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FIRST PASSAGE PERCOLATION
ON SPARSE RANDOM GRAPHS
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Abstract

A large and sparse random graph with independent exponentially distributed link weights
can be used to model the propagation of messages or diseases in a network with an
unknown connectivity structure. In this article we study an extended setting where, in
addition, the nodes of the graph are equipped with nonnegative random weights which
are used to model the effect of boundary delays across paths in the network. Our main
results provide approximative formulas for typical first passage times, typical flooding
times, and maximum flooding times in the extended setting, over a time scale logarithmic
with respect to the network size.
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1. Introduction

Classical first passage percolation theory, initiated about half a century ago in [10], studies a
connected undirected graph G where each adjacent node pair e is attached a weight W(e) > 0.
When the weights are independent and identically distributed random variables, then

WG(u, v) = inf
�

∑
e∈�

W(e),

where the infimum is taken over all paths � in graph G from u to v, defines a natural random
metric which has been intensively studied in a wide variety of settings, especially integer
lattices [5]. The quantity WG(u, v) may be interpreted as the first passage time from u to v, when
the link weights are considered as transmission times. A relevant quantity of interest in modern
social and information networks is the flooding time maxv WG(u, v), which corresponds to the
time it takes for a message or disease to spread from a single root node u to all other nodes
along the paths of the graph. Alternatively, the link weights can be viewed as economic costs,
congestion delays, or carrying capabilities that can be encountered in various real networks
[16, 19].
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In this paper we study a generalized version of the above setting where in addition to link
weights, each node is assigned two weights X0(v) ≥ 0 and X1(v) ≥ 0, and we define

W(u, v) = X0(u) + WG(u, v) + X1(v).

When the weights are considered as transmission times, W(u, v) can be interpreted as the first
passage time from u to v in a setting where X0(u) represents the entry delay and X1(v) the exit
delay along a path from u to v in a network modeled by the graph G. The above formulation
can also correspond to a generalization of the susceptible–infectious (SI) epidemic model [4]
with incubation times by setting X0(v) = 0 and letting X1(v) represent the length of time during
which an infected individual v spreads a disease while displaying no symptoms of illness. In
this case WG(u, v) represents the time until node v becomes infected, and W(u, v) the time until
node v becomes acutely ill in a population where initially node u is ill and all other nodes are
susceptible.

The main results of this paper are approximate formulas for W(u, v), maxv W(u, v), and
maxu,v W(u, v) in a large and sparse random graph G, when the link weights (W(e))e∈E(G)
and the node weights (X0(v), X1(v))v∈V(G) are mutually independent collections of independent
random numbers, such that W(e) is exponentially distributed with rate parameter λ > 0, and the
distribution of Xi(v) has an exponential tail with rate parameter λi ∈ (0, ∞] in the sense that

lim
t→∞

− log P(Xi(v) > t)

t
= λi, i = 0, 1. (1)

The case λi = ∞ includes distributions with bounded support, for example the uniform
distribution on [0, 1], and the degenerate case with Xi(v) = 0 almost surely. No restrictions
about the joint distribution of X0(v) and X1(v) are required for the main results.

1.1. Notation

A large network is modeled as a sequence of graphs indexed by a scale parameter
n = 1, 2, . . . Hence, most scalars, probability distributions, and random variables depend on
n, but this dependence is often omitted for clarity. In particular, we write P instead of Pn

for the probability measure characterizing events related to the model with scale parameter
n. An event depending on n is said to occur with high probability if its probability tends to
one as n → ∞. The symbol

p−→ refers to convergence in probability. We write f (n) = o(g(n))
if limn→∞ f (n)/g(n) = 0, and f (n) = O(g(n)) if lim supn→∞ f (n)/g(n) < ∞. We write X

d=Y
when random variables X and Y have the same distribution. The positive part of a number x is
denoted (x)+ = max{x, 0}.

2. Main results

Given a list of nonnegative integers d = (d1, . . . , dn), let G = G(n, d) be a random graph,
which is uniformly distributed in the set G(n, d) of all undirected graphs on node set [n] =
{1, . . . , n} such that node v has degree dv for all v. We assume that the degree list d satisfies
the Erdős–Gallai condition [15, Theorem C.7], so that G(n, d) is nonempty. A stochastic model
for a sparse large graph is obtained by considering a sequence of random graphs G = G(n, d(n))
with degree lists d(n) = (d(n)

1 , . . . , d(n)
n ) indexed by n = 1, 2, . . . such that the empirical degree

distribution

fn(k) = 1

n

n∑
v=1

1(d(n)
v = k)

https://doi.org/10.1017/jpr.2019.30 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.30
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converges to a limiting probability distribution f with a nonzero finite mean μ = ∑
k k f (k)

according to
fn(k) → f (k) for all k ≥ 0. (2)

Throughout, we will also assume that, for all n,
∑

k

k2+εfn(k) ≤ c (3)

and
min

v
d(n)

v ≥ δ (4)

for some constants c, ε > 0 and δ ≥ 3 such that f (δ) > 0. Condition (3) implies that the family
of probability measures (fn)n≥1 is relatively compact in the 2-Wasserstein topology [14] and
guarantees that the mean and the variance of the empirical degree distribution converge to finite
values which are equal to the mean and variance of the limiting distribution. Condition (4) in
turn implies that G is connected with high probability [2, 18].

The following theorem summarizes the main results of the paper. Here, u∗ and v∗ represent
uniformly and independently randomly chosen nodes, corresponding to typical values of the
quantities of interest.

Theorem 1. Let G = G(n, d(n)) be a random graph satisfying the regularity conditions (2)–(4).
Then, for independent and uniformly random nodes u∗ and v∗,

W(u∗, v∗)

log n

p−→ 1

λ(ν − 1)
, (5)

maxv W(u∗, v)

log n

p−→ 1

λ(ν − 1)
+ 1

λδ ∧ λ1
, (6)

maxu,v W(u, v)

log n

p−→ 1

λδ ∧ λ0
+ 1

λ(ν − 1)
+ 1

λδ ∧ λ1
, (7)

where ν = ∑
k k(k − 1)f (k)/

∑
k k f (k).

3. Discussion and applications

3.1. Earlier work

The results of Section 2 are structurally similar to the main result in [11], which states that
for the complete graph K = Kn on n nodes, the weighted distances (without boundary weights)
satisfy

WK(u∗, v∗)

log n/n

p−→ 1

λ
, (8)

maxv WK(u∗, v)

log n/n

p−→ 2

λ
, (9)

maxu,v WK(u, v)

log n/n

p−→ 3

λ
. (10)

The above results have more recently been extended to sparse random graphs. For a random
graph G = G(n, d(n)) satisfying the regularity conditions (2)–(4), the weighted distances
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(without boundary weights) satisfy

WG(u∗, v∗)

log n

p−→ 1

λ(ν − 1)
, (11)

maxv WG(u∗, v)

log n

p−→ 1

λ(ν − 1)
+ 1

λδ
, (12)

maxu,v WG(u, v)

log n

p−→ 1

λ(ν − 1)
+ 2

λδ
. (13)

Formulas (11)–(13) agree with (8)–(10) because ν ≈ n and δ ≈ n for the complete graph on n
nodes. Formula (11) was proved in [9] for degenerate degree distributions (random regular
graph), in [7] for power-law degree distributions (when τ ∈ (2, 3)), and in [2] for general
limiting degree distributions with a finite variance. Formulas (12)–(13) have been proved in [9]
for random regular graphs and in [2, 3] for general limiting degree distributions with a finite
variance. Sparse random graphs where the limiting degree distribution has infinite variance
have in general a completely different behavior with typical passage times of order o(log n)
[6, 7] and they are not discussed further in this paper. The constant ν appearing in the above
formulas can be recognized as the mean of the downshifted size biasing [13] of the limiting
degree distribution f , and ν is finite if and only if the second moment of f is finite.

Theorem 1 generalizes formulas (11)–(13) to the setting where nodes have nonnegative
random weights X0(v) and X1(v) with exponential tail. The main qualitative findings are that
the boundary weights have no effect on the typical passage time W(u∗, v∗), but they may affect
the typical flooding time maxv W(u∗, v) and the maximum flooding time maxu,v W(u, v). All
boundary weight effects can be ignored on the log n time scale when the tails of the node
weight distributions decay sufficiently fast (λ0, λ1 > λδ).

A notable feature of the results in Theorem 1 is that the leading role of the node weight
distributions is the behavior of P(Xi(v) > t) as t → ∞, whereas the leading role of link weight
distribution is in many cases [6, 11] governed by the behavior of P(W(e) > t) as t → 0.

Remark 1. The distribution of the node weight Xi(v) is heavy-tailed if the limit in (1) is zero.
For heavy-tailed node weight distributions, it is easy to check that maxu∈V Xi(u) grows to
infinity faster than logarithmically. Hence Theorem 1 also remains formally valid when λ0 = 0
or λ1 = 0, using the convention that 1

0 = ∞.

3.2. Application: Broadcasting on random regular graphs

As an application, we discuss a continuous-time version of a message transmission and
replication model operating in a push mode [1, 2, 17]. Let G be a random δ-regular graph
on n nodes, where each node has a state in {0, 1, 2}. Initially one of the nodes called root
is in state 1, and all other nodes are in state 0. Each node activates at random time instants
according to a Poisson process of rate κ > 0, independently of other nodes and the underlying
graph structure. When a node activates, it contacts a random target among its neighbors. The
states of the nodes are updated in two ways:

• 0 
→ 1: If the initiator of a contact is in state 1 or 2, and the target node is in state 0, then
the state of the target node changes from 0 to 1; otherwise nothing happens during the
contact.

• 1 
→ 2: Having entered state 1, node v remains in this state for a random time period of
length X1(v), and then the state of node v changes into 2.
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We can interpret the model in the context of computer or biological viruses as follows: State 0
refers to nodes which are vulnerable to receiving a virus. State 1 refers to nodes carrying and
spreading the virus but displaying no symptoms. State 2 refers to nodes carrying and spreading
the virus and displaying symptoms. We denote by flood1(G) the time until every node in the
graph has received the virus, and by flood2(G) the time until every node displays symptoms.

The above model can be analyzed using the weighted random graph where all links have a
random exponentially distributed weight of rate parameter λ = κ/δ with X0(v) = 0, and X1(v)
modeling the delay until an infected node displays symptoms. Then for a random root node u∗,

flood1(G)
d= max

v
WG(u∗, v),

flood2(G)
d= max

v
(WG(u∗, v) + X1(v)).

Applying formula (6) in Theorem 1 with λ1 = ∞ corresponding to X1(v) = 0, we have, with
high probability (w.h.p.),

flood1(G) =
( 1

λ(ν − 1)
+ 1

λδ

)
log n + o(log n). (14)

Note that the same formula can also be obtained from (12). Applying (6) again, we have, w.h.p.,

flood2(G) =
( 1

λ(ν − 1)
+ 1

λδ ∧ λ1

)
log n + o(log n). (15)

These two formulas lead to the following results.

Corollary 1. For a random δ-regular graph G on n nodes with δ ≥ 3, when the distribution of
X1(v) has an exponential tail of rate λ1 according to (1),

flood1(G) = 2

κ

(δ − 1

δ − 2

)
log n + o(log n)

and

flood2(G) =
( δ

κ(δ − 2)
+ 1

κ ∧ λ1

)
log n + o(log n)

with high probability as n → ∞.

Proof. The results follow directly by substituting λ = δ/κ and ν = δ − 1 into (14) and (15).
The coefficient in (14) simplifies by direct calculation into

1

λ(ν − 1)
+ 1

λδ
= δ

κ(δ − 2)
+ 1

κ
= 2

κ

(δ − 1

δ − 2

)
. �

Figure 1 illustrates how the limiting approximations of Corollary 1 relate to simulated
values of the flooding times on 3-regular graphs. The sizes of the fluctuations around the
theoretical values appear to be of constant order with respect to n. A constant order of
fluctuations corresponds to the well-known fact in statistical extreme value theory that the
maximum of n independent exponential random numbers is approximately Gumbel-distributed
around a value of size log n. However, the additional randomness induced by the underlying
random graph may cause the fluctuations to grow slowly with respect to n. Whether or not the
fluctuations grow with n is not possible to detect from simulations of modest size, because the
growth rate of the fluctuations is at most o(log n).

Figure 2 describes simulated trajectories of node counts in different states in a random
3-regular graph of 1000 nodes. The trajectories are approximately S-shaped, with random
horizontal shifts caused by the initial and final phases of the process.
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FIGURE 1: Flooding times on random δ-regular graphs with δ = 3, κ = 1, and λ1 = 1/2. The blue circles
represent simulated values of flood1(G), and the red triangles represent simulated values of flood2(G).
The blue solid line and the red dashed line correspond to the limiting formulas of Corollary 1. (Color

online.)
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FIGURE 2: Simulated trajectories of the number of nodes in state 1 or state 2 (blue, solid) and the number
of nodes in state 2 (red, dashed) for a random δ-regular graph with n = 1000, δ = 3, κ = 1, and λ1 = 1/2.

(Color online.)

4. Proofs

4.1. Configuration model

A standard method for studying the random graph G = G(n, d(n)) is to investigate a related
random multigraph. A multigraph is a triplet G = (V, E, φ), where V and E are finite sets and
φ : E → (V

1

) ∪ (V
2

)
. Here, φ(e) refers to the set of one (loop) or two (non-loop) nodes incident

to e ∈ E. A multigraph is called simple if φ is one-to-one (no parallel links) and φ(E) ⊂ (V
2

)
(no loops). The degree of a node i is defined by

∑
e∈E (1(i ∈ φ(e)) + 1({i} = φ(e))), that is, the

number of links incident to i, with loops counted twice. A path of length k ≥ 0 from x0 to xk is

https://doi.org/10.1017/jpr.2019.30 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.30


464 L. LESKELÄ AND H. NGO

a set of distinct nodes {x0, x1, . . . , xk} such that {xj−1, xj} ∈ φ(E) for all j. For a multigraph G
weighted by W : E → (0, ∞), we denote

WG(u, v) = inf
�

∑
e∈�

W(e),

where � is the set of paths from u to v. When G is connected, the above formula defines a
metric on G.

Let us recall the usual definition of the configuration model in [8]. Let n be a positive integer
and d = (d1, d2, . . . , dn) be a sequence of nonnegative integers. For each node i ∈ [n] we attach
di distinct elements called half-edges. A pair of half-edges is called an edge. To obtain a random
multigraph G∗, it is required that the sum of half-edges d = (d1, d2, . . . , dn) is even,

∑n
i=1 di =

2m, where m refers to the number of edges. Let Di be the set of half-edges of node i. Then
the size of the set Di is di and the sets D1, D2, . . . , Dn are disjoint. Let D = ⋃n

i=1 Di be the
collection of all the half-edges and let E be a pairing of D (partition into m pairs) selected
uniformly at random. The configuration model G∗ = G∗(n, d) is the multigraph ([n], E, φ),
where the function φ : E → (n

1

) ∪ (n
2

)
is defined by φ(e) = {i ∈ [n] : Di ∩ e �=∅}.

A key feature of the configuration model is that the conditional distribution of G∗(n, d)
given that G∗(n, d) is simple equals the distribution of the random graph G(n, d). Moreover,
for a sequence of degree lists d(n) satisfying the regularity conditions (2) and (3), the probability
that G∗(n, d(n)) is simple is bounded away from zero [12]. Therefore, any statement concerning
G∗(n, d(n)) which holds with high probability, also holds for G(n, d(n)) with high probability.
This is why, in the following, we write G in place of G∗ and the analysis of weighted distances
will be conducted on the configuration model.

4.2. Notation

For a node u in the weighted multigraph, we denote by B(u, t) = {WG(u, v) ≤ t} the set of
nodes within distance t ∈ [0, ∞] from u. For an integer k ≥ 0, we define

Tu(k) = min{t ≥ 0 : |B(u, t)| ≥ k + 1},
with the convention that min ∅= ∞. We also denote by Su(k) the number of outgoing links
from set B(u, Tu(k)). Then for any k less than the component size of u:

• Tu(k) equals the distance from u to its kth nearest neighbor, and

• Su(k) equals the number of outgoing links from the set of nodes consisting of u and its k
nearest neighbors.

Moreover, Tu(k) = ∞ and Su(k) = 0 for all k greater than or equal to the component size of u.
Throughout the following, we assume that G satisfies the regularity conditions (2)–(4). We

introduce the scale parameters

αn = �log3 n�,
βn =

⌊
3
√

μ
ν−1 n log n

⌋

and, with high probability, [2, Proposition 4.2] (see alternatively [9, Lemma 3.3] or
[7, Proposition 4.9])

WG(u, v) ≤ Tu(βn) + Tv(βn) (16)

for all nodes u and v in the graph G. We will next analyze the behavior of Tu(βn) and Tv(βn) in
typical (uniformly randomly chosen node) and extremal cases.
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4.3. Upper bound on weighted distances

The following upper bound on the weighted distances is a sharpened version of
[2, Lemmas 4.7, 4.12]. Below we assume that X ≥ 0 is an arbitrary random number and
u∗ is a uniformly randomly chosen node, such that X, u∗, and the graph G are mutually
independent, and independent of the weights (W(e))e∈E(G), where weights W(e) are expo-
nentially distributed with rate λ > 0. We use FSu∗ to denote the sigma-algebra generated by
Su∗ = (Su∗(0), . . . , Su∗ (n − 1)).

Lemma 1. Fix integers 0 ≤ a < b < n and numbers c1, c2 ≥ 0, and let R be an FSu∗ -
measurable event on which Su∗ (k) ≥ c1 + c2k for all a ≤ k ≤ b − 1. For any 0 <

θ < λ(c1 + c2a),

E(eθ(Tu∗ (b)−Tu∗ (a)+X) | R) ≤ MX(θ ) exp

(
θ

θ1 − θ
+ θ

θ0

(
1

a + 1
+ log

b − 1

a + 1

))
,

where MX(θ ) = E(eθX), θ0 = λc2 − (θ−λc1)+
a+1 , and θ1 = λ(c1 + c2a).

Proof. A key property of the model is that, conditionally on Su∗ , the random numbers
Tu∗ (k + 1) − Tu∗ (k) are independent and exponentially distributed with rates λSu∗(k). On the
event R, we see that λSu∗(a) ≥ θ1, and for all a + 1 ≤ k ≤ b − 1,

λSu∗(k) − θ ≥ λc1 + λc2k − θ ≥
(
λc2 − (θ − λc1)+

k

)
k ≥ θ0k.

As a consequence,

E(eθ(Tu∗ (b)−Tu∗ (a)+X) | FSu∗ ) = MX(θ )
b−1∏
k=a

λSu∗(k)

λSu∗(k) − θ

= MX(θ )
b−1∏
k=a

(
1 + θ

λSu∗ (k) − θ

)

≤ MX(θ ) exp

( b−1∑
k=a

θ

λSu∗ (k) − θ

)
.

Separating the first term from the sum, and by the choice of the event R, we obtain

E(eθ(Tu∗ (b)−Tu∗ (a)+X) | R) ≤ MX(θ ) exp

(
θ

θ1 − θ
+ θ

θ0

b−1∑
k=a+1

1

k

)
.

By integration we have
∑n

k=m
1
k ≤ log ( n

m−1 ) for any integers 2 ≤ m < n. Hence, separating the
first term again from the sum, we have the desired result,

E(eθ(Tu∗ (b)−Tu∗ (a)+X) | R) ≤ MX(θ ) exp

(
θ

θ1 − θ
+ θ

θ0

(
1

a + 1
+ log

b − 1

a + 1

))
. �

4.4. Upper bounds on nearest neighbor distances

Proposition 1. For any 0 ≤ p ≤ 1, ε > 0, and any random variable X ≥ 0 independent of G,

P
(

Tu∗ (αn) + X >
( p

λδ ∧ θ∗ + ε
)

log n
)

= o(n−p),

where θ∗ = sup{θ ≥ 0 : E(eθX) < ∞} > 0.
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Proof. Let

tn =
( p

λδ ∧ θ∗ + ε
)

log n.

An upper bound for the event under study, An = {Tu∗ (αn) + X > tn}, is obtained by

P(An) ≤ P(An | R1) + P(An | R2 ∩Rc
1) P(Rc

1) + P(Rc
2), (17)

where

R1 = {Su∗ (k) ≥ δ + (δ − 2)k for all 0 ≤ k ≤ αn − 1},
R2 = {Su∗ (k) ≥ 1 + (δ − 2)k for all 0 ≤ k ≤ αn − 1}.

We will next analyze the conditional probabilities in (17).
(i) To obtain an upper bound of P(An | R1), by applying Lemma 1 with a = 0, b = αn,

c1 = δ, and c2 = δ − 2 and Markov’s inequality, we find that

P(An | R1) ≤ MX(θ ) exp
( θ

θ1 − θ
+ θ

θ0
(1 + log αn) − θ tn

)

for all 0 < θ < θ1 ∧ θ∗, where θ0 = λ(δ − 2) and θ1 = λδ. Now we may choose

θ ≥
(

1 − λδ ∧ θ∗

2(p + ε(λδ ∧ θ∗))
ε

)
(λδ ∧ θ∗)

to have θ tn ≥ (p + 1
2ε(θ1 ∧ θ∗)) log n. Note that θ can be arbitrary close to its maximum value

λδ ∧ θ∗ if we choose ε > 0 to be sufficiently small. Since the constant term θ
θ1−θ

is negligibly
small compared to log αn = (log log n), we have, for large values of n,

θ

θ1 − θ
+ θ

θ0
(1 + log αn) ≤ 1

4
ε(θ1 ∧ θ∗) log n.

These two inequalities imply that

P(An |R1) ≤ MX(θ )n−(p+ 1
4 ε(λδ∧θ∗)) = o(n−p). (18)

(ii) For an upper bound of PR2\R1 (An), we apply Lemma 1 with a = 0, b = αn, c1 = 1, and
c2 = δ − 2 and Markov’s inequality to conclude that

P(An | R2 ∩Rc
1) ≤ MX(θ ) exp

( θ

λ − θ
+ θ

λ(δ − 2)
(1 + log αn) − θ tn

)

for all 0 < θ < λ ∧ θ∗. For any such θ , we see that θ tn ≥ ε1 log n with

ε1 = θ
( p

λδ ∧ θ∗ + ε
)

> 0.

Because
θ

λ − θ
+ θ

λ(δ − 2)
(1 + log αn) ≤ 1

2
ε1 log n

for all large n, it follows that

P(An |R2 ∩Rc
1) = O(n−ε1/2). (19)

Note that our Su(k) has the same distribution as the exploration process in [2, Section 4.1].
Hence, by [2, Lemma 4.6], P(Rc

1) = o(n−1 log10 n) and P(Rc
2) = o(n−3/2). Hence, by substi-

tuting the bounds (18) and (19) into (17), it follows that

P(An) ≤ o(n−p) + O(n−ε1/2)o(n−1 log10 n) + o(n−3/2) = o(n−p). �
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4.5. Upper bounds on moderate distances

Proposition 2. For any ε > 0,

P
(

Tu∗(βn) − Tu∗ (αn) >
( 1

2λ(ν − 1)
+ ε

)
log n

)
= o(n−1).

Proof. Denote c = 1
2λ(ν−1) and tn = (c + ε) log n. Set c1 = 0 and c2 = 1/λc. Fix a number

θ > 2
ε
, and set θ0 = λc2 − θ

αn+1 and θ1 = λc2αn. Then, for all sufficiently large values of n, we
see that 0 < θ < θ1. When we apply Lemma 1 with X = 0, a = αn, and b = βn and Markov’s
inequality, we find that on the event R3 that Su∗(k) ≥ c2k for all αn ≤ k ≤ βn − 1,

P(Tu∗ (βn) − Tu∗ (αn) > tn | R3)

≤ exp
( θ

θ1 − θ
+ θ

θ0

( 1

αn
+ log

βn

αn

)
− θ tn

)

= exp
( θ

λc2αn − θ
+ θ

λc2 − θ
αn+1

( 1

αn
+ log

βn

αn

)
− (c + ε)θ log n

)
.

Note that βn/αn ≤ n. Because αn → ∞, we see that

P(Tu∗ (βn) − Tu∗(αn) > tn | R3) ≤ exp
(

(c + ε/2)θ log n − (c + ε)θ log n
)

= exp
(

− ε

2
θ log n

)
.

Due to our choice of θ , the right-hand side is o(n−1). The claim follows from this because
P(Rc

3) = o(n−3/2) by [2, Lemma 4.9]. �

4.6. Proof of Theorem 1: Upper bounds

Observe that E(eθXi(v)) is finite for θ < λi and infinite for θ > λi due to our assumption on
exponential tails (1). Hence, by applying Proposition 1 with p = 1,

P
(

Tv∗ (αn) + Xi(v
∗) >

( 1

λδ ∧ λi
+ ε

)
log n

)
= o(n−1),

so that, by applying the generic union bound

P(max
v

X(v) > t) ≤
∑

v

P(X(v) > t) = nP(X(v∗) > t), (20)

it follows that

max
v

(Tv(αn) + Xi(v)) ≤
( 1

λδ ∧ λi
+ ε

)
log n w.h.p. (21)

Furthermore, by applying Proposition 1 with p = 0, it follows that

Tv∗ (αn) ≤ Tv∗ (αn) + Xi(v
∗) ≤ ε log n w.h.p., (22)

and by Proposition 2 and the generic union bound (20), w.h.p.,

Tv∗(βn) − Tv∗ (αn) ≤ max
v

(Tv(βn) − Tv(αn)) ≤
( 1

2λ(ν − 1)
+ ε

)
log n. (23)
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By combining (21) and (22) with (23), we conclude that, w.h.p.,

max
v

(Tv(βn) + Xi(v)) ≤
( 1

λδ ∧ λi
+ 1

2λ(ν − 1)
+ 2ε

)
log n (24)

and

Tv∗ (βn) ≤
( 1

2λ(ν − 1)
+ 2ε

)
log n. (25)

To prove an upper bound for (5), observe that the distribution of Xi(v∗) does not depend
on the scale parameter n. Therefore, Xi(v∗) ≤ ε log n with high probability. In light of (16) and
(25), it follows that, w.h.p.,

W(u∗, v∗) = X0(u∗) + WG(u∗, v∗) + X1(v∗)

≤ X0(u∗) + Tu∗ (βn) + Tv∗ (βn) + X1(v∗)

≤
( 1

λ(ν − 1)
log n + 6ε

)
log n.

To prove an upper bound for (6), observe that by applying (16), (24), and (25), with high
probability,

max
v

W(u∗, v) = max
v

(X0(u∗) + WG(u∗, v) + X1(v))

≤ max
v

(X0(u∗) + Tu∗ (βn) + Tv(βn) + X1(v))

= X0(u∗) + Tu∗ (βn) + max
v

(Tv(βn + X1(v)))

≤
( 1

2λ(ν − 1)
+ 3ε

)
log n +

( 1

λδ ∧ λ1
+ 1

2λ(ν − 1)
+ 2ε

)
log n

=
( 1

λδ ∧ λ1
+ 1

λ(ν − 1)
+ 5ε

)
log n.

Finally, for an upper bound for (7), observe that, by (16), with high probability,

max
u,v

W(u, v) = max
u,v

(X0(u) + WG(u, v) + X1(v))

≤ max
u,v

(X0(u) + Tu(βn) + Tv(βn) + X1(v))

= max
u

(X0(u) + Tu(βn)) + max
v

(X1(v) + Tv(βn)).

And hence, by (24), it follows that, with high probability,

max
u,v

W(u, v) ≤
( 1

λδ ∧ λ0
+ 1

λ(ν − 1)
+ 1

λδ ∧ λ1
+ 4ε

)
log n.

The above inequalities are sufficient to confirm the upper bounds in Theorem 1 because ε > 0
can be chosen arbitrarily small.

4.7. Proof of Theorem 1: Lower bounds

The lower bounds are relatively straightforward generalizations of the analogous results
(11)–(13) for the model without node weights, which imply that for an arbitrarily small ε > 0,
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the weighted graph distance WG satisfies, w.h.p.,

WG(u∗, v∗)

log n
≥ 1

λ(ν − 1)
− ε, (26)

maxv WG(u∗, v)

log n
≥ 1

λ(ν − 1)
+ 1

λδ
− ε, (27)

maxu,v WG(u, v)

log n
≥ 1

λ(ν − 1)
+ 2

λδ
− ε. (28)

We first prove the following lemma and we apply it later in the proof of the lower bounds.

Lemma 2. For every integer n ≥ 1, let An(i) and Bn(i) be random numbers indexed by a finite
set i ∈ In. Assume that (An(i))i∈In are independent and identically distributed, that

|In| P(An(i) > an) → ∞,

and that Bn(i∗) > bn with high probability, where i∗ is a uniformly random point of In,
independent of (Bn(i))i∈In . Assume also that An(i) and Bn(i) are independent for every i ∈ In.
Then

max
i∈In

(An(i) + Bn(i)) > an + bn

with high probability.

Proof. Let
Mn = |{i ∈ In : An(i) > an}|

and
Nn = |{i ∈ In : An(i) > an, An(i) + Bn(i) > an + bn}|.

Observe that Mn is binomially distributed with |In| trials and rate parameter pn = P(An(i) >

an). Then E(Mn) = |In|pn and Var(Mn) ≤ E(Mn), and because |In|pn → ∞, it follows that
Mn ≥ 1

2 |In|pn with high probability. Moreover,

E(Mn − Nn) =
∑
i∈In

P(An(i) > an, An(i) + Bn(i) ≤ an + bn)

≤
∑
i∈In

P(An(i) > an, Bn(i) ≤ bn)

=
∑
i∈In

P(An(i) > an)P(Bn(i) ≤ bn)

= |In|pn P(Bn(i∗) ≤ bn).

Because P(Bn(i∗) ≤ bn) = o(1), Markov’s inequality implies that Mn − Nn ≤ 1
4 |In|pn with high

probability. We conclude that, with high probability,

Nn = Mn − (Mn − Nn) ≥ 1

2
|In|pn − 1

4
|In|pn = 1

4
|In|pn ≥ 1,

and maxi∈In (An(i) + Bn(i)) > an + bn. �
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(i) A suitable lower bound for (5) follows immediately from (26) because W(u∗, v∗) ≥
WG(u∗, v∗) almost surely.

(ii) To prove a lower bound for (6), note that the exponential tail assumption (1) implies that

n P
(

X1(v) >
( 1

λ1
− ε

)
log n

)
→ ∞.

Then, by applying Lemma 2 (with An(v) = X1(v), Bn(v) = WG(u∗, v), and In = [n]), recalling
(26), we find that, w.h.p.,

max
v

W(u∗, v) = max
v

(X0(u∗) + WG(u∗, v) + X1(v))

≥ max
v

(WG(u∗, v) + X1(v))

≥
( 1

λ(ν − 1)
+ 1

λ1
− 2ε

)
log n.

By noting that maxv W(u∗, v) ≥ maxv WG(u∗, v) and applying (27), we also obtain

max
v

W(u∗, v) ≥
( 1

λ(ν − 1)
+ 1

λδ
− 2ε

)
log n,

and hence, w.h.p.,

max
v

W(u∗, v) ≥
( 1

λ(ν − 1)
+ 1

λδ ∧ λ1
− 2ε

)
log n.

(iii) To prove a lower bound for (7), note that, for any u �= v,

P
(X0(u) + X1(v)

log n
>

1

λ0
+ 1

λ1
− 2ε

)

≥ P
(X0(u)

log n
>

1

λ0
− ε,

X1(u)

log n
>

1

λ1
− ε

)

= P
(X0(u)

log n
>

1

λ0
− ε

)
P

(X1(u)

log n
>

1

λ1
− ε

)
.

Then the exponential tail assumption (1) implies that

n(n − 1)P
(X0(u) + X1(v)

log n
>

1

λ0
+ 1

λ1
− 2ε

)
→ ∞.

Observe next that if u∗ and v∗ are independent uniformly random elements of [n], and i∗ is
a uniformly random event in In = {(u, v) ∈ [n]2 : u �= v}, then

P(WG(u∗, v∗) ∈ F) = 1

n2

∑
u

∑
v

P(WG(u, v) ∈ F)

= 1

n
P(WG(u∗, u∗) ∈ F) + n − 1

n
P(WG(i∗) ∈ F)

for all measurable sets F ⊂R. Hence, (26) implies that, w.h.p.,

WG(i∗) >
( 1

λ(ν − 1)
− ε

)
log n.
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Then we can apply Lemma 2 with An(u, v) = X0(u) + X1(v) and Bn(u, v) = WG(u, v), to
conclude that, w.h.p.,

max
u,v

W(u, v) ≥
( 1

λ0
+ 1

λ(ν − 1)
+ 1

λ1
− 3ε

)
log n.

We will next apply Lemma 2 again, this time with In = [n], An(v) = X1(v), and Bn(v) =
maxu (X0(u) + WG(u, v)), recalling (27), to conclude that, w.h.p.,

max
u,v

W(u, v) ≥
( 1

λδ
+ 1

λ(ν − 1)
+ 1

λ1
− 3ε

)
log n.

By a symmetrical argument, we also find that, w.h.p.,

max
u,v

W(u, v) ≥
( 1

λ0
+ 1

λ(ν − 1)
+ 1

λδ
− 3ε

)
log n.

By combining the above three inequalities with (28), we may conclude that, w.h.p.,

max
u,v

W(u, v) ≥
( 1

λδ ∧ λ0
+ 1

λ(ν − 1)
+ 1

λδ ∧ λ1
− 3ε

)
log n.
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