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The article by Elff et al. makes a valuable contribution on how to provide post-estimation adjust-
ments to statistical tests in hierarchical models estimated using maximum likelihood (ML) and
small group sizes.

My article referenced by them is part of a larger group of articles investigating the performance
of ‘standard’ ML estimation when group sizes are small (see, for example, Bell et al. 2014; Bryan
and Jenkins 2015; Maas and Hox 2005). When writing the article (in early 2010), I focused on
ML since I perceived it to be the estimation approach most commonly employed in empirical
practice.1 Like others, I found (using a data structure commonly employed in comparative pol-
itics) that working with very small group sizes (say, about ten countries) merits some caution.2

While diligence might be warranted when estimating models with limited group sample sizes
using ML, no one is forced to abandon the approach and convert to a Bayesian viewpoint.
A growing literature has discussed adjustments to statistical tests of coefficients on covariates
in small group size settings when the model is estimated using (restricted) ML. Several studies
suggest using the Kenward and Roger (1997) correction and assess its empirical performance.
The general finding is that these corrections seem to perform rather well under small group sam-
ple sizes and even under some violations of normality and sphericity (for example, Arnau, Bono
and Vallejo 2009; Arnau et al. 2014; Kowalchuk et al. 2004; Luke 2017; Schaalje, McBride and
Fellingham 2002; Spilke, Piepho and Hu 2005). Thus, one author concludes a recent article intro-
ducing restricted maximum-likelihood (REML) estimation followed by Kenward-Roger (KR) cor-
rected hypothesis tests, with the statement that the availability of ‘frequentist corrections […]
preclude researchers from necessarily having to resort to a Bayesian framework’ (McNeish
2017, 666).3

Elff et al. forcefully echo these sentiments. In addition to their general exposition of the logic of
post-estimation test correction, they provide ample simulation evidence using a data structure
where the lower-level sample size is large and the second-level size is small. They thus provide
Monte Carlo evidence that is much closer to data commonly found in observational political sci-
ence applications (albeit still using a highly stylized data-generating process, a point I will return
to below). They also discuss an immensely useful rule of thumb for approximating the degree of
freedom used in corrected tests (allowing researchers to potentially skip more computationally
expensive approximations, such as the one proposed by KR) and provide simulation evidence
of its reliability. I agree with their central points, and I am sure that their contribution will be
a major reference point for social scientists working with hierarchical models. Below, I clarify

© Cambridge University Press 2020.

1However, I do accept the author’s (implied) criticism that then using the encompassing term ‘frequentist’ in the article
title is a misnomer.

2To provide further ‘historical’ background, one impetus for writing the article was the often-heard objection to estimating
hierarchical models using ML at all based on rules of thumb demanding group sizes of 30 or 50.

3Note that simulation studies performed in this literature usually employ data structures arising from experimental
designs. The simulations performed by Elff et al. are much closer to data used in comparative politics applications.
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some minor points of contention, provide some thoughts on open questions, and provide an
argument for a continued role of Bayesian specifications. I conclude with some thoughts on
best practices for estimating hierarchical models.

On the quality of unadjusted and adjusted ML estimates

While not the main focus of their article (or of this comment), Elff et al. point out that my original
MC sample size of 1,000 is too small to assess the tail behavior of simulated quantities. They pro-
pose a more involved simulation scheme which uses several random seeds for the random number
generator when creating MC draws. I agree with their suggestion. However, their discussion might
create the impression that the confidence interval coverage bias found for ML estimates is simply
the result of not using their proposed strategy of obtaining MC samples. In Table 1 I provide some
evidence that this is not the case and that conducting hypothesis tests from (unadjusted) ML esti-
mates using small group sample sizes is indeed rather anti-conservative. The results displayed in
Table 1 are based on a simple data-generating process: a random-intercept model with a macro-
level covariate (wj), which is either continuous (Panel A) or dichotomous (Panel B). I follow Elff
et al.’s prescription and use 10,000 MC samples based on ten random seeds.4

Lines 1 and 4 in Table 1 show large non-coverage for standard ML estimates. Even when look-
ing at the right-tail of MC draws, they are about 10 percentage points too short. Note that switch-
ing to REML estimation does move the coverage of confidence intervals somewhat closer to their
nominal value, but still leaves them about 4 percentage points too short (on average). A one-sided
test of proportions indicates that one cannot reject the null hypothesis that the actual proportion
of confidence intervals covering the true parameter value is smaller than 0.95.

Adding the KR correcting perfectly illustrates the point made by Elff et al.: the actual coverage
of the adjusted confidence intervals is virtually identical to their nominal 0.95 value. In the case of
a continuous covariate, the coverage rate is in fact indistinguishable from its nominal value (in the
dichotomous case, the upper limit of the 95 per cent MC interval makes clear that the degree of
non-coverage is negligible for any practical purposes). Finally, note that in this simulation, using
the (computationally much simpler) m – l – 1 heuristic produces confidence intervals that per-
form equally well.

More realistic data-generating processes and suggestions for further work

The m – l – 1 heuristic is highly relevant, not only because it will likely be employed by many
practitioners, but also since the authors use it to estimate ‘REML-like’ generalized linear model
specifications. It is expected to work well in many settings, but it would be helpful to gather
more evidence on its behavior when simulating more complex or ‘realistic’ data-generating pro-
cesses (here I am echoing the criticism of Bryan and Jenkins (2015) that most MC studies do not
look like real-world applications).

To give a first indication of how the accuracy of approximation varies with model features,
Figure 1 plots histograms of 5,000 MC draws of KR-type degrees of freedom estimates in a
more complex random-intercept random-slope model compared to the degrees of freedom sug-
gested by the m – l – 1 heuristic. Panel A refers to a macro-level covariate, while Panel B refers to
the main effect of a covariate with a random slope.5

4The initial value for the random number generator is obtained from random.org (again, following Elff et al.). The simu-
lated model is given by yij = α0 + α1xij + α2wj + b0j + ϵij. The lower-level covariate is created within each group and ranges from
16 to 80 (think of an age variable). The variance of the random intercept, b0j, is 0.2, while the variance of the residuals is
5. The macro-level variable wj is drawn from a normal distribution with mean 0 and variance 0.7 in the continuous case;
in the binary case it is constructed with the proportion of ones equal to 0.4. Fixed effects are: α0 = 3, α1 = 1, α2 = 2.

5The simulated model tries to capture a more involved empirical application with two random slopes and a ‘cross-level
interaction’: yij = a0 + a1x1ij + a2x2ij + a3wj + a4wjx1ij + b0j + b1jx1ij + b2jx2ij + eij. Panel A shows KR df estimates for a3, Panel
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Panel A shows that the m – l – 1 heuristic coincides almost perfectly with its KR-based coun-
terpart. Panel B shows that the KR degree-of-freedom estimates are systematically larger. In this
case the direction of the difference is such that tests using the t-distribution with m – l – 1 degrees
of freedom will be more conservative than KR-based tests. But I am not sure that this direction is
guaranteed in every application.

In future work, it would be of interest to see how the m – l – 1 heuristic behaves in extended
model setups. I am thinking specifically of two popular variants of hierarchical models. First,
what is sometimes called the ‘correlated random effects’ model, where averages (or other trans-
forms) of (some or all) lower-level covariates are included as second-level predictors
(Raudenbush 1989; Wooldridge 2010). Secondly, the class of models involving crossed random
effects, which arise when lower-level units are simultaneous members of different groups. A spe-
cific example is hierarchical models applied to age-period-cohort analysis (for example, Yang and
Land 2008), where the numbers of cohorts is often small. Thinking about implementation of the
heuristic and assessing its empirical performance in these models – especially when estimating
these models using ‘REML-like’ approaches with limited dependent variables – would be quite
helpful.6

What about Bayesian inference?

So what role remains for Bayesian analyses of hierarchical models?7 Maybe none, as Elff et al. or
McNeish (2017) might argue. An alternative view, rooted in the idea of consilience (Whewell
1858, 83–96), might ask for a Bayesian specification to be estimated as a complementary robust-
ness specification. In any given application of an estimator to a fixed set of data (that is, a real
research application, not a Monte Carlo simulation) the congruence between different approaches
(employing different aassumptions and approximations) can lend additional weight to one’s

Table 1. Actual coverage of nominal 95 per cent confidence interval for a second-level covariate under different estimators
and post-estimation corrections

Monte Carlo estimate

Mean 95% CI p(pr < 0.95)

A: Continuous wj

(1) ML 0.884 (0.877, 0.890) 0.000
(2) REML 0.915 (0.910, 0.921) 0.000
(3) REML + KR 0.949 (0.945, 0.953) 0.307

B: Dichotomous wj

(4) ML 0.879 (0.872, 0.885) 0.000
(5) REML 0.911 (0.905, 0.917) 0.000
(6) REML + KR 0.943 (0.939, 0.948) 0.001

Note: based on 10,000 Monte Carlo samples with ten random seeds. Sample size is 5,000 rows in 10 equally-sized groups. 10 × 1,000 MC
draws. Ten random seeds initialized from master seed obtained from random.org. Final column entry is one-sided p-value for one-sample
test of proportion.

B for a1. Covariates are distributed as before, x2 is drawn from a normal distribution with a variance equal to 5. The data has
the structure of an ‘unbalanced’ panel with within-group sample sizes between 250 and 500. The variances of the random
intercept and the two random slopes are 0.6, 0.2. and 0.3; their covariances are 0.05 and 0.1.

6One of the reasons I did not consider REML estimates in my original article was the fact that I could not provide a reliable
equivalent for generalized linear models. In a number of trial runs (conducted in early 2010), ‘REML-like’ estimation using
PQL produced rather high levels of non-convergence (in more than 10 percent of Monte Carlo runs). It is encouraging that
an approach relying on H-likelihood based estimation seems to solve that issue (the authors do not report issues with non-
convergence). For a helpful discussion of the H-likelihood (with an admittedly Bayesian bent) see Meng (2009). The discus-
sion provided by the authors in Appendix A.6 is also quite illuminating.

7Assuming someone remains agnostic to the siren song of the Bayesian interpretation of probability.

456 Daniel Stegmueller

https://doi.org/10.1017/S0007123419000796 Published online by Cambridge University Press

https://doi.org/10.1017/S0007123419000796


Figure 1. Comparison of KR degrees of freedom approximation with m− l− 1 heurstic
Note: Panel A shows results for the second-level covariate. Panel B shows results for a first-level covariate with a random slope. Based on 5,000 MC samples.
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results. The last few years have seen tremendous advances easing the application of Bayesian
inferential procedures. In particular, the development of the Stan language (Carpenter et al.
2017) and its associated tools have abstracted away some implementation difficulties.
Hierarchical models are now available in ‘pre-packaged’ form (Bürkner et al. 2017) so that
researchers can specify models using the familiar R formula interface. Bayesian inference is
also possible in Stata using a simple prefix statement.8 Note that I am not advocating that
these tools should be deployed without attention to the underlying details. But they are now avail-
able with much more computational ease and can serve (without any claim of superiority) as a
simple plausibility or robustness check, for example, when using the m – l – 1 heuristic in
‘REML-like’ models without access to KR or Satterthwaite approximations or when estimating
models with complex variance structures.

Final notes on best practice

Surely, best practice when working in a frequentist setting should be to estimate the model using
REML and to present hypothesis tests either using the t-distribution with m – l – 1 degrees of
freedom or the KR correction (which is now widely available in R and Stata). Elff’s iimm R pack-
age makes comparing different strategies as easy as possible. When conducting more involved
analyses, for example when using generalized linear models or when employing complex variance
structures, such as crossed random effects or autoregressive structures, the original KR correction
might not necessarily work well (Kenward and Roger 2009, 2591). I think it would be prudent to
check one’s analysis using an alternative (computationally expensive) strategy – be it Bayesian or
frequentist, as in, for example, a parametric bootstrap. Computational performance is such that
these alternative specifications can be run easily while writing one’s article.

A more ambitious version of this proposal is to conduct one’s own application-specific Monte
Carlo simulation, taking estimated coefficients and variance-covariance matrix as the baseline
data-generating process against which to compare one’s chosen estimator(s). Such a data-specific
simulation is easily implemented using standard software (for example, the simulate prefix in
Stata, or the MonteCarlo package in R) and can be run while writing the article. Providing infor-
mation on the expected non-coverage rate of one’s tests would provide more transparent commu-
nication of the limits (or strengths) of a given set of results.
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