
Robotica (2006) volume 24, pp. 539–548. © 2006 Cambridge University Press
doi:10.1017/S0263574705002262 Printed in the United Kingdom

A local-based method for manipulators path planning, using
sub-goals resulting from a local graph
S. Zeghloul∗, C. Helguera∗∗ and G. Ramirez∗
(Received in Final Form: September 10, 2005. First published online: July 7, 2006)

SUMMARY
This paper addresses the path planning problem for
manipulators. The problem of path planning in robotics can
be defined as follows: To find a collision free trajectory
from an initial configuration to a goal configuration. In
this paper a collision-free path planner for manipulators,
based on a local constraints method, is proposed. In this
approach the task is described by a minimization problem
under geometric constraints. The anti-collision constraints
are mapped as linear constraints in the configuration space
and they are not included in the function to minimize.
Also, the task to achieve is defined as a combination of
two displacements. The first displacement brings the robot
towards to the goal configuration, while the second one
allows the robot to avoid the local minima. This formulation
solves many of classical problems found in local methods.
However, when the robot acts in some heavy cluttered
environments, a zig-zaging phenomenon could appear. To
solve this situation, a graph based on the local environment
of the robot is constructed. On this graph, an A∗ search
is performed, in order to find a dead-lock free position
that can be used as a sub-goal in the optimization process.
This path-planner has been implemented within SMAR, a
CAD-Robotics system developed at our laboratory. Tests in
heavy cluttered environments were successfully performed.

KEYWORDS: Manipulators; Local minima; Collision
avoidance; Path planning; Dead-lock; Zig-zaging phe-
nomenon.

1. BACKGROUND
The development of technologies for autonomous robots
raises many different and important problems. One of these
problems is the collision-free path planning for manipulators,
which has a primary importance for automatic programming
of robots. In robotics, this problem can be stated as finding
a trajectory from an initial to a goal configuration while
avoiding the obstacles placed in the environment.

* Laboratoire de Mécanique des Solides, UMR CNRS 6610,
Université de Poitiers, SP2MI, Bd. Pierre et Marie Curie, BP 179,
86962 Futuroscope de Chasseneuil (France)∗∗ Instituto Tecnológico y de Estudios Superiores de Monterrey –
Campus Laguna, Paseo del Tecnológico No. 751, Col. Ampliación
la Rosita, Torreón, Coah. CP. 27250 (Mexico)
Corresponding author: G. Ramirez, E-mail: ramirez@lms.univ-
poitiers.fr

There exist a large number of methods which attempt
to solve the path planning problem, however, there are
very few effective approaches for solving these problems
for manipulators with high number of degrees of freedom
working in cluttered workspaces. Latombe1 made a good
resume of theses approaches. Despite many differences, these
approaches can be classified in two general classes: the global
and the local methods.

The global methods need a complete description of the free
space where the robot can move safely. In global planners, the
robot is represented by a point evolving in the configuration
free space, whose coordinates are the components of the
configuration vector. In order to obtain the configuration free
space the global methods needs an obstacle transformation
from their cartesian representation into the robot’s configura-
tion space (C-space). Also, the geometric planning is per-
formed before the path execution. Then, the planner produces
a path from the initial configuration to the final configuration
(if there exists one) which avoids the obstacles. Some ex-
amples of this approach are the cell decomposition proposed
by Lozano-Pérez,2,3 the well-known octree method,4,5 the
generalized cones,6 the voronoi diagram,7,8 the visibility
graphs,9 etc.

These methods are computationally expensive and need
a large space of memory so they are not well adapted for
on-line applications. However, these planners have proved
to be successful when the number of degrees of freedom
considered is small (3 or 4 d.o.f.), as they always find a
collision free path, if there exists one.

In the other hand, the local methods do not need a prior
knowledge of the entire environment. They are sensor-
based methods, in order to build a representation of the
environment in which the robot moves. For a large family
of robotics problems involving manipulators with high
number of degrees of freedom, these planners are very
efficient. Developed by Khatib,10 the Artificial Potential
Field approach is the most popular local method. In this
method the goal position attracts the robot towards it, while
obstacles act as repulsive forces. For each iteration, the
artificial force is regarded as the most promising direction
of motion, and path generation proceeds along this direction
by some increment. There exist many different approaches
inspired in this idea, as the superquadric potentials,11 the
Newtonian potentials,12 the heat transfer model potentials,13

the constraints method,14 among others.
The artificial potential methods are well adapted for

real-time applications, as well as for path-planning in
robotic work-cells with high number of degrees of freedom.

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262


540 Local graph

However, the addition of attractive and repulsive potentials
can lead to the appearance of the major problem in local
methods: the presence of local minima in the potential
function.

As we pointed out above, local minima remain an im-
portant cause of inefficiency of the local methods. Also,
the global methods are computationally expensive and not
well adapted for on-line applications. In order to solve these
problems, many researches mixed these two techniques. The
global techniques (node construction, cell division, etc . . .)
are generally used in a preprocessing stage in order to
construct a graph and find an initial path, and then a local
technique is used to move between the adjacent nodes or
cells in the graph. We can cite the mixed method proposed
by Faverjon,15,16 Warren,17 or the approaches based on the
randomized path planner (RPP)18−20 or the probabilistic
roadmaps (PRM).21,22

In the mixed methods, building the graph is computa-
tionally expensive, but once developed off-line, it can be
usually queried effectively with any start and goal con-
figurations. Nevertheless, when path planning involves many
different workspaces and robots, these techniques seem
unappropriates. We propose a local planner which uses the
graph-searching techniques on-line, avoiding the off-line
preprocessing and solving the local minima problems.

In this approach, the path calculation is only based on a
local view of the environment, and the dynamic properties
of the manipulator are ignored. These considerations
transform the physical motion planning problem into a purely
geometrical path planning problem. The motions of the
manipulator are only constrained by the obstacles and by
the manipulator itself ( joints limits, velocity limits, etc.).

The approach that we propose is first based on the cons-
traints method developed by Faverjon,14 and it is the conti-
nuation of the planner that we previously presented.23 The
method can be divided in two complementary modules: the
path planning module and the unblocking module. In the path
planning module a free-collision path is found using the
constraints method, using a particular task description. The
second module is activated when the manipulator get caught
in a dead-lock situation, the unblocking algorithm found a
sub-goal in order to escape from the blockage.

2. PATH PLANNING METHOD
The proposed collision-free path planner is based in the
local method developed by Faverjon.14 As mentioned
above, planning safe trajectories means finding a path that
brings the manipulator from an initial configuration qi

to the final configuration qf , avoiding collisions. In this
paragraph, the local method proposed in reference [14] for
trajectory planning, while avoiding collision with obstacles
in workspace, is presented. This planner is installed within
SMAR CAD-Robotics system.24

2.1. Constraints method
This approach is a substitute of the potential field approach.
The main idea of the method is to separate the achievement
of the task from the constraints of anti-collision between the
moving objects and the environment. The task is described

by the minimization of the deviation of the trajectory
from the line, in the C-space, defined by the current
configuration and the final configuration, plus eventually
some geometric constraints. As opposed to classical potential
field method, collision avoidance is represented by simple
linear constraints in the C-space and is not included in the
function to minimize.

2.1.1. Task description. Classically, local methods are
based on an iterative procedure where the variation of the
configuration vector is found by using the following formula:

qi = qi−1 + dqi (1)

where dqi is the variation of the configuration vector at the
iteration i. It is calculated by using the artificial potential
methods or according to the constraints method. In our case,
the task is defined by the final configuration qf to reach, as
follows:

τ (q) = q − qf (2)

where q represents the current configuration vector of the
robot.

From this definition, the path planning problem can be
stated as the following minimization problem:

minimize f = 1

2
‖τ̇ (q) − τ̇‖2 (3)

with τ̇ = − τ (q)

maxi=1,...,n |τ (q)i |

where τ̇ is the desired value for τ̇ (q) in order to obtain a
straight line to the goal in the C-space. At each step this
parameter is recalculated without saving in memory the
deviations caused by the obstacles.

2.1.2. The velocity damper. In order to construct the
geometric constraints of the problem, Faverjon defines the
anti-collision constraints. They are translated on geometric
terms in the C-space.

The anti-collision constraint, also called velocity damper,
assures that the distance’s variation has to be bigger than a
value which avoids collisions between the objects. If d is the
minimal distance between the objects, then d has to remain
bigger than a security distance ds . Thus the authors show that
there cannot be any collision if there is imposed:

ḋ ≥ −ξ
d − ds

di − ds

pour d < di (4)

where di is the influence distance from which a constraint is
included in the calculation process, ξ represents a positivce
coefficient in order to adapt the convergence, ḋ is the time
derivative of the distance which defines the anti-collision
constraint. It is shown by the authors14 that the distance
variation can be obtaiend from to the configuration parameter
variation by using ḋ = (J ′n | dq), J being the Jacobean
matrix calculated at the points of minimal distance, n is
a unit vector along the segment that connects these points
and | means the inner product.

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262


Local graph 541

The inequality (4) can be translated into a simple
linear constraint on configuration parameters’ increments dq
between time t and t + dt as follows:

J tn | dq ≥ −ξ
d − ds

di − ds

dt. (5)

2.2. Proposed method
The constraints method mentioned above finds a trajectory
in a large number of cases. However, the local description
of the C-space does not always allow finding a path up to
the goal. This method acts, as the original potential fields
approach, as a fast gradient-descent optimization procedure,
and has a limited ability to deal with the local minima of
the function in cluttered environments. Thus, we propose to
solve these dead-lock phenomena through an analysis of the
local geometry of the environment.

Generally, a dead-lock situation can be detected when
the active geometrical constraints remain the same through
several iterations, so in order to avoid this problem, it would
be sufficient to determine a movement that tend to change
from one set of constraints to another set. According to this
idea, the displacement dq will be defined as follows:

� if d > di , none of the constraints are active and the
trajectory is a straight line to the goal. In this case, the
displacement is given by:

dq = q − qf

maxj=1,...,nddl ‖q − qf ‖ (6)

� if d < di , one or several constraints are active. The
displacement is obtained by combining two displacements
dqgoal and dqblock , according to the following relation:

dq =
N∑

k=1

αkdqk
g + (1 − αk) dqk

l with αk = dk − ds

di − ds

(7)

where N is the number of active constraints, dq k
g is the

displacement calculated according to (6), dq k
l is the dis-

placement that allows to change from one set of constraints
to another, αk is a weighting coefficient for the two calcu-
lated displacements according to the distance dk for the
constraint k.

If the distance dk is close to the security distance, priority
is given to the movement that enables the robot to change the
constraint, whereas if dk is close to the distance of influence,
priority is given to the movement which would bring the
robot closer to the final configuration. The displacement dqk

l

is obtained using an inverse differential model:

dqk
l = J t (JJ t )−1 · dxk

i (8)

In order to change the active constraints the movement dxi

must be defined. It is this displacement that will allows the
manipulator moves towards another geometrical constraint
(face, edge, vertex).

Considering the Figure 1, the local methods are classically
in a blockedstate. The minimum distance between the objects

Fig. 1. Second displacement choice.

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262


542 Local graph

0 40 80 120 160 200

Iterations

0

10

20

30

40

50
D

is
ta

nc
es

 in
 c

m
distances between two objects

ds    - - -
di  _

Constraints method

0 40 80 120 160

Iterations

0

10

20

30

40

50

D
is

ta
nc

es
 in

 c
m

distances between two objects
ds    - - -
di  

_

Modified method

Fig. 2. Distances evolution.

O1 and O2 is obtained at points x1 and x2 of planes F11

and F12. In this situation the constraint remains active on
planes F11 and F12. This means that the minimal distance
which makes the constraint active is always obtained from
two points belonging to the facets F11 and F12. It is this
situation which leads to the blocked condition mentioned
above. In order to avoid this problem, a displacement that
leads to the modification of a set of constraints must be
defined. Consequently, to find the displacement according to
those points which give the minimal distance, they must be
placed on faces other than F11 and F12. This is achieved by
calculating distances between x2 and the different adjacent
facets F22, F32, F42, F52, on the obstacle. For each different
facet, there is a direction of displacement that is defined
by �V1, �V2, �V3, �V4 which allows the robot to change the
constraints on the obstacle. To switch the constraints on the
object O1 the movement must be along the direction �̄V i .
This direction is obtained by projecting − �Vi on the facet F11.
There are m displacement possibilities in order to avoid the
obstacle. Between these possibilities a movement is chosen,
and is the one that permits switching rapidly from one set
of constraints to another: this displacement is established
along the following direction: min i = 1, . . . , m‖ �Vi‖ + ‖ �̄V i .
In the example shown in the Figure 1, the method allows to
obtain a variation of the configuration vector such that the
displacements along �V3 lead to the possibility of avoiding
the obstacle from the top. Thus, the obtained displacement
dq (eq. (6)) gives the direction that the robot must follow
in order to avoid the dead-lock situation. Finally, to avoid
the collisions, this displacement is used as a subgoal in the
optimization method under anti-collision constraints.

In the figure 2 we traced the evolution of the distances of
three elements of the manipulator showed in figure 1. We can
see that in the curves of the original constraints method the
trajectory goes forward until the security distance. On the
other hand in the modified method, the algorithm anticipates
the obstacle, aided by the second displacement, avoiding the
convergence towards the security distance.

2.3. The zig-zaging phenomenon
This improvement to the formulation proposed by Faverjon
solve many of the problems found when a manipulator

acts in heavy cluttered environments. Nevertheless, it
doesn’t completely eliminate the local minima. In fact, the
manipulator can still converge towards a local minimum. In
order to escape from this minimum the process finds a path
that can lead towards another minimum, and when is avoiding
this second minimum, it can reconverge to the first one, thus
the manipulator moves locally from one minimum to another
alternatively (see figure 3), leading to a dead-lock situation.
This is called a zig-zaging phenomenon.

This situation can be avoided by searching a solution
in a graph. This graph is constructed when the zig-zaging
phenomenon is detected and it is obtained from the analysis
of the local geometry of the environment.

3. SOLVING BLOCKAGES USING
A LOCAL GRAPH
The unblocking procedure consists in building, on line, a
graph describing the local geometry of the environment, then
an A∗ search is carried out in the graph, in order to find a
sub-goal to use in the optimization process.

The unblocking algorithm, activated when a dead-lock
appears, can be stated as follows:

i. Build a graph by sweeping the local environment of the
end-effector in the cartesian space.

ii. Test for collisions an evaluate a cost function for each
cell.

iii. Search for the best cell with an A∗ algorithm.
iv. Take this position as a sub-goal in the minimization

process.
v. When the sub-goal is reached, retake the path-planning

process to the original goal.

3.1. Blockages detection
In order to start the procedure to solve the zig-zaging
phenomenon, such a situation must be detected. As
mentioned above, a dead-lock situation generally appears
when the active geometrical constraints remain the same
between two iterations of the path-planning process. The
variations of the configuration vector are so small, that
it can be deduce that the robot does not move. This
problem was practically solved with the modifications to

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262


Local graph 543

Fig. 3. The zig-zaging phenomenon.

the constraints method mentioned above. Nevertheless, zig-
zaging phenomena could appear. This phenomenon can be
detected if the variation of the position on several iterations is
memorized. Normally, in this kind of blockage the variations
in the configuration vector between two iterations are
practically the same that those measured at the next iteration.
This behavior results from the fact that the manipulator
moves from one position to another, to come back to the
first one. Then, if this variation is appreciably the same, the
unblocking procedure can be activated.

3.2. Graph construction
The use of graphs for path planning in robotics is very
extensive (cf. section I). These graphs can be very simple
or very complex, the complexity is function of the amount
of space explored and the level of discretization. Our graph
is limited to the local environment of the end-effector, in
such a way that the real-time spirit of our path-planner is
respected.

In our case, the graph is a representation of the local
environment in the Cartesian space. The node, from which
the graph is constructed, represents the position in which the
manipulator is in dead-lock situation. From this position the
local Cartesian space is swept, and only a few new positions
(cells) are chosen. For each position, the euclidean distance
to the goal (in the C-space) is measured and the number of
active constraints is computed. These values are kept in order
to evaluate a cost function for each cell. The cost function
will be described latter in this paper.

The searching procedure is stopped when a collision-free
cell is detected, such its value of the cost function is lower
than the one of the blockage cell. Whereas none cell is
detected, a new graph, with a higher discretization of space,
is constructed and a new search is performed.

The searching graph represents just some positions of the
end-effector in the Cartesian space, in order to reduce the
distance calculation and collision tests. The graph showed
in the figure 4 corresponds to a representation of the end-
effector’s local environment in the Cartesian space. From

the central cell of the graph (cube), which represents the
dead-lock position, the graph is constructed forming a cube
containing 26 cells to explore, the 27th is the central one (cell
number 14).

3.3. The cost function
The cost function have to reproduce as well as possible the
characteristics of each cell (or position) evaluated, but at
the same time such a function have to be simple, in order
to keep the performance of the local planner. Generally, in
path planning and specially in the constraints method, we
need to know the final position to reach and the set of active
constraints at each iteration, so the cost value for a cell can
be obtained from these two variables, using the following
equation:

F = g + h (9)

where g is obtained from the number of active constraints
and h is function of the goal distance in the C-space. The
position (cell) with the minimum cost is kept as a subgoal
for the path-planning process. If two nodes have the same
function evaluation, the node with the minimum h is used,
since it is the nearest position to the goal.

As mentioned above, the variable g is function of the
number of active constraints, obtained by the following
expression:

g = exp(−ζ/k) (10)

where k is the number of active constraints at the considered
position and ζ is a coefficient which can be changed in
function to the distance to the goal. The figure 5 shows the
behavior of the estimation g, which moves between [0, 1],
for different values of ζ . For the most of the cases, ζ = 1
give good results; nevertheless, for some particular cases
(in special when the robot is close to the goal), it could
be necessary to increase ζ . The value of g increases very
quickly for the first constraints. This exponential behavior is
very useful, since by experience we know that a blockage

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262


544 Local graph

Fig. 4. The local graph.

Fig. 5. The two variables behavior.

may appears when only a few constraints are active, so we
have to penalize those cells.

The variable h is function of the goal distance in the
configuration space and is computed by:

h = ‖qf − q‖
‖qf − qi‖ (11)

where q represents the node configuration vector and qi and
qf the initial and final configuration vectors respectively. In
the figure 5 it can be seen the h estimation behavior. This
behavior is linear between [0, 1], if the distance to the goal
decreases, the cost of h also decreases. If h > 1 we take
h = 1, in order to kept a balance in the cost function between
g and h. Taking h as a function of the distance in the C-space

tends to give preference to paths with short execution
time, which in a real-time planner, is the most interesting
response.

3.4. Searching for a path in the local graph
A very effective free-space searching algorithm, in terms of
path length optimization, is the A∗ technique.25 The basic
A∗ strategy is to compute a set of neighbors, select the most
promising one and iterate with it. The process terminates
either when the goal is reached or when no further movement
is possible. While A∗ methods can have unbounded running
times, path-planning is often halted after a given number of
iterations. Due to the amount of space that is considered, the
A∗ technique has a tendency to be a slow planner. If the speed

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262


Local graph 545

Fig. 6. Example No. 1.

of the algorithm is increased, it could be ideal for real-time
path planning. In this approach the amount of space searched
(the graph) is reduced to the local environment in order to
obtain real-time solutions.

When the function F is computed for all the cells in the
graph, the algorithm choose the one with the minimum cost.
This new blockage-free position is taken as a subgoal in
the optimization process. When the subgoal is reached, the

planner switch back to the original goal and the unblocking
procedure is done. If a blockage reoccurs a new local
graph is constructed in that point and a new search is
performed.

If in the first development there are no solutions, a
bigger graph is developed and a depper search is performed.
However, when a given amount of time has passed out, the
search is stopped and failure is reported. The amount of

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262


546 Local graph

Fig. 7. Local graph for example No. 1.

time used in the search is constrained in order to respect
the real-time spirit of the approach. As it can be seen, if no
restrictions are indicated, the unblocking algorithm works as
a classical A∗ search, nevertheless the time needed to find
the goal position will be increased dramatically.

4. RESULTS
The path planning algorithm, as well as the unblocking
algorithm, is installed within SMAR,23 our CAD-Robotics

system, developed in our laboratory using Xlib and Silicon
Graphics Inventor libraries. In this example (figure 6) the
manipulator must make an insertion of an object of large
dimension in a cluttered environment. The dimensions
of the object manipulated are larger than the width of
the aperture; this fact does not allow an insertion purely
horizontal. The planner determine the trajectory from the
initial configuration qi towards the final configuration qf

with an influence distance of 30 cm and a security distance
of 5 cm in 138 iterations. The execution time necessary to

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262


Local graph 547

Fig. 8. Example No. 2.

determine the solution for this example, using a Silicon
Graphics workstation with a R10000 processor, is 8 seconds.
The figure 7 shows how a blockage situation is solved
using the local graph. The figure 6-b represents a dead-lock
situation, so since this position a local graph is constructed
and a sub-goal is found (figure 6-c). Thus, this sub-goal
is used in the optimization process, and when this position
is reach the original goal is considered again. If another

blockage situation appears, a new graph is constructed and a
new sub-goal is created. In the case of this example, (figure 6)
the unblocking procedure was activated three more times.

Figure 8 shows another example that classical local
methods are unable to solve. In this case the dimensions of
the bar are larger than the width of the aperture, an also the
bar can at any moment get in collision with the manipulator.
This situation restricts, even more, the movement of the robot.

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262


548 Local graph

For solving this problem, 167 iterations are required, using
the same security and influence distances that the previous
example, which corresponds to 15 seconds of computation
time.

5. CONCLUSION
We have presented a local-based approach for collision-free
path-planning for robotic manipulators. In the first part of this
paper, a solution for the local minima problem, associated
to local planners, has been proposed. Indeed, the new task
definition allows the manipulator to avoid these problems
even when a little free space is available. However, a zig-
zaging phenomenon appears when the manipulator moves
in some heavy cluttered environments. In order to solve
this problem, the construction of a graph based in the local
geometry has been proposed. Then, a free-dead-lock position
is founded in the graph with an A∗ search. The planner takes
this new position as a sub-goal to escape from the dead-lock
phenomenon.

In this paper we showed cases where the classical local
methods are unable to provide a solution. The proposed
method has been applied and tested for many robotics
applications where the manipulator is placed in some heavy
cluttered environments; in such situations the planner finds
a collision-free trajectory in almost all cases. These results
shown that an A∗ search, based on a local graph, is a good
alternative for the resolution of the dead-lock problems that
appear in the classical local methods.

References
1. J. C. Latombe, Robot Motion Planning (Kluwer Academic

Publishers, 1991).
2. T. Lozano-Pérez, Spatial planning: A configuration space

approach, IEEE Trans. Comput. C-32, 108–120 (Feb. 1983).
3. T. Lozano-Pérez, “A Simple Motion-Planning Algorithm for

General Robot Manipulators,” IEEE Journal of Robotics and
Automation 3, No. 3, 224–238 (1987).

4. B. Faverjon, “Obstacle Avoidance Using an Octree in the
Configuration Space of a Manipulator,” IEEE: Procs. of the
Int. Conf. on Robotics and Automation, Atlanta, Ga (1984),
pp. 504–512.

5. D. Jung and K. Gupta, “Octree-Based Hierarchical Distance
Maps for Collision Detection,” IEEE: Proc. of Int. Conf. on
Robotics and Automation (1996) pp. 454–459.

6. R. A. Brooks, “Solving the find-path problem by good
representation of the free space,” IEEE Transactions
on Systems, Man and Cybernetics SMC-13(2), 190–197
(March/April, 1983).

7. C. O’Dunlaing and C. K. Yap, “A Retraction Method for
Planning the Motion of a Disc,” Journal of Algorithms 6, 104–
111 (1985).

8. R. Mahkovic and T. Slivnik, “Generalized Local Voronoi
Diagram of Visible Region,” Proc. Of the IEEE Int. Conf.
on Robotics and Automation, Leuven, Belgium (May 1998)
pp. 349–355.

9. S. K. Ghosh and D. M. Mount, “An Ouput Sensitive
Algorithm for Computing Visibility Graphs,” IEEE 28th
Annual Symposium on Fondations of Computer Science, Los
Angeles, Ca. (1987), pp. 11–19.

10. O. Khatib, “Real-Time Obstacle Avoidance for Manipulators
and Mobile Robots,” Int. J. Robotics Research 5, No. 1, pp. 90–
98 (1986).

11. R. Volpe and P. Khosla, “Artificial potentials with elliptical
contours for obstacle avoidance,” IEEE Proc. of the 26th
Conference on Decision and Control, Los Angeles, Ca. (1987)
pp. 180–185.

12. J. H. Chuang, “Potential-Based Modeling of Three-
Dimentional Workspace for Obstacle Avoidance,” IEEE
Transactions on Robotics and Automation 14, No. 5, 778–785
(Oct. 1998).

13. Y. Wang and G. S. Chirikjian, “A New Potential Field
Method for Robot Path Planning,” IEEE Proc. of Int. Conf. on
Robotics and Automation, San Francisco Ca. (2000), pp. 521–
528.

14. B. Faverjon and P. Tournassoud, “A Local Based Approach
for Path Planning of Manipulators With High Number of
Degrees of Freedom,” IEEE Proc. of Int. Conf. on Robotics
and Automation (1987) pp. 1152–1159.

15. B. Faverjon and P. Tournassoud, “The Mixed Approach for
Motion Planning Learning Global Strategies form a Local
Planner,” Proc. of the 10th Int. Joint Conf. on Artificial
Intelligence Milan (1987) pp. 1131–1137.

16. B. Faverjon and P. Tournassoud, “A Practical Approach to
Motion Planning for Manipulators with Many Degrees of
Freedom,” Prep. of the 5th Int. Symposium of Robotics
Research (1989) pp. 65–73.

17. C. W. Warren, J. C. Danos and B. W. Mooring, “An Approach
to Manipulator Path Planning,” Int. J. Robotics Research 8(5),
87–95 (1989).

18. S. Caselli and M. Reggiani, “ERPP: An Experience-based
Randomized Path Planner,” IEEE Proc. of Int. Conf. on
Robotics and Automation, San Francisco Ca. (2000) pp. 1002–
1008.

19. J. Barraquand and J. C. Latombe, “Robot Motion Planning:
A Distributed Representation Approach,” Int. J. Robotics
Research 10, 6, 628–649 (1991).

20. J. Barraquand, L. Kavraki, J. C. Latombe, R. Motwani, T. Y.
Li and P. A. Raghavan, “Random Sampling Scheme for Path
Planning,” Int. J. Robotics Research 16, No. 6, 759–774
(1997).

21. L. Kavraki and J. C. Latombe, “Randomized Preprocessing of
Configuration Space for Fast Path Planning,” IEEE Proc. of
Int. Conf. on Robotics and Automation, San Diego Ca. (1994),
pp. 2138–2145.

22. R. Bohlin and L. Kavraki, “Path Planning Using Lazy PRM,”
IEEE Proc. of Int. Conf. on Robotics and Automation, San
Francisco Ca. (2000) pp. 521–528.

23. C. Helguera and S. Zeghloul, “A Local-based Method
for Manipulators Path Planning in Heavy Cluttered
Environments,” Procs. Of the IEEE Int. Congress on Robotics
and Automation, San Francisco, Ca. (April 2000) pp. 3467–
3472.

24. S. Zeghloul, B. Blanchard and M. Ayrault, “A Robot
Modeling and Simulation System,” Robotica 15, Part 1, 63–73
(1997).

25. J. R. Slagle, Artificial Inteligence: The heuristic programming
approach (McGraw Hill, 1971).

https://doi.org/10.1017/S0263574705002262 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002262

