the
total current, the electric stress asymptotes to a constant or slowly varying value and
the balance of stresses is fulfilled by an increasing positive fluid pressure. The normal
component of the viscous stress is negligible everywhere. The higher values of R′′(x)
for propylene carbonate indicate that the radius of curvature in an interval a few units
around xR′′max

is smaller than for tributyl phosphate, i.e. at constant dimensionless flow
rate the transition from cone to jet in propylene carbonate is sharper than in tributyl
phosphate.

Figure 7(a,b) shows IS/Ieq along the axis at several flow rates, for propylene
carbonate (Re = 0.397) and tributyl phosphate (Re = 1.12) respectively. Figure 7(c)
shows the minimum value of IS/Ieq as a function of ε/(πΠ 1/2

Q ), for all solutions and
flow rates simulated. All flow rates in these figures were reproduced in experiments
except for the tributyl phosphate solution with Re = 1.12, which was characterized
in the range 6.23 6ΠQ 6 35.1 (Gamero-Castaño 2010). The lowest flow rate for this
solution, ΠQ = 1, is significantly smaller than the minimum at which it was stable.
Consistent with the ε/(πΠ

1/2
Q ) coefficient in (3.2), the deficit of IS/Ieq from one

accentuates at increasing dielectric constant and decreasing flow rate. The less polar
fluid, tributyl phosphate, exhibits the largest minimum values of IS/Ieq: 0.965 for
Re = 1.12, ΠQ = 316.2; and 0.962 for Re = 0.290, ΠQ = 240.7. At these conditions,
the surface charge is very near its equilibrium value everywhere along the cone-jet’s
surface. On the other hand propylene carbonate, with its large dielectric constant,
exhibits the states observed in experiments with smallest values of IS/Ieq: 0.421 for
Re= 0.74, ΠQ= 20.0; and 0.560 for Re= 0.397, ΠQ= 59.3. The surface charge along
the transition region under these conditions is far from equilibrium. Between these
two extreme cases, the shortfall of the surface charge from equilibrium is primarily
governed by the value of ε/(πΠ 1/2

Q ).
Figure 8 shows the radius of the cone jet at two significant axial positions: at the

current cross-over, RX; and at the point where the ratio IS/Ieq falls by 10 % of its
maximum drop, RB. The latter is a reference point for the breakdown of Taylor’s
solution. RX depends very slightly on the dielectric constant, while RB increases
moderately with ε. Both radii are insensitive to the Reynolds number. They are
also insensitive to variations of the flow rate in the range in which the cone jet is
stable, while both radii increase at decreasing ΠQ for the two lowest flow rates of
the ε = 8.91, Re = 1.12 case. These two lower flow rates are below the minimum
observed in experiments. Thus, the scale rc is not only the correct characteristic
radial length throughout the transition region, but when the radius of the surface is
expressed in rc units, its value at significant axial points depends very slightly on the
dimensionless numbers parametrizing the solution. Note that, although RB is defined
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FIGURE 7. (Colour online) Ratio between the surface current and its equilibrium value
as a function of axial position and at several flow rates for (a) propylene carbonate and
Re=0.397, and (b) tributyl phosphate and Re=1.12. (c) Minimum value of the IS/Ieq ratio
versus ε/(πΠ 1/2

Q ), for tributyl phosphate (ε= 8.91) and propylene carbonate (ε= 64.9).
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FIGURE 8. (Colour online) Radius of the cone jet at the current cross-over, and typical
value in the area where surface charge equilibrium breaks down, as a function of the
dimensionless flow rate.

at the onset of charge relaxation effects, the radius of the surface in this region scales
with rc instead of rFM. This suggests that the coupling between the different variables
throughout the transition region may reduce the validity of the local balance used by
Fernández de la Mora & Loscertales (1994) to derive the characteristic length rFM.

Figure 9 shows the axial extent L of the transition region as a function of the
dimensionless flow rate. L is defined as the length of the interval where the surface
current changes from 5 % to 95 % of its final value. While the dependency on the
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FIGURE 9. (Colour online) Length of the transition region as a function of the
dimensionless flow rate.

Reynolds number is insignificant, the dielectric constant has a strong effect on the
value of L. At constant ΠQ and increasing ε, the larger ratio between the electric
relaxation and the flow residence times slows down the merging of the surface current
with its equilibrium value, and a longer transition region is needed to equilibrate the
surface charge. L is a relatively weak function of ΠQ: a power fit yields L ∼ Π 0.09

Q

for propylene carbonate, and L ∼ Π 0.17
Q for tributyl phosphate. This indicates that rc

is a good scale for the axial extent L of the transition region and, being also the
characteristic length in the radial direction, the shape of the transition region scaled
with rc, is relatively invariant to changes of ΠQ and Re. Since these dimensionless
numbers are present in the model equations and parametrize the solutions, the near
invariant shape of the transition region is a surprising fact. The large values that
ΠQ adopts in typical electrospraying conditions may contribute to this unexpected
property.

Figure 10(a,b) shows the maximum values of the normal and tangential components
of the outer electric field at the surface of the cone jet. The maxima are located
slightly downstream of the current cross-over. The electric field decreases slightly at
increasing dielectric constant, and is a very weak function of the Reynolds number.
A power fit of the tangential component yields Et,max∼Π

0.06
Q for propylene carbonate,

and Et,max ∼ Π
0.09
Q for tributyl phosphate. This weak dependence is to be expected

from the definition of the Ec scale, which is based on the characteristic tangential
component in the transition region:

Ẽt,max
∼=

Ĩ

2πR̃2
XK
=

I
2R2

X

Ic

πr2
c K
=

I
2R2

X
EC (3.3)

since both I and RX are weak functions of the dimensionless flow rate, Et,max must
also be a weak function of ΠQ. The normal component scales as Eo

n,max ∼ Π
0.48
Q for

propylene carbonate and Eo
n,max∼Π

0.44
Q for tributyl phosphate, i.e. nearly as the square

root of the dimensionless flow rate. This dependence is also to be expected because
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FIGURE 10. (Colour online) Maximum values of the normal (a) and tangential (b)
components of the electric field at the surface of the cone jet, on the vacuum side.

at the current cross-over the surface current equals the bulk conduction current, and
the surface charge is of the order of ε0Eo

n:

Ẽo
n,max
∼=
σ̃

ε0

∼=
2Ĩ

2πR̃X ṽSε0
=

ĨR̃X

ε0Q
=πIRXECΠ

1/2
Q . (3.4)

Gañán-Calvo (2004) originally put forward the same arguments to establish the scaling
of Ẽt,max and Ẽo

n,max. On the other hand, he argues for a scaling for the axial length,
L̃G−C ∼ γ /(ε0Ẽ2

t )∼ (ε
2
0γ /ρK2)1/3ΠQ, which is different from the scaling observed in

figure 9, L̃= f (ε)(ε2
0γ /ρK2)1/3Π

(1/2)+β
Q , with β equal to 0.09 and 0.17 for propylene

carbonate and tributyl phosphate respectively, i.e. values significantly smaller than the
1/2 required to match Gañán-Calvo’s scaling.

The voltage source connected to the emitter injects electric power in the cone jet,
which is converted into jet kinetic energy, ohmic and viscous dissipation, surface
energy, etc. This balance is important to understanding the physics of electrospraying,
e.g. Gañán-Calvo & Montanero (2009) use a simplified energy balance to derive the
rc scale (the authors assume that the electric power injected within the transition
region is mostly transformed into jet kinetic power). The following balance can be
derived by integrating the equation of mechanical energy over a volume Πx like the
one in figure 1 bounded by surfaces Σ i

2, Σ1, and a surface Σx that intersects Σ1
downstream at {x, r= R(x)}:

Ĩφ̃S(xo)−

(
ĨSφ̃S(x)+

∫
Σx

φ̃i dĨC

)
= P̃Ω + P̃µ +

(∫
Σx

ρṽ2

2
ṽ · dÃ−

∫
Σ i

2

ρṽ2

2
ṽ · dÃ

)

+

(∫
Σx

p̃ṽ · dÃ−
∫
Σ i

2

p̃ṽ · dÃ

)
+

(∫
Σ i

2

(τ̃ · ṽ) · dÃ−
∫
Σx

(τ̃ · ṽ) · dÃ

)
. (3.5)

The left-hand side is the electric power supplied to Πx. When Σx is an equipotential
surface (e.g. a plane perpendicular to the axis placed sufficiently downstream), this
term adopts the more obvious form Ĩ[φ̃S(xo) − φ̃S(x)]. The first and second terms
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FIGURE 11. (Colour online) Macroscopic energy balance in the cone jet up to a given
axial position. In terms of the labels, equation (3.5) reads I1φ=PΩ +Pµ+Pv +Pp+Pτ .
Panels (a) and (b) are for tributyl phosphate at Re = 0.29 and propylene carbonate at
Re= 0.397, at fixed flow rate ΠQ = 87.4.

on the right-hand side are the ohmic, P̃Ω =
∫
Πx
(Ẽ · KẼ) dṼ , and viscous dissipations,

P̃µ =
∫
Πx
(τ̃ : ∇ṽ) dṼ . The kinetic energy density, pressure and viscous stress are

negligible far upstream at Γ i
2 , and can be omitted. Figure 11 shows the electric

power in ICφc units as a function of the axial coordinate, and the terms on the
right-hand side divided by the electric power. The electrospraying parameters are the
same as in figures 6 and 5(e). The integrals in (3.5) are computed on Σx surfaces
defined by lines of constant ξ , see figure 3. Early in the transition region, e.g. at
x− xR′′max

= 0, the electric power is mostly converted into ohmic dissipation, 94 % for
ε= 8.91 and 89 % for ε= 64.9 (we will continue listing values for the two dielectric
constant cases in this order), and viscous dissipation, 12 % and 29 %; the conversion
into jet kinetic energy is small, 1 % and 5 %. The sum of the three terms exceed
100 % because the viscous stress flow power at this point is a relatively large and
negative, −9 % and −19 % (the viscous stress is doing work on the fluid), while the
values of the pressure flow power are 1 % and −4 %. Dissipation still accounts for
most of the electric power at the current cross-over (x − xR′′max

= 6.2 and 6.1), with
combined values of 92 % and 91 %; at this point the values of jet kinetic power are
17 % and 33 %. As the fluid moves further downstream and the current increasingly
becomes surface current, the conversion of electric energy into kinetic energy is more
efficient. For example, at the point where the surface current reaches 95 % of its
final value, x− xR′′max

= 31.8 and 68.1, the conversion into kinetic energy is 61 % and
70 %, while the combined dissipation is 36 % and 27 % (the balance is completed
by a small positive value of the pressure flow power). The profiles of the jet kinetic
power are different for the two liquids, having an earlier and steeper increase for
propylene carbonate associated with the simultaneous negative pressure flow power: as
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FIGURE 12. (Colour online) Ratio between jet kinetic and electric powers, computed in a
macroscopic energy balance extended up to the current cross-over axial location, the point
where the surface current reaches 95 % of its final value, and 100 units downstream from
xR′′max

.

seen in figure 6, propylene carbonate exhibits a large negative pressure peak around
the current cross-over, induced by the large (ε − 1)ε0Ẽ2

t normal pulling stress. This
pressure profile accelerates the fluid up to the pressure minimum, and slows it down
thereafter. The earlier rise of the jet kinetic power requires, from mass conservation,
a smaller cone-jet radius in the initial section of the transition region. This is indeed
observed in figure 5(e), where the surface of propylene carbonate falls below that
of tributyl phosphate, and exhibits a sharper transition from cone to jet; the sharper
transition, or smaller radii of curvature, is more evidently inferred from the higher
values of R′′(x) in figure 6(a). A similar sharper transition occurs in figure 5(c,d) at
decreasing flow rate for fixed dielectric constant. The correlation of the sharpness of
the transition with flow rate and dielectric constant is due to the varying intensity
of charge relaxation, as given by the ratio ε/Π

1/2
Q in (3.2). When ε/Π

1/2
Q is large,

the surface current can be significantly smaller than its equilibrium value, and the
surface will remain closer to the ideal conical shape farther towards the axis; on the
other hand when ε/Π

1/2
Q is small, the surface charge approaches equilibrium earlier

in the transition region, which is only possible if the surface separates upward from
the electrostatic conical shape.

Figure 12 shows the ratio between jet kinetic and electric powers as a function of
the dimensionless flow rate, at three axial locations: the current cross-over, the point
where the surface current is 95 % of its final value and 100 units downstream from
xR′′max

. At the current cross-over, i.e. at approximately the midsection of the transition
region, as little as 9 % of the electric power is converted into jet kinetic power for
tributyl phosphate near the minimum flow rate, and 26 % at the largest flow rate
investigated; the fraction is larger for propylene carbonate, approximately 35 %, due
to the acceleration of the flow by the negative pressure peak. Towards the end of
the transition region the transitory effect of the negative pressure profile of propylene
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carbonate has disappeared and the conversion, with values between 54 % and 65 %
depending on the flow rate, is similar for both liquids. The balance is dissipated. The
power dissipated increases very slightly further downstream (the bulk current is small
while viscous dissipation is only significant early in the transition region around the
maximum of R′′(x)), most of the electric power injected in this downstream region is
converted into kinetic energy, and the ratio increases monotonically. The conversion
into kinetic energy never reaches 100 % due to the fraction of the electrical power
that is dissipated mostly within the transition region. As mentioned above, in order to
derive the rc scale Gañán-Calvo & Montanero (2009) assume that the electric power
injected within the transition region is mostly transformed into jet kinetic power.
Although it is not clear at which point of the transition region this balance should
be approximately fulfilled, we think that the current cross-over point is the correct
location because the derivation also assumes a total current that is of the order of
the conduction current. Although the conversion into kinetic energy at the cross-over
is relatively small, especially for tributyl phosphate, we think that the argument by
Gañán-Calvo and Montanero remains valid because the jet’s kinetic power is in any
case of the order of the electric power.

4. Conclusions
We have solved numerically the leaky-dielectric model applied to cone jets, for

operational parameters typical of experimental conditions. The main novelty compared
to previous work is the application of the least-squared weighted residual method
to the Young–Laplace equation, in order to find the position of the free surface.
The numerical solution is validated with measurements of the electric current. The
model yields a universal solution that only depends on the physical properties and
the flow rate of the liquid. This is made possible by employing Taylor’s electric
potential as a far-field boundary condition. The solution in dimensionless form is
a function of three dimensionless numbers: the dimensionless flow rate ΠQ, the
electrohydrodynamic Reynolds number Re and the dielectric constant ε.

The current emitted by the electrospray follows the linear law Ĩ=a(ρKQ/εεo)
1/2
+b,

where a and b are functions of the dielectric constant. For the two liquids studied,
tributyl phosphate (ε = 8.91) and propylene carbonate (ε = 64.9), b is negative and
decreases with increasing dielectric constant. The position of the surface in the
transition region scales well with the characteristic length rc, both in the radial and
axial direction. Thus the surface, when plotted in rc units, remains largely unchanged
regardless of the values of ΠQ, Re and ε. The diameter of the jet at the current
cross-over point is always near 0.67rc, for all simulated values of ΠQ, Re and ε.
The maximum value of the normal component of the electric field on the outer side
of the surface scales with (γ 5/2/(ε0ρK1/2Q3/2

))1/3Π
1/2
Q , while the maximum value

of the tangential component scales with (γ 5/2/(ε0ρK1/2Q3/2
))1/3. Both take place

slightly downstream of the cross-over between the surface and bulk currents. A large
fraction of the electric energy transferred within the transition region is dissipated, and
conversion into kinetic energy only exceeds dissipation as most of the electric current
becomes fixed on the surface (i.e. within the transition region but well downstream
of the current cross-over, e.g. x− xR′′max

= 19.42 and 20.45 in figure 11).
The surface charge drops below its equilibrium value in the transition region. This

is directly demonstrated by the IS/Ieq profiles in figure 7. The deficit of the surface
current with respect to its equilibrium value increases with the ratio ε/(πΠ

1/2
Q ),

i.e. with the ratio between the electric relaxation and the flow residence times. Three
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characteristics of the cone jet are unequivocal functions of the dielectric constant:
(i) the axial length needed to equilibrate the surface current increases with the
dielectric constant (on the other hand, the dielectric constant plays a very minor
role, if any at all, in the scaling of the radial length); (ii) the asymptotic value of the
current at large flow rate (i.e. the slope in the linear law for Ĩ) decreases at increasing
dielectric constant; and (iii) the radius of curvature of the surface in the transition
from cone to jet decreases at increasing dielectric constant. Since the dielectric
constant appears in the model equations as a factor multiplying the electric field
inside the liquid, specifically its component normal to the surface, any dependency
on ε is indicative of the importance of the term εEi

n in (2.8b), and therefore of the
importance of charge relaxation effects.
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