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Motivated by understanding the liquid core dynamics of tidally deformed planets and
moons, we present a study of incompressible flow driven by latitudinal libration within
rigid triaxial ellipsoids. We first derive a laminar solution for the inviscid equations
of motion under the assumption of uniform vorticity flow. This solution exhibits a
resonance if the libration frequency matches the frequency of the spin-over inertial
mode. Furthermore, we extend our model by introducing a reduced model of the effect
of viscous Ekman layers in the limit of low Ekman number (Noir & Cébron, J. Fluid
Mech., vol. 737, 2013, pp. 412–439). This theoretical approach is consistent with the
results of Chan et al. (Phys. Earth Planet. Inter., vol. 187, 2011, pp. 404–415) and
Zhang et al. (J. Fluid Mech., vol. 692, 2012, pp. 420–445) for spheroidal geometries.
Our results are validated against systematic three-dimensional numerical simulations.
In the second part of the paper, we present the first linear stability analysis of this
uniform vorticity flow. To this end, we adopt different methods (Lifschitz & Hameiri,
Phys. Fluids A, vol. 3, 1991, p. 2644; Gledzer & Ponomarev, Acad. Sci., USSR, Izv.,
Atmos. Ocean. Phys., vol. 13, 1977, pp. 565–569) that allow us to deduce upper and
lower bounds for the growth rate of an instability. Our analysis shows that the uniform
vorticity base flow is prone to inertial instabilities caused by a parametric resonance
mechanism. This is confirmed by a set of direct numerical simulations. Applying our
results to planetary settings, we find that neither a spin-over resonance nor an inertial
instability can exist within the liquid core of the Moon, Io and Mercury.

Key words: parametric instability, rotating flows, waves in rotating fluids

1. Introduction

As a consequence of gravitational coupling with their orbital partners, the rotation
of planets and moons is not constant in time but undergoes periodic variations. One
can identify different classes of modulation of the rotational dynamics. Precession
and nutation refer to the effect whereby the rotation axis of a body undergoes
gyroscopic-like motions. Libration refers to an oscillation of the figure axes of
an object with respect to a fixed, mean rotation axis (see figure 1). We usually
distinguish longitudinal and latitudinal librations, which are east–west and north–south

† Email address for correspondence: stijn.vantieghem@erdw.ethz.ch

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:stijn.vantieghem@erdw.ethz.ch
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2015.130&domain=pdf
https://doi.org/10.1017/jfm.2015.130


194 S. Vantieghem, D. Cébron and J. Noir

Mean rotation axis

Instantaneous
north pole

FIGURE 1. (Colour online) Illustrative sketch of latitudinal and longitudinal librations,
denoted respectively by angles θ(t) and φ(t).

oscillations, respectively. Due to the combination of long-period gravitational
interaction and rotation, the shape of synchronous satellites in hydrostatic equilibrium
can be represented by a triaxial ellipsoid. In the present paper, we will consider
the case of a rigid mantle with a permanent tidal deformation. Figure 2 illustrates
the physical mechanisms that give rise to librations. Longitudinal librations originate
from the fact that, according to Kepler’s laws, the orbital speed of a satellite is not
constant along its (elliptical) orbit. Together with the body’s tidal deformation, this
results in time-dependent gravitational torques. Latitudinal librations, on the other
hand, are related to gravitational torques due to the non-alignment of the orbital
plane of a satellite and the ecliptic of the satellite–host system.

As early as the end of the nineteenth century, scientists proposed that observations
of these phenomena could be used to infer the internal structure of planets and moons
(Hopkins 1839; Thompson 1895; Poincaré 1910). More recently, observations of the
precessional motion of the Earth’s moon have revealed large dissipation that could be
associated with a turbulent liquid core whose size is approximately 350 km (Yoder
& Hutchison 1981; Williams et al. 2001). Furthermore, Earth-based measurements
of the longitudinal librations of Mercury strongly suggest that it possesses a liquid
core (Margot et al. 2007). Since the original suggestions of Larmor (1919), it is
believed that planetary magnetic fields originate from a dynamo process in electrically
conductive liquid internal layers. For the Earth, it is well accepted that the dynamo is
driven by thermochemical convection. However, most terrestrial-like planets that had
or still have a self-sustained magnetic field, such as Mercury, the Moon in its early
stage, and Jupiter’s moon Ganymede, are unlikely to be in a convective state. Flows
driven by orbital perturbations may thus provide an alternative dynamo generation
mechanism (Bullard 1949; Malkus 1968; Kerswell & Malkus 1998; Dwyer, Stevenson
& Nimmo 2011; Le Bars et al. 2011).

Quite a few theoretical, experimental and numerical investigations have addressed
the dynamic response of liquid layers resulting from orbital perturbations. Pioneering
work was established by Hough (1895), Sloudsky (1895) and Poincaré (1910), who
obtained an elegant uniform vorticity solution for the inviscid flow within a precessing
spheroidal cavity. Note that we use the term spheroid to signify an ellipsoid that is
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FIGURE 2. (Colour online) Mechanisms giving rise to librations in (a) longitude and
(b) latitude. The host body is shown, together with its satellite at different positions along
its orbital trajectory, and the gravitational torques resulting from variations in the orbital
speed Ωorb (a) and a non-alignment between the ecliptic and the orbital plane (b).

axisymmetric with respect to the mean rotation axis. Many decades later, Stewartson
& Roberts (1963) and Busse (1968) extended this work by deriving an expression
for the corrective viscous boundary layer. The solution of Busse was later rederived
and experimentally verified by Noir et al. (2003). Kerswell (1993), on the other
hand, investigated the stability of the Poincaré solution, and found that it is prone
to so-called shear and elliptical instabilities. The underlying instability mechanism
can be understood as a parametric resonance between two inertial modes and the
strain imposed by the elliptical geometry (Kerswell 2002). The work of Poincaré was
extended to triaxial ellipsoids by Roberts & Wu (2011) and Noir & Cébron (2013).
Cébron et al. (2012b) and Wu & Roberts (2013) studied uniform vorticity solutions
for flow driven by longitudinal libration within an ellipsoidal container. Both also
addressed the dynamical stability of this solution. As in the case of precession, they
found that the strain induced by the ellipsoidal geometry may give rise to elliptical
instabilities. Wu & Roberts (2013) also showed that these instabilities may drive a
self-sustained dynamo process.

So far, only a few investigations have been devoted to flows forced by latitudinal
libration. Zhang, Chan & Liao (2012) provided an analytical solution for inviscid flow
in an oblate spheroidal cavity in the limit of small libration amplitude. This study also
included asymptotic corrections induced by the presence of a small but finite value of
the viscosity. It was shown that latitudinal libration may drive a flow, analogous to the
spin-over mode. Provided that the libration frequency matches the eigenfrequency of
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this mode, resonance may occur, leading to a divergent flow amplitude in the limit of
vanishing viscosity. These theoretical results were confirmed by Chan, Liao & Zhang
(2011) using non-linear numerical simulations. Hence, despite the small amplitude of
both orbital perturbations and tidal deformations, the resonant-like dynamics suggest
that these phenomena may lead to large-amplitude flows that could contribute to the
observed dissipation and magnetic field generation.

In the present study, we consider the problem of latitudinal libration in a triaxial
ellipsoid. The problem is formulated in mathematical terms in § 2. Thereafter, we
seek solutions of the governing equations under the assumption of uniform vorticity
flow. Furthermore, we carry out extensive three-dimensional non-linear simulations to
validate this hypothesis. In § 4, we investigate the linear stability of this solution,
both by means of a theoretical apparatus and numerical simulations. Although the
stability analysis borrows from results developed in § 3, it is possible to follow the
mathematical derivation in § 4 without having read § 3 in full detail or extent. Finally,
in § 5, we will discuss our findings at planetary settings.

2. Governing equations
We consider motions of an incompressible fluid, enclosed within a rigid container

of ellipsoidal shape, representing the mantle, that is undergoing libration in latitude.
Because the mantle is considered to be rigid, and the fluid homogeneous and
incompressible, the gravitational pull of the host does not induce any fluid motion
within the satellite’s interior, as it can be absorbed into the pressure gradient term.
Hence, the flow in the liquid layer can be forced only through viscous, pressure or
electromagnetic coupling with the surrounding shell. The fluid properties, such as the
density ρ and kinematic viscosity ν, are assumed to be constant and uniform. The
evolution in time t of the flow velocity u and the reduced pressure p are governed by
the Navier–Stokes and the mass conservation equations (see (2.1) and (2.2) below).
We also note that the orbital trajectory can be represented by a pure translation at all
time, i.e. a uniform motion in space. Since the Navier–Stokes equation is invariant
with respect to a translation, the acceleration resulting from the orbital motion of the
body has no effect on the dynamics of the fluid.

We express the governing equation in non-dimensional form with respect to
the inverse mean rotation rate Ω−1

0 as time scale, and a furthermore unspecified
characteristic length scale R (e.g. one of the ellipsoid’s semi-axes). At planetary
settings, R is typically of order 300–2000 km. Written in a frame of reference that is
attached to the walls of the container, referred to as the mantle frame, these equations
read as follows:

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u+ 2Ω × u=−∇p+ E∇2u+ r× Ω̇. (2.2)

Here, u and r denote the flow velocity and the position vector, respectively, and Ω
is the total rotation vector. We choose the mean rotation axis to be aligned with the
z direction of an inertial frame of reference. The libration axis, on the other hand, is
fixed in a frame of reference that rotates at the mean angular speed along the inertial
z-axis, and bears the name ‘frame of mean rotation’. We adopt the convention that
the libration axis is directed along the x direction of the frame of mean rotation. The
container walls appear stationary in the mantle frame, and are given by

x2

a2
+ y2

b2
+ z2

c2
= 1. (2.3)
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x
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FIGURE 3. (Colour online) Sketch of the geometrical set-up as seen by an observer in
the mantle frame. The dashed line illustrates the truly calculated trajectory of the total
rotation vector Ω given by (2.5).

It will be useful to describe the geometry in terms of two ellipticities βac and βbc,

βac = a2 − c2

a2 + c2
, βbc = b2 − c2

b2 + c2
. (2.4a,b)

The total rotation vector in the mantle frame can be written as (see appendix A)

Ω = (θ̇ , sin(θ), cos(θ)), (2.5)

where θ(t) is the tilt between the rotation axis and the figure axes of the container.
In the case of latitudinal libration, we have

θ(t)=1θ sin(ωLt+ θ0). (2.6)

In figure 3, we have sketched a typical trajectory of Ω as a function of time.
The vector Ω̇ has the following expression in the mantle frame:

Ω̇ = (θ̈ , θ̇ cos θ,−θ̇ sin θ). (2.7)

The momentum equations depends on two non-dimensional parameters. First, the
Ekman number

E= ν

Ω0R2
(2.8)

is a measure for the ratio between the viscous and Coriolis forces. We assume that
E1/2�ωL, which implies that no spin-up can occur during each libration cycle.

The second non-dimensional number is the Poincaré number

ε=1θωL, (2.9)

which measures the relative angular speed of the libration motion with respect to the
mean rotation rate, and appears explicitly in the non-dimensional expression for the
rotation vector Ω:

Ω = (ε cos(ωLt), sin θ, cos θ). (2.10)
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The rationale for using the mantle frame is that the boundary conditions take a
particularly simple form. For viscous flows, we will impose the no-slip condition,
which expresses that the fluid sticks to the wall, i.e.

u= 0. (2.11)

For inviscid flows, however, we cannot rule out differential motion between the
fluid and the container, and can only prescribe the wall-normal component. The
impermeability condition

u · n̂= 0, (2.12)

with n̂ being the outward unit normal, expresses that there is no flow across the walls
of the container.

The momentum equation (2.2) may also be expressed in terms of the vorticity ω=
∇× u. The corresponding equation for ω is

∂ω

∂t
+∇× [(2Ω +ω)× u] = E∇2ω− 2Ω̇. (2.13)

In planetary science, we are typically concerned with parameters βac, βbc, ε, E� 1.
For most satellites, the main libration frequency ωL is close to one as a consequence
of their 1:1 spin–orbit resonance. A notable exception is Mercury, which is in a 3:2
resonance and has ωL≈ 2/3. Henceforth, we will always assume that E� 1, but will
not yet impose any restrictions on the values of βac, βbc, ωL and ε.

3. Laminar uniform vorticity flow
3.1. The uniform vorticity approach

The study of Zhang et al. (2012) suggests that the laminar solution in a spheroidal
container remains essentially of uniform vorticity, provided that E� 1. The same was
already observed in precessing ellipsoids (Poincaré 1910; Stewartson & Roberts 1963;
Busse 1968; Noir & Cébron 2013). Along the same line of thought, we propose to
seek for solutions of uniform vorticity ω. In the following, however, it will be more
convenient to use the rotation rate q = ω/2 as primary variable. As such, we may
write

u= q× r+∇ζ , (3.1)

with ζ a gauge function that allows the velocity field u to be solenoidal and satisfy the
impermeability condition (2.12). One can show that such a flow is an exact solution
of the equations of motion (2.1) and (2.2) in the bulk of the cavity. This solution
satisfies the non-penetration condition (2.12), but not necessarily the no-slip boundary
condition (2.11). As a consequence we expect a boundary layer to develop in the
vicinity of the walls, which in turn drives a secondary flow of order E1/2 in the
interior, the so-called Ekman pumping. In the limit of small Ekman number considered
in this study, a classical approach would be to neglect the boundary layer and its
associated Ekman pumping. Under this assumption, the vorticity equation (2.13) takes
the inviscid form

∂q
∂t
+∇× [(Ω + q)× u] =−Ω̇. (3.2)

Hence, the final state of the system always depends on the initial conditions. This
can be avoided by reintroducing the viscosity, which requires an exact description
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of the Ekman layer in a triaxial ellipsoid. Such a calculation is a formidable task,
and leads to cumbersome calculations. We thus choose to adopt the simpler but
successful approach pioneered by Noir & Cébron (2013) in the case of precessing
triaxial ellipsoids. It consists of parametrizing the effect of viscous Ekman torques
on the bulk flow by adding a dissipative term in the vorticity equation (3.2). These
torques act so as to inhibit differential rotation between the motion of the fluid and
the container. This term is proportional to E1/2 and to the differential rotation between
the container and the fluid, i.e. q− qM, where qM is the container rotation rate in the
considered frame of reference. In the frame attached to the container, qM = 0, and
(3.2) simply becomes

∂q
∂t
+∇× [(Ω + q)× u] =−Ω̇ − λ√Eq, (3.3)

where λ > 0 parametrizes the rate of dissipation. In § 3.3, we will determine λ by
fitting the outcome of the uniform vorticity model to three-dimensional (3D) numerical
simulations. As noted by Noir & Cébron (2013), the reduced model does not take into
account secondary viscous effects (e.g. internal shear layers).

Following Hough (1895), Roberts & Wu (2011) and Noir & Cébron (2013), the
uniform vorticity velocity field satisfying the non-penetration condition (2.12) is given
by

u=
(

2a2z
a2 + c2

qy − 2a2y
a2 + b2

qz,
2b2x

a2 + b2
qz − 2b2z

b2 + c2
qx,

2c2y
b2 + c2

qx − 2c2x
a2 + c2

qy

)
. (3.4)

Substituting (3.4) into (3.3) yields

q̇x = 2a2

(
b2 − c2

(a2 + b2)(a2 + c2)
qyqz + cos θ

a2 + c2
qy − sin θ

a2 + b2
qz

)
− θ̈ − λ√Eqx, (3.5)

q̇y = 2b2

(
c2 − a2

(a2 + b2)(b2 + c2)
qzqx + θ̇

a2 + b2
qz − cos θ

b2 + c2
qx

)
− θ̇ cos θ − λ√Eqy, (3.6)

q̇z = 2c2

(
a2 − b2

(a2 + c2)(b2 + c2)
qxqy + sin θ

b2 + c2
qx − θ̇

a2 + c2
qy

)
+ θ̇ sin θ − λ√Eqz. (3.7)

In contrast to (3.3), this formulation of the equations of motion takes the form of
a set of ordinary differential equations (ODEs), and is computationally thus far less
demanding.

3.2. Analysis in the limit of weak forcing
In this section, we seek an analytical solution of (3.5)–(3.7) in the limit of small
libration amplitude, i.e. ε � 1. We assume an asymptotic development of the form

q= q(0) + εq(1) +O(ε2). (3.8)

We now substitute this ansatz into (3.5)–(3.7), and successively analyse for increasing
orders of ε. Starting at order 0, and invoking that cos θ = 1−O(ε2), sin θ =O(ε) and
θ̇ = ε cos(ωLt)=O(ε), θ̈ =−ωLε sin(ωLt)=O(ε), we find

q̇(0)x = 2a2 b2 − c2

(a2 + b2)(a2 + c2)
q(0)z q(0)y +

2a2

a2 + c2
q(0)y − λ

√
Eq(0)x , (3.9)
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q̇(0)y = 2b2 c2 − a2

(a2 + b2)(b2 + c2)
q(0)x q(0)z −

2b2

b2 + c2
q(0)x − λ

√
Eq(0)y , (3.10)

q̇(0)z = 2c2 a2 − b2

(a2 + c2)(b2 + c2)
q(0)x q(0)y − λ

√
Eq(0)z . (3.11)

To analyse this system, we introduce the Lyapunov function F (Manneville 2010),

F= (bcq(0)x

)2 + (acq(0)y

)2 + (abq(0)z

)2
. (3.12)

Using (3.9)–(3.11) and after some algebra, we obtain

Ḟ=−λ√EF, (3.13)

which is strictly negative definite. From this, it follows immediately that the solution
of (3.9)–(3.11) tends to q(0) = 0 for any initial condition.

We now proceed with our analysis to first order in ε. Using the solution q(0) = 0,
we find

q̇(1)x =
2a2

a2 + c2
q(1)y − λ

√
Eq(1)x +ωL sin(ωLt), (3.14)

q̇(1)y =−
2b2

b2 + c2
q(1)x − λ

√
Eq(1)y − cos(ωLt), (3.15)

q̇(1)z =−λ
√

Eq(1)z . (3.16)

As a first step, we consider the inviscid case E = 0, for which (3.14)–(3.16) has the
particular integral

q(1)x =
f 2
0 −ω2

L

ω2
L − f 2

cos(ωLt), (3.17)

q(1)y =
ωLβbc

ω2
L − f 2

sin(ωLt), (3.18)

q(1)z = 0, (3.19)

with

f ≡±
√

4a2b2

(a2 + c2)(b2 + c2)
=±

√
(1+ βac)(1+ βbc), (3.20)

f0 ≡
√

2a2

a2 + c2
=±√1+ βac. (3.21)

The most remarkable feature of this solution is the singularity that occurs for ωL =
f , where f is the eigenfrequency of the so-called spin-over mode (Vantieghem 2014).
This suggests that there is a close connection between the present problem and the
theory of inertial modes. In order to substantiate this, we first recast (3.14)–(3.16) with
E= 0 in matrix–vector form:q̇(1)x

q̇(1)y

q̇(1)z

−


0
2a2

a2 + c2
0

− 2b2

b2 + c2
0 0

0 0 0


q(1)x

q(1)y

q(1)z

=
ωL sin(ωLt)
−cos (ωLt)

0

. (3.22)
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This notation emphasizes that the dynamical system that we study is simply a
harmonic oscillator driven by the Poincaré force. Resonance, i.e. unbounded growth
of the flow, takes place if the driving frequency ωL matches one of the natural
frequencies µ of the unforced system. These are solutions of the eigenvalue problem

0
2a2

a2 + c2
0

− 2b2

b2 + c2
0 0

0 0 0


q(1)x

q(1)y
q(1)z

= iµ

q(1)x
q(1)y
q(1)z

, (3.23)

where i is the imaginary unit. This yields µ1,2=±f and µ3=0. Following Vantieghem
(2014) and using (3.4), (3.23) is the projection of the inertial mode equation in
vorticity formulation,

∇× (ẑ× u
)= iµq, (3.24)

on the subspace of solenoidal uniform vorticity flows that satisfy the impermeability
condition (2.12). The eigenmodes associated with µ1,2 = ±f are associated with
the so-called spin-over mode, i.e. an inertial mode whose vorticity is uniform and
located in the equatorial plane. Resonant coupling is not possible for the eigenvalue
µ3 = 0, since its eigenvector (0, 0, 1) is orthogonal to the right-hand side of (3.22).
Summarizing, the solution (3.17)–(3.19) embodies that latitudinal libration drives a
spin-over mode, and that resonance takes place if the libration frequency matches
the spin-over frequency. The linearized uniform vorticity theory thus confirms the
inviscid theory of Chan et al. (2011) and Zhang et al. (2012), and extends it to
triaxial ellipsoids.

For the biaxial ellipsoid with b= c, i.e. βbc = 0, the solution (3.17)–(3.19) reduces
after some algebra to

q(1)x =−cos(ωLt), (3.25)
q(1)y = 0, (3.26)

q(1)z = 0, (3.27)

for any value of ωL and does not exhibit resonant behaviour. In the frame of mean
rotation (denoted by subscript R), this yields

q(1)R = q(1) + ε cos(ωLt)x̂= 0. (3.28)

This shows that the motion of the container cannot be transmitted to the fluid in the
absence of container topography in planes perpendicular to the libration axis.

A further interesting choice is ωL = f0, which cancels q(1)x . This implies that the
streamlines of this flow are ellipses located in planes y= cst. For a= c, i.e. βac = 0,
this situation occurs if ωL = 1, and is characterized by circular streamlines.

To fix the non-physical behaviour at resonance, we return to the viscous case (E 6=
0). It is still possible to work out a particular solution for (3.14) and (3.15), although
it is more intricate:

q(1)x =
(ω2

L − f 2)(f 2
0 −ω2

L)+O(E)
(ω2

L − f 2)2 + 2λ2E(ω2
L + f 2)+ λ4E2

cos(ωLt)

+ λ√E
ωL(ω

2
L + f 2 − 2f 2

0 )+O(E)
(ω2

L − f 2)2 + 2λ2E(ω2
L + f 2)+ λ4E2

sin(ωLt), (3.29)
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q(1)y = βbc
ωL(ω

2
L − f 2)+O(E)

(ω2
L − f 2)2 + 2λ2E(ω2

L + f 2)+ λ4E2
sin(ωLt)

− λ√Eβbc
ω2

L + f 2 − 4ω2
Lb2/(b2 + c2)+O(E)

(ω2
L − f 2)2 + 2λ2E(ω2

L + f 2)+ λ4E2
cos(ωLt), (3.30)

q(1)z = 0. (3.31)

We can now distinguish between two cases, depending on whether the first term
dominates the second one in the denominator of (3.29) and (3.30) or vice versa.
Assuming that ωL, f , λ=O(1), the former occurs if |ωL − f | �√E, i.e. for libration
frequencies far away from resonance. The first term in each of (3.29) and (3.30) is
then of order of magnitude 1, whereas the second ones are O(

√
E). For E→ 0, we

recover the inviscid solution (3.17) and (3.18).
For |ωL − f | �√E, the first term in (3.29) and (3.30) is of order of magnitude 1,

as the leading-order contributions in their numerator and denominator both scale as
O(E). The second term in (3.29) and (3.30) now scales as E−1/2, and thus dominates
the first term. We find thus that for E� 1, the total solution scales as E−1/2 and is
established within a frequency window of width O(E1/2). These scalings are consistent
with Zhang et al. (2012). Readers whose main interest is in the dynamical stability of
the solutions derived above, can now skip the remainder of this section without great
loss.

Anticipating the numerical validation of our analysis, we introduce ek and ek, the
mean kinetic energy density and its time average, which can be readily computed from
(3.4), and read

ek = 1
2V

∫∫∫
V

u2dV, (3.32)

= 2
5

(
b2c2

b2 + c2
q2

x +
a2c2

a2 + c2
q2

y +
a2b2

a2 + b2
q2

z

)
, (3.33)

ek = 1
T

∫ t0+T

t0

ekdt, (3.34)

where V= 4abcπ/3 is the volume of the ellipsoid, and T= 2π/ωL the libration period.
Upon substitution of (3.29) and (3.30) into this expression, we obtain the following
result for resonant flows:

ek = ε2

 1
10λ2E

a2c2

(a2 + c2)2

(b2 − c2)2

(b2 + c2)2︸ ︷︷ ︸
β2

bc

+ 1
160

(3b2 + c2)2c2

(b2 + c2)b2
+O(E)

. (3.35)

The second term in O(E) may dominate if βbc �
√

E. In particular, if βbc = 0, the
expression for ek for resonant and non-resonant flows is

ek = ε2

(
c2

10
+O(E)

)
, |ωL − f | �√E, (3.36a,b)

ek = ε2

(
c2

20
+O(E)

)
, |ωL − f | �√E. (3.37a,b)
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For an observer in the frame of mean rotation, ek for βbc = 0 is then given by

ek =O(ε2E), |ωL − f | �√E, (3.38a,b)

ek = ε2

(
c2

20
+O(E)

)
, |ωL − f | �√E. (3.39a,b)

This indicates that, in the absence of topography (i.e. for βbc = 0), viscosity
can transmit the librating motion of the mantle to the fluid. However, the flow
becomes vanishingly weak for non-resonant frequencies as E→ 0. At resonance, the
amplitude of the flow is independent of E, and thus O(E−1/2) times stronger than
the non-resonant flow. Motivated by the experimental study of Aldridge & Toomre
(1969), Zhang et al. (2013) have argued that similar scalings hold for the case of
longitudinal libration of a spherical container.

We recall that the above analytical solutions have been obtained under the a priori
assumption that the non-linear terms in the equation of motion remain negligible
with respect to the linear ones. A posteriori, we find that this is indeed established
off-resonance, given that the flow scales as ε. The amplitude of the resonant flow,
however, scales as εβbcE−1/2, and the non-linear terms will therefore be negligible if
εβbcE−1/2� 1.

In figure 4 we compare the solution (3.29)–(3.31) of the linearized ODEs to
numerical solutions of the non-linear system (3.5)–(3.7) for (a,b, c)= (1,√5/4,

√
3/4).

The libration frequency ω = √10/7 is chosen such that resonance occurs; the value
of λ is set to 2.7 and the Ekman number to 5× 10−5. This choice of parameters is
representative of the numerical results that will be discussed in § 3.3. The non-linear
solutions for qx, qy and ek virtually collapse with their linear counterparts at ε= 0.005.
For ε = 0.05, the amplitudes of qx and qy are approximately 10–20 % lower than
predicted by the linear theory. We see furthermore that a non-zero retrograde solution
for the vorticity component qz emerges when ε increases; this feature is generated by
non-linear interactions between the components of the linear solutions q(1). Indeed,
in this case the quantity εβbcE−1/2 ≈ 1.77 and thus non-linearities are no longer
negligible, as argued in the previous paragraph. The qz-component consists of the
superposition of a non-zero mean, referred to as a zonal flow (Busse 2010; Sauret
et al. 2010) and a harmonic modulation of frequency 2ωL. However, a complete
investigation of the zonal flow requires us to take into account higher-order effects,
such as non-linear interactions in the viscous Ekman layer. Such a detailed study
would involve an exact description of the Ekman boundary layer and will not be
pursued here.

3.3. Numerical validation and discussion
We now wish to validate our model of uniform vorticity flow. To this end,
we will compare the results presented above against 3D non-linear numerical
simulations obtained by means of a non-structured finite-volume code (Vantieghem
2011). It uses a collocated arrangement of the variables, and a second-order
centred-finite-difference-like discretization stencil for the spatial differential operators.
The time advancement algorithm is based on a canonical fractional-step method (Kim
& Moin 1985). More specifically, the procedure to compute the velocity and reduced
pressure uj+1, p j+1 at time step tj+1 = tj + 1t, given the respective variables at time
step tj, is as follows.
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FIGURE 4. (Colour online) Comparison between the exact solution (3.29) and (3.30) of
the linearized ODEs (solid line) and direct integration of the non-linear ODEs (3.5)–(3.7)
for ε = 0.005 (circles) and 0.05 (squares) for (a, b, c) = (1, √5/4,

√
3/4) and ωL =

f = √10/7. The distance between the dashed vertical lines spans one libration cycle
T = 2π/ωL.

(i) We first solve the intermediate velocity u? from the equation

u? − uj

1t
= −uj+1/2

AB · ∇uj+1/2
CN −∇pj

− 2Ω j+1/2 × uj+1/2 + E∇2uj+1/2
CN + Ω̇ j+1/2 × r, (3.40)

with no-slip boundary condition u?bnd = 0. In this expression, uj+1/2
AB and uj+1/2

CN
denote the velocity at time step j+ (1/2) computed using a second-order Adams–
Bashforth, respectively Crank–Nicolson, approach, i.e.

uj+1/2
AB = 3

2 uj − 1
2 uj−1, (3.41)

uj+1/2
CN = 1

2(u
j + u?). (3.42)

The mixed Adams–Bashforth/Crank–Nicolson formulation for the advective term
has the advantage of being kinetic-energy conserving and time-stable for any 1t,
and it does not require the solution of a non-linear system for the unknown u?.

(ii) The new velocity uj+1 is then related to u? by

uj+1 = u? −1t
(
1pj+1

)
, (3.43)
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Label a b c βac βbc f λasym λnum

I 1 1
√

3/4 1/7 1/7 8/7 2.74–0.493i 2.81
II

√
3/4 1 1 −1/7 0

√
6/7 2.76–0.155i —

III 1
√

5/4 1 0 1/9
√

10/9 2.53–0.322i 2.61
IV 1

√
5/4

√
3/4 1/7 1/4

√
10/7 2.63–0.552i 2.72

TABLE 1. Characteristics of numerically investigated geometries. The theoretical value of
the decay rate of the spin-over mode λasym has been computed using a procedure outlined
in Vantieghem (2014). No inversion for λnum was carried out for geometry II because ek
is independent of λ according to (3.36) and (3.37).

with 1pj+1= pj+1− pj. Imposing the incompressibility constraint on uj+1 leads to
a Poisson equation for 1pj+1,

∇2
(
1pj+1

)= (1t)−1
∇ · u?, (3.44)

with boundary condition n̂ · ∇(1pj+1)= 0. This Poisson equation is solved with
the algebraic multigrid method BoomerAMG (Henson & Yang 2002). Discussions
regarding the performance of this code can be found in Cébron, Vantieghem &
Herreman (2014) and Marti et al. (2014).

The computational grid consists of a mixture of tetrahedral, prismatic and
hexahedral elements. The total number of control volumes (CVs) at the lowest Ekman
number, E= 5× 10−5, is approximately 2.3 million. This corresponds to a typical CV
size 1x of about 0.012. In the bulk of the mesh, the CVs are quasi-isotropic. Near
the boundaries, however, they become more anisotropic as we reduce the wall-normal
spacing to 1x≈ 0.0012 . 0.2E1/2 in order to resolve the viscous Ekman layers.

In the following, we will discuss numerical results for four different geometries,
which we label with Roman numerals I–IV, and whose properties are summarized in
table 1. Case I is exactly the same geometry as studied by Zhang et al. (2012) so as to
allow direct comparison between both theories. In case II, we have a biaxial ellipsoid
with b= c for which no resonance can occur. Case III is also a biaxial ellipsoid, but
now with a= c. Finally, case IV is a triaxial ellipsoid with three different semi-major
axes, and will allow us to demonstrate the generality of the present theoretical and
numerical approach.

In figure 5, we compare the total kinetic energy density (3.32) retrieved from
our numerical simulations with the linear result (3.29)–(3.31), (3.34). We emphasize
that the numerically obtained energy density also contains non-uniform vorticity
contributions, as the integral over the ellipsoidal volume also takes into account the
viscous boundary layers, for example. Nevertheless, there is excellent agreement
between the two approaches. The coefficient λnum used to trace the theoretical
curve is chosen to minimize the discrepancy with the numerical data points, and
is given in the rightmost column of table 1. This value can be compared with the
theoretical asymptotic decay rate λasym of the spin-over mode, given in the penultimate
column of table 1. We see that there is a striking quantitative resemblance for the
three geometries with topographic coupling (i.e. cases I, III and IV). The slight
systematic higher value of the dissipation rate is due to the simplified expression of
the dissipation used in our reduced model, and the moderate non-asymptotic values of
the Ekman number. Therefore, at first order, one can interpret the dissipation rate in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.130


206 S. Vantieghem, D. Cébron and J. Noir

0.5

1.0

1.5

2.0

2.5

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.00 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2

4

6

8

(a) (b)

(c) (d)

FIGURE 5. (Colour online) Mean kinetic energy density ek for E= 5× 10−5 and ε= 0.005
at resonance. Comparison between the result of the linear theory (3.29)–(3.31), (3.33) and
(3.34) and the numerical simulations (symbols). Results for geometries I–IV. Note the
difference in scale between the different subfigures.

our model as the decay rate of the spin-over mode. We note finally that we have not
inverted λ for the non-resonant case II. According to (3.36) and (3.37), the energy
density is independent of λ to leading order in E for this geometry. Far away from
resonance, we see that ek ≈ 0.1; near the spin-over frequency, however, ek tends to
0.05. This agrees well with (3.36) and (3.37).

In figure 6, we compare the time series of ek retrieved from the numerical
simulations with those from the linear theory. In order to trace the theoretical curve,
the coefficient λ was set to the value extracted from the frequency scan, i.e. the one
provided in the rightmost column of table 1. Both curves virtually collapse, and this
further validates our initial ansatz of uniform vorticity flow and the reduced viscosity
model.

We now investigate how well the analytical expression (3.33) is established at
different values of the Ekman number; our results are summarized in figure 7.
For the spheroidal geometry I, we can also compare our results to the asymptotic
expression of Zhang et al. (2012). Generally, we find that the agreement between the
theory and the numerics is excellent. Noticeable differences are only observed for
E & 4× 10−4 for the triaxial case IV.

The mean kinetic energy density is a global measure of the amplitude of the driven
flow, but we also wish to assess how well the uniform vorticity solution is established
locally. To this end, we show snapshots of uy in the plane x= 0 and uz in the plane
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FIGURE 6. (Colour online) Time series of the mean kinetic energy density ek for E =
5× 10−5, ε= 0.005, and geometry IV. Results for ωL=√10/7 (resonant, a) and ωL= 1.5
(non-resonant, b). Comparison between the result of the linear theory (3.33) (solid line)
and the numerical simulations (dashed line).
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10−1

100

101

102

E

FIGURE 7. (Colour online) Mean kinetic energy density ek for E= 5× 10−5 and ε= 0.005.
Comparison between the result of the linear theory (3.29)–(3.31), (3.33) and (3.34) (solid
line) and the numerical simulations (symbols) for the cases with topographic coupling I
(diamonds), III (squares) and IV (circles). Stars correspond to the asymptotic theory of
Zhang et al. (2012) for a spheroidal geometry.

z= 0 in figure 8. According to the uniform vorticity assumption (3.4), we expect these
isolines to be straight curves, with uy being independent of y in the plane x= 0. For
non-resonant frequencies, we see that the uniform vorticity solution is reasonably well
established in the bulk of the flow, whereas there are noticeable differences for the
resonant flow. Finally, in both cases, the theoretical solution breaks down near the
container walls, i.e. in the viscous Ekman layers. Similar behaviour was observed by
Zhang et al. (2012). The resonant case is further investigated in figure 9, where we
have removed the uniform vorticity component from the flow and show a snapshot of
uy in the plane x=0. We observe a conical-like structure that is reminiscent of internal
shear layers (Kerswell 1995). As the thickness and amplitude of these layers scale as
E1/5 and E3/10 respectively, this pattern is diffuse and smeared out over a broad area.
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FIGURE 8. (Colour online) Isocontours of uy in the plane x= 0 (a,c) and uz in the plane
z= 0 (b,d) for geometry IV and libration frequencies ω= 1 (a,b) and ω= f =√10/7 (c,d).

Finally, we also assess the stability of the numerically obtained solutions. To this
end, we adopt the following approach. For a given solution, we consider a perturbation
that consists of a random velocity field with zero mean and a root-mean-square
amplitude exceeding that of the original solution by a factor of approximately two.
Starting from this ‘initial condition’, we integrate the Navier–Stokes equation in
time. Systematically, we observe that the system quickly returns to its original state,
which gives evidence for the stability of the numerically obtained solutions. This is
illustrated in figure 10, where we show time series of the kinetic energy density ek

before and after the perturbation for the triaxial geometry IV, ωL= f and E= 5× 10−5.

4. Stability analysis

We now wish to investigate whether the uniform vorticity flow described in the
previous section remains stable against small perturbations. The canonical approach
to this problem is via linear stability analysis. As a starting point, we write the total
flow field as the sum of a prescribed base flow U and a small perturbation v of order
of magnitude δ� 1,

u=U+ v. (4.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.130


Latitudinal libration driven flows in triaxial ellipsoids 209
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FIGURE 9. (Colour online) Instantaneous isocontours of the numerically obtained
magnitude of the non-uniform vorticity contribution to the flow in the meridional plane
x= 0 for geometry IV, E= 5× 10−5 and the resonant driving frequency ωL = f =√10/7.
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FIGURE 10. (Colour online) Kinetic energy density ekε
−2 before and after perturbation

with a random velocity field (at t = 500) for the triaxial geometry IV, E = 5× 10−5 and
the resonant driving frequency ωL = f =√10/7.

We make the choice that U is a uniform vorticity solution of the non-linear problem
(3.4) and (3.5)–(3.7). From now on, we will mainly restrict ourselves to non-resonant
libration frequencies. Anticipating the following discussion, we recall that we have
only pursued an asymptotic development of U up to order ε, i.e. we have

U= U0︸︷︷︸
O(ε)

+ U1︸︷︷︸
O(ε2)

, (4.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.130


210 S. Vantieghem, D. Cébron and J. Noir

with U0 corresponding to the solution (3.17)–(3.19), and U1 a uniform vorticity
flow for which no analytic expression has been sought. It will also be instructive to
consider an asymptotic development of the rotation vector Ω:

Ω = (0, 0, 1)︸ ︷︷ ︸
Ω0

+ ε (cos(ωLt), ω−1
L sin(ωLt), 0

)︸ ︷︷ ︸
Ω1

+O(ε2)︸ ︷︷ ︸
Ω2

. (4.3)

We now substitute (4.1) into the inviscid equations of motion, and invoking that U is
a solution of (3.4) and (3.5)–(3.7), we find

∇ · v = 0, (4.4)
∂v

∂t
+U · ∇v + v · ∇U+ v · ∇v + 2Ω × v =−∇p. (4.5)

This can be further developed into

∂v

∂t
+U0 · ∇v + v · ∇U0︸ ︷︷ ︸

O(δε)

+U1 · ∇v + v · ∇U1︸ ︷︷ ︸
O(δε2)

+ v · ∇v︸ ︷︷ ︸
O(δ2)

+ 2Ω0 × v︸ ︷︷ ︸
O(δ)

+ 2Ω1 × v︸ ︷︷ ︸
O(δε)

+ 2Ω2 × v︸ ︷︷ ︸
O(δε2)

=−∇p. (4.6)

Assuming now that δ� ε� 1, we can neglect terms of order of magnitude δε2 and
δ2 with respect to the other terms. This leaves us with

∂v

∂t
+U0 · ∇v + v · ∇U0 + 2 (Ω0 +Ω1)× v =−∇p. (4.7)

We can anticipate at this point that there will be two separable time scales associated
to the Coriolis force, the short time scale (τ ∼Ω−1

0 ) and the long one associated with
Ω1(τ ∼ ε−1).

We now proceed as follows. In a first step, we will invoke energy considerations to
identify parameters that govern and bound the growth of v. Then, we will deploy two
different techniques that solve (4.7). Both of them approach the issue of multiple time
scales by considering wave-like solutions whose phase fluctuates on the fast rotation
time scale (∼Ω−1

0 ), and whose amplitude varies on the slower time scale ε−1. The
first one is a local method (Lifschitz & Hameiri 1991), henceforth abbreviated as the
LH method, and considers (in)stability along a streamline. The second one, introduced
in Gledzer & Ponomarev (1977, 1992) (referred to as GP), is global and considers
perturbations that are polynomial in the Cartesian coordinates. The notions global and
local refer to whether or not the perturbations satisfy the non-penetration condition
(2.12). As the LH method yields the fastest growing solution of (4.7), regardless of
the boundary conditions, it gives us an upper bound for the growth rate. The GP
method, on the other hand, only considers certain subsets of all possible perturbations,
and therefore gives a lower bound on σ . Finally, in § 4.4, we will compare these
approaches against direct numerical simulations.
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4.1. Energy considerations
Prior to seeking direct solutions for (4.7), we will first investigate it through the prism
of the power statement

1
2

d
dt
〈v, v〉 = 〈v, H · v〉, (4.8)

which is obtained by taking the inner product of (4.7), and introduces the strain rate
tensor H,

H = 1
2 [∇u0 + (∇u0)

†]. (4.9)

Here we have introduced the notation 〈 f , g〉 = ∫V f · g†dV . This teaches us that
amplification of v, and thus the presence of instability, requires that the right-hand
side of (4.8) does not vanish. Using (3.4), (3.17) and (3.18), H reads

H =
 0 0 χ1 sin(ωLt)

0 0 χ2 cos(ωLt)
χ1 sin(ωLt) χ2 cos(ωLt) 0

, (4.10)

with

χ1 = εωLβacβbc

ω2
L − f 2

= εωLβacβbc

ω2
L − |1+ βac| |1+ βbc| , (4.11)

χ2 = ε(ω
2
L − f 2

0 )βbc

ω2
L − f 2

= ε(ω2
L − 1− βac)βbc

ω2
L − |1+ βac| |1+ βbc| . (4.12)

By virtue of the Cauchy–Schwarz inequality, we infer that

1
2

d
dt
〈v, v〉6 |χ1 sin(ωLt)+ χ2 cos(ωLt)|〈v, v〉. (4.13)

This allows us to bound the growth rate σ of a perturbation v ∝ exp(σ t), since

σ = 1
2

(
d
dt
〈v, v〉

)
〈v, v〉−1 6 |h1(ωL)χ1| + |h2(ωL)χ2|6 |χ1| + |χ2|, (4.14)

where |h1(ωL)|, |h2(ωL)| 6 1, and where the bar notation denotes an adequate time
average that allows us to account for an additional harmonic time-dependence of v.
Given that h1 and h2 only depend on ωL, any dependence of the instability on the
geometry and ε is captured by the parameters χ1 and χ2. We immediately observe
stability for βbc = 0. Note that for ωL = f 2

0 = 1 + βac, χ1 = χ2, and for ωL = 1 and
arbitrary βac, χ1 =−χ2. In these cases, there is thus only a single control parameter.
In particular, χ1 = χ2 = 0 for ωL = 1 and βac = 0. No instability can grow for such a
configuration regardless of the value of the topographic coupling βbc. Intuitively, this
can be understood from inspection of the flow, (3.4), (3.17) and (3.18), which has
only unstrained, circular streamlines in planes y= cst.

4.2. Local method: short-wavelength Lagrangian stability analysis
The approach we follow here is based on the short-wavelength Lagrangian theory,
used by Bayly (1986) and Craik & Criminale (1986), and then generalized in
Friedlander & Vishik (1991), Lifschitz & Hameiri (1991, 1993) and Lifschitz (1994),
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where the whole theory is thoroughly explained. This theory is now rather classical
in stability studies of flows (e.g. Bayly, Holm & Lifschitz 1996; Lebovitz & Lifschitz
1996; Leblanc & Cambon 1997), and we thus only recall below some basic elements
of the stability analysis, following the approach of Le Dizès & Eloy (1999). We
found it simplest to work in the inertial frame of reference. The perturbation velocity
v is written in the geometrical optics, or WKB (Wentzel–Kramers–Brillouin) form:

v(r, t)= a(r, t)eiψ(r,t)/ϑ . (4.15)

Here, the amplitude a(r, t) and phase ψ(r, t) are real functions dependent on space r
and time t. The characteristic wavelength ϑ � 1 is the small parameter used for the
asymptotic (WKB) expansion. In the inviscid limit, the evolution of (4.15) is governed
by the linearized Euler equations. Along the pathlines of the flow U in the inertial
frame of reference, the leading-order problem can then be written in Lagrangian form
as a system of ODEs (Lifschitz 1994):

dX
dt
=U(X, t), (4.16)

dK
dt
=−(∇U)T(X, t)K, (4.17)

da
dt
=
(

2KKT

|K|2 − I

)
∇U(X, t)a, (4.18)

with constraint
K · a= 0. (4.19)

Here d/dt = ∂t + U · ∇ are Lagrangian derivatives, I is the identity matrix, K = ∇χ
is the (local) wavevector along the Lagrangian trajectory X. The incompressibility
condition (4.19) is always fulfilled if the initial condition (X0, K0, a0) satisfies K0 ·

a0 = 0 (Le Dizès 2000). As shown by Lifschitz & Hameiri (1991), the existence of
an unbounded solution for a provides a sufficient condition of instability. Assuming
closed pathlines, stability is naturally analysed over one turnover period T along the
pathline. Note that this system of equations can be seen as an extension of rapid
distortion theory (RDT) to non-homogeneous flows (Cambon, Teissedre & Jeandel
1985; Cambon et al. 1994; Sipp & Jacquin 1998).

In practice, (4.16) has to be solved as a first step to know the trajectory X emerging
out of initial position X0. Knowing X, one can solve the wavevector equation (4.17)
for an initial vector K0. As the magnitude of K0 does not influence the growth of a,
we only have to consider the spherical surface ‖K0‖ = 1 in wave space to find the
maximum growth rate. Knowledge of X and K finally allows us to solve (4.18) for
the amplitudes a and to look for growing solutions.

In figure 11, we present typical results of the local stability analysis of the basic
flow (3.17) and (3.18) for different geometries. We vary the libration frequency ωL
between 0 and 4, but exclude a small frequency band around the spin-over frequency
f where the inviscid base flow diverges. We choose to present our results as a
function of (ωL − f )/(4− f ) so that this frequency band collapses for all geometries.
More precisely, we display σ/χ , where χ = |χ1| + |χ2|. Both figures 11(a) and 11(b)
clearly illustrate that σ/χ < 1, which is consistent with the upper bound (4.14). We
consider the simple case of a rotating spheroid a = b in figure 11(a). Since two
control parameters (χ1, χ2) are available in this case, it is not possible to collapse
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FIGURE 11. (Colour online) Results of the inviscid local stability analysis, carried out at
fixed ε = 0.04. The thick vertical black line indicates the resonance area. (a) σ/χ for a
spheroid (a= b= 1). (b) σ/χ for a spheroid (a= c= 1). In this case, there is only one
control parameter, i.e. χ = |χ2|.

all the curves on a single one. For the case a = c, however, there is only a single
control parameter χ2, and thus χ = |χ2|. Figure 11(b) clearly shows that all curves
then collapse onto a single master curve, which actually depends only on the function
h2(ωL) introduced in § 4.1. One can notice that the local stability results indicate that,
for a= c, the function h2(ωL) is bounded by 1/2 when we are not on the resonance
peak.

4.3. Global method: Gledzer–Ponomarev (GP) polynomial perturbation analysis
Anticipating the results of the GP method, we first put forward that the base flow u0
is prone to inertial instabilities, similar to those that can grow upon uniform vorticity
flows driven by precession, tides and longitudinal libration (Kerswell 1993, 1994;
Lacaze, Le Gal & Le Dizès 2004; Le Bars et al. 2010; Cébron et al. 2012b; Wu &
Roberts 2013). Underlying these instabilities is a parametric resonance mechanism,
whereby the strain imposed by the geometry couples two inertial modes of the
unforced system, provided certain resonance conditions are met.

We follow roughly an approach set out by Tilgner (2007), and start our analysis by
recasting (4.7) in a more condensed form,

∂v

∂t
+ 2ẑ× v +∇p=−εL v, (4.20)

where L is a time-dependent linear operator, which acts on v, and is characterized
by a single frequency ωL. It will now be instructive to consider perturbations v that
are superpositions of two inertial modes of the cavity, i.e.

v(r, t)= A(t)VA(r) exp(iµAt)+ B(t)VB(r) exp(iµBt). (4.21)

Here (µA, VA) and (µB, VB) are eigenvalue–eigenmode pairs of the inviscid inertial
mode problem

∇ ·VA,B = 0, (4.22)
2ẑ×VA,B −∇pA,B = iµA,BVA,B, (4.23)
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previously encountered in its ‘vorticity’ form (3.24). The modes VA,B satisfy (2.12),
and are mutually orthogonal, i.e. 〈VB, VA〉 = δAB, with δAB the Kronecker delta.
Substituting (4.21) into (4.20) and projection on VA, VB, respectively, leads to

Ȧ = ε〈VA,L VA〉A+ ε〈VA,L VB〉B, (4.24)
Ḃ = ε〈VB,L VA〉A+ ε〈VB,L VB〉B. (4.25)

We note that all terms on the right-hand side of (4.24) and (4.25) are of order of
magnitude ε. This suggests that its solution will be characterized by the time scale
ε−1. Thus, the rationale for the ansatz (4.21) is that it permits a time scale separation
between the amplitudes A and B, characterized by the slow time scale ε−1, and the
fast rotation scale of order of magnitude 1, captured by the inertial mode factors
exp(iµA,Bt). The fact that A and B only depend on the slow time scale ε−1 suggests
the following asymptotic expansion:

A(t)=
∞∑

k=0

εkAk(t), B(t)=
∞∑

k=0

εkBk(t). (4.26a,b)

Substituting this into (4.24) and (4.25) yields, to order 0 in ε, to Ȧ0= Ḃ0= 0. To the
next order in ε, we obtain, after projection on VA, VB respectively:

Ȧk = ε〈VA,L VA〉Ak−1 + ε〈VA,L VB〉B0, (4.27)
Ḃk = ε〈VB,L VA〉Ak−1 + ε〈VB,L VB〉Bk−1. (4.28)

The time-dependence of the diagonal terms in the above system is exp(±iωLt); for
the off-diagonal terms, it is exp(±i(µA − µB ± ωL)t). Resonant coupling between the
two modes, tantamount to the occurrence of instability, requires that Ak, Bk can grow
unbounded as t→∞. This demands that

µA ±ωL =µB. (4.29)

Since −26µA,B 62, couplings of the form (4.29) are limited to the libration frequency
range |ωL|6 4.

A further resonance condition can be found in the case of spheroidal geometries, for
which the inertial modes VA,B(r) are of the form WA,B(r, z) exp(imA,Bϕ), with mA,B ∈
Z, and (r, ϕ, z) conventional cylindrical coordinates (Zhang, Liao & Earnshaw 2004).
After substituting this into (4.21), we find that the requirement that the right-hand side
of (4.8) does not cancel, leads to the resonance condition

mA ± 1=mB. (4.30)

The above theoretical considerations are closely related to the GP method, which
solves (4.7) in ellipsoidal enclosures. Devised originally by Gledzer & Ponomarev
(1977) and Lebovitz (1989), it has since been employed by, amongst others, Kerswell
(1993), Roberts & Wu (2011) and Wu & Roberts (2011, 2013). More precisely, this
method restricts v to the vector space of perturbations that (i) are divergence-free,
(ii) satisfy the impermeability condition, and (iii) have a vorticity field whose
Cartesian components are polynomials that have degree less than n in the Cartesian
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coordinates. For a given polynomial degree n, this defines a vector space of finite
dimension N, and thus one can expand the perturbation in a finite series

v =
N∑

k=1

ak(t)V?
j . (4.31)

In this expression, the vectors V?
j denote the basis vectors of the GP subspace of

degree n, and are Cartesian polynomials of degree n or less. As a consequence of
the particular nature of the Coriolis operator and of the uniform vorticity character of
the base flow u0, the expansion (4.31) reduces (4.7) to a closed system of N linear
ODEs for the functions a1(t), a2(t), . . . , aN(t). Since the coefficients of this system are
time-periodic with period T = 2π/ωL, one can solve it by means of Floquet analysis,
or directly by brute numerical force; the last method was applied in this work. First,
we integrate the ODEs in time from t= 0 to t= 3000. Then, for k= 1, 2, . . . ,N, we
fit log |ak(t)| with log |ak(t)| =Ak+σkt, which gives the fit parameters Ak and σk, from
which we determine the growth rate σ =maxk σk. Since this procedure is the source
of small uncertainties in the measurement of σ , we filter away values of σ < 0.02ε.

Recently, Vantieghem (2014) established that one can always construct an
orthogonal basis of inertial modes for the (finite-dimensional) GP subspaces of
polynomial vector fields. Hence, the GP method describes the dynamics of the
perturbation v2 in terms of a superposition of inertial modes, and thus allows
identification of possible resonant couplings. This sets out the basic principles for a
global analysis that is valid for ellipsoids of arbitrary shape.

To illustrate this, we solve (4.7) using quadratic (n = 2) and cubic (n = 3) GP
subspaces for two configuration: (i) a spheroid with a = b = 1, c = 0.5, (ii) a fully
triaxial geometry with a = 1, b = 1.5, c = 0.5. We consider the libration frequency
band between 0 and 4.5; the value of ε is fixed at 0.1. Because the base flow u0
diverges as ωL approaches the spin-over frequency f , we exclude a small frequency
window of width 1ω = 0.15 around f . In figures 12 and 13, we plot σ/χ for the
spheroidal and triaxial geometry, respectively. These figures also provide the inertial
mode spectrum of quadratic and cubic polynomial inertial modes. For the spheroidal
geometry, we tabulate the azimuthal wave number m of the mode as well.

For both configurations, we observe a spectrum characterized by sharp peaks,
which reflects the parametric-resonance-like nature of the instability. We see that
the upper bound (4.14), i.e. σ 6 χ = |χ1| + |χ2|, indeed holds. Further inspection of
the main peaks (denoted by capital letters in figures 12 and 13) shows that these
resonant frequencies are indeed associated with the criterion (4.29), where µA and
µB correspond to values that are listed in the left-hand side of the respective figures.
For the spheroidal geometry (figure 12), we see that every resonance is associated
with an inertial mode pair that also satisfies the condition (4.30). The inertial mode
spectrum of the spheroid is such that one resonance peak can sometimes be related
to multiple pairs of modes. The triaxial configuration discussed in figure 13 exhibits
more resonance peaks. In terms of mode interactions, one can argue intuitively that
the equatorial deformation induces additional strain components that give birth to an
extended set of mode couplings.

The results of the GP analysis thus give evidence that libration in latitude indeed
drives parametric resonances that arise from inertial mode couplings. Having focused
on quadratic and cubic inertial modes, we have (only) found a handful of resonances.
More resonances would be expected, however, if we were to include higher-order
polynomial GP bases. Indeed, since the inertial mode spectrum is dense (Greenspan
1968), it is always possible to find two inertial mode frequencies that satisfy the
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FIGURE 12. (Colour online) GP analysis for the spheroidal geometry with (a, b, c) =
(1, 1, 0.5) using quadratic (red dashed) and cubic (blue) polynomial perturbations. Inviscid
normalized growth rate σ/χ as a function of the libration frequency ωL. A–F indicate the
main resonance peaks and are given in the right-hand table. The black rectangle indicates
the frequency band centred around the direct resonance at ωL = 1.6 where the inviscid
base flow U0 diverges.

criterion (4.29) for a given frequency ωL. As such, we expect that instability can take
place for any libration frequency |ωL|6 4.

4.4. Direct numerical simulations
In this subsection, we compare the results of the LH and GP analysis against direct
numerical simulations. In contrast to the preceding theoretical approaches, it is not
feasible to carry out numerical simulations in the inviscid regime. Therefore, we have
to reintroduce a viscous term into the perturbation equation (4.7). However, we replace
the no-slip boundary condition with the stress-free condition

n̂ · u= 0, n̂× [n̂ · (∇u+ (∇u)T)] = 0. (4.32)

The rationale for this choice is that the no-slip condition may give rise to centrifugal-
type instabilities if ε is too high and/or E too low (Noir et al. 2009; Sauret et al.
2012). Stress-free boundary conditions, on the other hand, allow isolation of inertial
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FIGURE 13. (Colour online) GP analysis for the triaxial geometry with (a, b, c) =
(1, 1.5, 0.5) using quadratic (red dashed) and cubic (blue) polynomial perturbations.
Inviscid normalized growth rate σ/χ as a function of the libration frequency ωL. A–K
indicate the main resonance peaks and are given in the right-hand table. The black
rectangle indicates the frequency band centred around the direct resonance at ωL = 1.68
where the inviscid base flow U0 diverges.

instabilities, such as the parametric resonances discussed above. A further advantage
of this choice is that we avoid the computationally expensive task of resolving thin
Ekman boundary layers. We keep the value of the Ekman number fixed at E= 10−4,
and we will focus on one particular geometry, characterized by the length of the
semi-axes (a, b, c)= (1, 1.5, 0.5), i.e. the same triaxial geometry as studied in § 4.3.
The deformation chosen is thus rather large. The motivation for this choice resides
in the fact that our theoretical methods are not restricted to asymptotically small
deformations, in contrast to other theoretical analyses (e.g. Kerswell 1994; Le Bars
et al. 2010).

In a first series of numerical simulations, we seek solutions of the linear perturbation
equation (4.7). As initial condition we impose a random velocity field with a
root-mean-square amplitude of 5 × 10−3. We use the same numerical method
as described in § 3.3. The computational mesh consists of uniformly distributed
tetrahedral elements. In order to verify that our spatial resolution is adequate,
two different mesh sizes have been considered, containing 1.3–10.5 million CVs
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FIGURE 14. (Colour online) Direct numerical solution of the (viscous) perturbation
equation for ε=0.3 and ωL=2.1. (a) Time series of the kinetic energy Ek for a simulation
using 1.3 million (dashed line) and 10.5 million (solid line) mesh elements. Also shown
is an exponential fit to determine the growth rate σ (dot-dashed line). (b) Snapshot of
the velocity field vy in the planes y= 0 and z= 0, illustrating the spatial structure of the
growing instability.

respectively. The results reported hereafter are those obtained with the highest
resolution; the quantities of interest do not differ more than ∼1 % from those at
lower resolution. This is shown in figure 14(a), where we compare the evolution
of perturbation kinetic energy Ek for ε = 0.3, ωL = 2.1 for the two different
resolutions. Figure 14(b) illustrates the spatial structure of the growing instability
for this parameter set.

We are now concerned with comparing the growth rates between the LH, GP and
numerical approaches. To extract growth rates from our simulations, we proceed as
follows. For a given value of ε, we fit a curve of the form log Ek = A+ 2σ t to the
numerical time series, as can be seen from figure 14(a). The fitting window is chosen
large with respect to ωL. The slope of this line gives a certain value for σ(ε, ωL,E=
10−4). Because we use stress-free boundary conditions and ε is small compared to
one, we can argue that (i) σ is linear in ε, and (ii) the viscously modified growth
rate σvisc is related to the inviscid growth rate σ by

σvisc = σ − κE= α(βac, βbc, ωL)ε− κE, (4.33)

with α independent of ε. To eliminate the unknown coefficient κ , we perform
simulations for different values of ε and report α = σ/ε=1σvisc/1ε in figure 15.

The values of the growth rate retrieved from the numerical simulations are located
in the non-shaded area in figure 15, i.e. they are contained between the GP lower
and LH upper bound. The numerics and the local LH analysis exhibit the same trend
for the dependence of σ on ωL. However, the simulations yield growth rates that are
about 35 % smaller than the ones found in the local LH analysis. This is consistent
with the interpretation of the LH growth rates as upper bounds. Indeed, we recall that
the LH approach does not constrain the perturbations to be bounded, and therefore
provides a supremum rather than a maximum for the growth rate. It is worth noting
that discrepancies of the same order of magnitude have been observed between the
local and global stability analysis for flows driven by precession, libration and tides
(Kerswell 1993, 1994; Cébron et al. 2012a).

According to figure 15 (or equivalently figure 13), the GP analysis does not predict
instability for ωL between 2 and roughly 2.9. Our simulations, on the other hand,
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FIGURE 15. (Colour online) Stability analysis in a triaxial configuration with (a, b, c)=
(1, 1.5.0.5). Comparison of growth rates resulting from the local LH analysis (solid line),
the global GP analysis for quadratic (dashed line) and cubic (dot-dashed line) polynomial
perturbations and direct numerical simulation (circles).
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FIGURE 16. (Colour online) Instantaneous profile of uz in the z = 0-plane for (a) ε =
0.3, ωL = 2.7 and (b) ε= 0.3, ωL = 3.3.

show that instability occurs for almost the whole frequency window ωL ∈ [2, 4]. This
implies that the numerically observed instabilities for ωL = 2.1, 2.4, 2.7 should be
associated with inertial modes of polynomial degree n > 3. This is indeed the case,
as is illustrated in figure 16, where we show a snapshot of uz in the equatorial plane
for ωL= 2.7 and 3.3. The velocity profile for ωL= 2.7 (figure 16a) is too complex to
be well captured by a quadratic or cubic polynomial. The corresponding profile for
ωL = 2.7, on the other hand, has a spatially simpler structure.
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FIGURE 17. (Colour online) Discrete Fourier transform of s(t) = v(r0, t) exp(−σ t) at
location r0 = (0.25, 0.6, 0.15) for (a) ε = 0.2, ωL = 2.4 and (b) ε = 0.2, ωL = 3.3. Dashed
lines indicate the driving frequency ωL.

In the earlier discussion we have shown that the instability arises by virtue of a
parametric resonance mechanism coupling two inertial modes. We now investigate
whether this can also be achieved in our numerical simulations. To this end, we
consider time series of the velocity field at a single point r0 = (0.25, 0.6, 0.15).
In figure 17, we trace the frequency content |S(f)| of s(t) = v(r0, t) exp(−σ t). The
factor exp(−σ t) is a compensation for the exponentially growing amplitude of v.
|S(f)| is defined by |S(f)|2 = |Sx(f)|2 + |Sy(f)|2 + |Sz(f)|2, where Sx,y,z(f) denote the
discrete Fourier transforms of the respective components of s(t). We find that the
spectrum is clearly dominated by two peaks, that moreover satisfy the resonance
condition f1 + f2 ≈ ωL. This confirms that a parametric resonance mechanism is
operating. In figure 17(a), we also observe smaller peaks around ω≈ 3.5, 3.7. These
are subharmonic effects that are due to the term v · ∇U0 + U0 · ∇v in (4.7) that
couples the perturbation v with frequency content f = 1.104, 1.289 and the base flow
oscillating at ωL = 2.4. A similar phenomenon is also present in figure 17(b).

Finally, we also consider direct numerical simulations of the non-linear equations
(2.1) and (2.2) with ε= 0.3 and ωL= 2.7, supplemented with the stress-free boundary
condition (4.32). In figure 18(a), we display the evolution in time of the kinetic
energy, as well as the energy related to the non-uniform vorticity component of the
flow. This quantity is obtained as the difference between u and the projection of u on
the subspace of uniform vorticity flows. Starting from the solution (3.4), (3.17) and
(3.18), we see that a weak non-uniform vorticity flow immediately emerges, which
is related to a weak boundary layer flow required to match the stress-free boundary
condition. However, until t ≈ 50, the flow remains essentially of uniform vorticity,
as can be seen from figure 19(a), which shows an instantaneous velocity profile of
uy in the planes x = 0 and y = 0 at t = 35. For t & 50, the non-uniform vorticity
component undergoes exponential growth over several orders of magnitude. This
gives evidence of the presence of instability. Furthermore, we see that the growth rate
of the the non-uniform vorticity component in the non-linear simulation is in good
agreement with the results from the corresponding simulation of the linear equation
(4.7). In figure 18(b), we depict an instantaneous profile of the non-uniform vorticity
component of uz in the plane z = 0 at t = 125; we find that its spatial structure is
similar to its counterpart from the linear stability analysis, displayed in figure 16(a).
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FIGURE 18. (Colour online) (a) Time series of non-linear simulations for ε = 0.3 and
ωL = 2.7, showing the total kinetic energy (solid thick line) and the kinetic energy of
the non-uniform vorticity flow (solid thin line). The dashed line shows the evolution
of perturbation kinetic energy in a corresponding linear simulation. (b) Snapshot of the
z-component of the non-uniform vorticity flow in the plane z= 0 at t= 125.

–0.2 0 0.2

–0.33 0.33
x y

z –0.04 0 0.04

–0.075 0.075
x y

z

–0.4 0 0.4

–0.44 0.44
x y

z –0.2 0 0.2

–0.4 0.4 x y

z

(a) (b)

(c) (d)

FIGURE 19. (Colour online) Non-linear simulations of latitudinally libration driven flow
for ε = 0.2 and ωL = 2.7. Instantaneous profiles of uy in the planes x = 0 and y = 0 at
(a) t= 35, (b) t= 125, (c) t= 215 and (d) t= 275.

The growth of the non-uniform vorticity component also affects the structure of the
total velocity field. This can be seen from figure 19(b), where we see slightly rippled
isolines of uy at t = 125. Eventually, the instability saturates when the non-uniform
vorticity kinetic energy is approximately of the same order of magnitude as the total
kinetic energy. The flow has now completely lost its uniform vorticity character, as
can be seen from figure 18(c,d).
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Satellites Moon Io Mercury

∼R (km) 350a 900b 1900d

∼h2t 1.026a 2.292b —
∼βac × 10−5 0.387 197 10d

∼βbc × 10−5 1.55 785 10d

Ω0 (µrad s−1) 2.66a 41.1c 1.24
1θ (rad) 3.8× 10−4 a 3.8× 10−7 c <5× 10−8 e

ωL 1.0044a 1.0036c ∼2/3
∼E 3.0× 10−12 3.0× 10−14 2.5× 10−13

|f −ωL/
√

E| 2.5× 103 7.5× 103 7.1× 105

|χ1| + |χ2| 5.9× 10−9 8.1× 10−9 4.8× 10−10

TABLE 2. Orbital dynamical parameters of the Moon, Io and Mercury. Estimated liquid
core size, ellipticities, spin rate, principal libration amplitude 1θ , libration frequency
ωL and Ekman number E based on a value of the kinematic viscosity of ν =
10−6 m2 s−1 corresponding to an iron-rich molten core. References: Williams & Dickey
(2002)a, Anderson et al. (2001)b, Noyelles (2012)c, Rambaux et al. (2007)d, Dufey et al.
(2009)e.

5. Planetary core flow estimates
Having adopted a fluid mechanist’s perspective in the preceding sections, we now

return to the initial problem of the latitudinal libration in a planetary context. With
the exception of Mercury, satellites that undergo libration in latitude and possess a
liquid core are in a 1:1 spin–orbit resonance, i.e. ωL≈1. Following Murray & Dermott
(2000), the semi-axes a, b and c for such synchronized, homogeneous satellites in
hydrostatic equilibrium are

a= R
(

1− H
3

)
, b= R

(
1+ 7H

6

)
c= R

(
1− 5H

6

)
. (5.1a−c)

Here, R is the estimated mean core radius, and H denotes the static tidal bulge, which
is the product

H = h2t
m
M

(
Rp

Rorb

)3

. (5.2)

In this expression, h2t is the tidal Love number, which characterizes the satellite’s
rigidity and is between 1 and 2.5. Rp and Rorb stand for the planet’s radius and mean
orbital radius, respectively, and m and M denote the mass of the satellite and its host.
In table 2, we compute βac and βbc for the Moon and Io, using values for h2t that are
reported in the literature. Provided that βac, βbc� 1, it follows from (5.1) that

4βac ≈ βbc. (5.3)

Using (3.20), we then obtain a linearized expression for the spin-over frequency as a
function of βbc,

f = 1+ 5
8βbc +O(β2

bc). (5.4)

In the case of Mercury, we cannot apply the above formulas, and therefore adopt
estimates of βac and βbc used in a previous study (Rambaux et al. 2007).
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FIGURE 20. (Colour online) Criterion for marginal stability (5.5) (solid line) and location
of the Moon, Io and Mercury (symbols) in the (E, |χ1| + |χ2|) plane.

For the satellites of interest (see table 2), we conclude that f − ωL is much larger
than E1/2. This statement is a fortiori true for Mercury, since its principal libration
frequency is close to 2/3 so that f − ωL = O(1/3). Hence, we do not expect a
resonance of the spin-over mode forced by libration in latitude for the satellites under
consideration. Therefore, we can use the solution (3.17)–(3.19) to estimate the typical
amplitude of the forced uniform vorticity flow, which we compute as

√
2ekΩ0R. For

the cores of the Moon and Io, this yields 0.13 mm s−1, 0.019 mm s−1, respectively.
In the case of Mercury, we find an upper bound of approximately 0.00053 mm s−1.
All this is rather small, when compared to the typical convective velocities in the
core of the Earth, which are about 0.4 mm s−1.

Given that the Moon, Io and Mercury operate in the non-resonant regime, we can
also apply the linear stability analysis discussed in § 4. Using the data in table 2,
we can compute the quantity |χ1| + |χ2| that bounds the growth rate of an inviscid
instability according to (4.14). In the preceding sections, we have considered inviscid
instabilities. In the presence of viscosity and rigid walls, the onset of the inertial
instability requires that this inviscid growth rate is larger than the viscous dissipation
rate in the Ekman layer K

√
E, where K & 1 is a constant that depends on the

inertial modes participating in the parametric coupling (Le Dizès 2000). Therefore, a
minimum condition on |χ1| + |χ2| is obtained with K = 1,

|χ1| + |χ2|>
√

E. (5.5)

Typical values of |χ1| + |χ2| are given in figure 20 and table 2. We see that these are
at least one order of magnitude smaller than

√
E. According to our analysis, none of

these celestial objects are thus subject to latitudinal libration driven instabilities.

6. Conclusion and perspectives
Motivated by modelling the core dynamics of planets and moons, we have

presented a theoretical–numerical study of the flow driven by latitudinal libration
within a triaxial ellipsoid. We have found that the inviscid equations of motion allow
simple uniform vorticity solutions, which may enter in resonance with the spin-over
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inertial mode. This result is an extension of the theory of Chan et al. (2011) and
Zhang et al. (2012) to triaxial ellipsoids. Numerical simulations have shown that the
uniform vorticity formalism, in combination with a reduced model of viscosity, is a
powerful approach to the study of integral quantities of the flow, such as the total
angular momentum and kinetic energy. Nevertheless, it does not encompass all effects
of viscosity, such as the boundary layer driven circulation in the bulk.

Once the uniform vorticity solution was derived, we investigated its dynamical
stability. We have revealed that a parametric resonance mechanism underlies the
onset of instability. Its growth rate is governed by two control parameters χ1 and χ2,
which capture the geometry of the cavity and the libration amplitude and frequency.

Application of our results to planetary settings has enabled us to conclude that the
liquid cores of the Moon, Io and Mercury are not presently unstable or in a state of
direct resonance. However, it cannot be excluded that such phenomena exist for other
satellites, or might have taken place in the early Solar System. Deciding this would
require accurate estimates of the libration frequencies and amplitudes, which have yet
to be established.

In conclusion, we identify some aspects of latitudinally libration driven flow
that, in our opinion, deserve further exploration. Of primary importance is the
experimental validation of the results set out in this work, and their extension to
the strongly non-linear regime, otherwise inaccessible numerically. Furthermore, it
has been argued that inertial instabilities can be driven by the internal conical shear
produced by the boundary layer (Kida 2013; Lin, Marti & Noir 2014). Taylor–Görtler
instabilities, associated with viscous Ekman layers, may also exist, as is the case for
longitudinal libration (Noir et al. 2009; Calkins et al. 2010). Finally, we recall that
we have only considered the case of a rigid shell. However, Goldreich & Mitchell
(2010) suggested that, for a visco-elastic ice shell overlying subsurface oceans,
the gravitational torque can cause dynamical tides in the liquid–solid boundary in
addition to the rigid response. One may argue that this problem is very similar to
that presented here (Cébron et al. 2012a). Nevertheless, the thin shell geometry of
a subsurface ocean leads to the well-known ill-posed Cauchy problem, which raises
considerable mathematical difficulties (Rieutord & Valdettaro 1997).
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Appendix A. Equations of motion in different frames of reference
The mantle frame, i.e. the reference frame attached to the walls of the ellipsoid, is

a non-inertial frame. Therefore, the equations of motion written in this frame involve
two fictitious forces: the Coriolis force, which requires an expression for the total
rotation vector Ω , and the Poincaré force, which depends on Ω̇ In this appendix we
compute the projection of these forces onto the Cartesian (unit) axes of the mantle
frame. To this end, we will consider three different frames of reference. The first one
is an inertial frame, and will be denoted by a subscript I. The ‘frame of mean rotation’
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(subscript R) rotates at constant angular speed Ω0 around the ẑ axis with respect to
the inertial frame. The Cartesian unit vectors between the frame of mean rotation and
inertial frame are related via the transformationx̂R

ŷR
ẑR

=
 cos(Ω0t) sin(Ω0t) 0
− sin(Ω0t) cos(Ω0t) 0

0 0 1

x̂I
ŷI
ẑI

. (A 1)

On the other hand, the mantle frame (subscript M) undergoes the librating motion of
the ellipsoidal container. The following transformation holds between the unit axes of
the mean rotation and mantle frame,x̂R

ŷR
ẑR

=
1 0 0

0 cos θ − sin θ
0 sin θ cos θ

x̂M
ŷM
ẑM

, (A 2)

where the angle θ(t) is defined by (2.6), and denotes the instantaneous tilt between
the axes of the mean rotation and mantle frame.

For latitudinal libration, the rotation vector Ω is most easily expressed in the frame
of mean rotation:

Ω = θ̇ x̂R +Ω0ẑR. (A 3)

Using (A 2), we can derive an expression for the rotation vector Ω in the mantle
frame,

Ω = θ̇ x̂M +Ω0 sin θ ŷM +Ω0 cos θ ẑM. (A 4)

The computation of Ω̇ is the most easily performed in the inertial frame, because the
unit vectors are stationary in this frame. We obtain

Ω = θ̇ (cos(Ω0t)x̂I + sin(Ω0t)ŷI

)+Ω0ẑM, (A 5)

and hence,

Ω̇ = θ̈ (cos(Ω0t)x̂I + sin(Ω0t)ŷI

)+ θ̇Ω0
(− sin(Ω0t)x̂I + cos(Ω0t)ŷI

)
. (A 6)

Using (A 1) and (A 2), this can be recast in the mantle frame as

Ω̇ = θ̈ x̂M + θ̇Ω0
(
cos θ ŷM − sin θ ẑM

)
, (A 7)

which gives expression (2.7) for Ω0 = 1.
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