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Abstract
In recent years, using autonomous underwater vehicles (AUVs) for submarine missions has increased substantially.
One of the problems in controlling these nonlinear devices is the possibility of a fault in the system operators. Failure
causes increased operating costs and reduced vehicle performance. Therefore, the use of fault tolerance control is
essential to ensure the stability and ability of the device to continue its activity. The focus of this article is on the
trajectory tracking control for an underactuated AUV with actuator faults using kinematics and dynamics modeling.
An adaptive rule is used as an online estimation to compensate for malfunctions in robot performance. In this regard,
the adaptive fault-tolerant control plan is proposed, so that the closed-loop system is stable, and all control objectives
are achievable. At first, the dynamic model of AUV with actuator fault and disturbance is described. Next, the control
algorithm is designed for trajectory tracking in the presence of time-varying disturbances and actuator faults. The
proposed adaptive rules will overcome disturbances and actuator faults. Finally, to illustrate the effectiveness of the
proposed method, the provided controller is compared with other common control methods.

1. Introduction
The development of automated robots requires the development of related fields such as motion plan-
ning and automation control. Therefore, the design of automated mobile robots has a wide range of
dimensions [1]. In each of these areas, many researchers are researching and working [2, 3]. The control
of autonomous underwater vehicles (AUV) is one of the active debates in this field.

In past decades, due to the expansion of human activities in the seas, the problems and costs of
research in water have increased the use of underwater vehicles. Meanwhile, the AUV has been con-
sidered for greater maneuverability than other underwater vehicles [4]. Modeling and control of these
vehicles are discussed in most research. One of the challenging issues in control is fault and malfunction-
ing in actuators. Thrusters can cause undesired AUV operation and their inability to continue. Hence, the
design of a tolerant controller is an effective way against defects that can be used to provide sustainability
and the ability of the AUV to continue to work.

Fault-tolerant systems are systems in which the design of the controller is carried out in such a way
that the stability of the system is preserved when there is a defect, using the redundancy in the system
and its efficiency is as close as possible to its performance before the defect occurs.

A most common method [5] is the calculation of the residual errors between the observers-presented
computed AUV states and the sensors-given real AUV states, and then detecting, isolating, and identi-
fying thruster faults according to the residual error. This type of diagnostic procedure, however, requires
threshold values, but there is difficulty in their determination theoretically. A further usual method [6]
is the direct estimation of the thruster fault impact by reconstruction of the fault, which is studied here
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[7]. Some articles are used to accurately estimate errors from different methods, such as fuzzy method
[8], robust control [9], sliding mode theory [10], Adaptive Control [11–15] and neural network [16].

In fault reconstruction investigation, a summary of the major processes can include: initially, a sliding
mode observer is made with finite-time convergence for estimating the system states, after which the
calculated value of the fault impact is obtained by the notion of “equivalent output injection” [17]. In
investigations by Alwi et al. [18] and Yan and Edwards [19], the problem of reconstructing the fault was
examined for a linear parameter varying system or a nonlinear system with bounded uncertainty in a fixed
feedback controller, in which the construction of a sliding mode observer was according to the signature
term and proportion term of the calculated output error. Moreover, reconstructing the fault was examined
by combining a sliding mode observer and a high-gain observer for nonlinear systems [20], in which,
fixing the control input, the fault impact was not dependent on the control input. For the improvement
of the fault reconstruction accuracy, the system states were estimated by applying other observers with
quicker convergence speed. The development of a thruster fault reconstruction technique by Chu and
Zhang [6] was based on the terminal sliding mode observer structure [21], and the unidentified action
in the AUV model in the entire procedure of reconstructing the fault was estimated using the Radial
Basis Function (RBF) neural network. The RBF neural network contains an input layer, a hidden layer
(containing Gaussian transfer functions), and an output layer. Furthermore, Moreno and Osorio used a
super-twisting algorithm to present a second-order sliding mode observer [22]. Shrivastava and Dalla
[23] presented failure control approaches for space robots.

Due to the widespread nominal controller use of the AUV, the use of the fault-tolerant control system
is essential to achieve reliability, safety, sustainability, and optimal performance.

Therefore, the purpose of this study is to employ an adaptive controller to design a fault-tolerant
control against the AUV actuator faults. The proposed control scheme in this paper is based on the
separation of kinematic and dynamic equations. The kinematic control law is extracted using kinematic
equations. Then, using the adaptive controller theory and dynamic equations of the AUV, the design of
the dynamic control laws is discussed. The proposed dynamic controller structure is based on feedback
linearizing and a matching mechanism to compensate for the effect of the fault. The accuracy of the
method’s performance with simulations has been shown. The main achievements of this paper are:

1. A nonlinear kinematic controller is designed for the AUV to stabilize system tracking errors;
2. An adaptive controller is presented to control the AUV in the presence of actuator faults and

external disturbances at the dynamics level;
3. Using the Lyapunov direct method, the stability of the suggested controller is proven;
4. Comparing the performance of adaptive fault-tolerant dynamic controller with feedback lineariz-

ing dynamic controller, adaptive dynamic controller, and sliding mode dynamic controller in the
presence of actuator faults.

The paper is organized into the following sections. Following the Introduction in Section 1, the second
part deals with the kinematic model and the kinematic controller in Section 2. In Section 3, the healthy
dynamic model of the AUV is discussed. The modeling of the actuator fault and the design of the adaptive
fault-tolerant controller in the presence of a faulty dynamic model is proposed in Section 4. The results
of the simulation of the algorithm AFTDC and other controllers are shown in Section 5. Finally, the
conclusion is drawn.

2. Kinematic controller design
In this section, first, a kinematic model is investigated. Then kinematic control rules are designed
according to kinematic equations.
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2.1. Kinematic model
In this study, the AUV’s movement has been considered in four directions: surge (motion along longitude
x-direction), heave (motion along depth z-direction), sway (motion along transverse y-direction), and
yaw (rotation about the vertical z-direction).

Remark 1. In this paper, the AUV is considered with metacentric returning forces to stabilize roll
and pitch angles. Therefore, pitch (rotation in the y-direction) and the roll (rotation in the x-direction)
are negligible [24].

Thus, the kinematic model of AUV can be written as
ḣ=J (y)ϑ (1)

where y= [
x y zψ

]T denotes the three position coordinates and the yaw orientation of the AUV in the
inertial frame, respectively, ϑ = [u v w r]T denotes the corresponding velocity of the AUV in the body
frame, and J (y) is the transformation matrix between the body and the inertial frame.

J (y) =

⎡⎢⎢⎢⎢⎣
cosψ − sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ (2)

2.2. Kinematic controller
One of the goals of automatic robot control is tracking the route. In such cases, we expect the AUV
to reach a desired path in the Cartesian space starting from a specified initial condition, and to follow
it with a specific timetable. Therefore, the design of the control rules should be such that the tracking
error converges to zero. Thus, controller design is partitioned into kinetics and kinematics parts. The
controller is designed such that if the position and velocity errors are stabilized, the robot would track
the reference trajectory.

In this section, the position errors are controlled using the kinematics equations. In the following
sections, using appropriate kinetics control laws, the convergence of velocity errors towards zero is
studied. Position and velocity tracking errors are defined in (3) and (4).

Ey = yr − y (3)

Eϑ = ϑc − ϑ (4)
where yr is the desired position and ϑc is the command velocity, which is designed using kinematic
control laws.

The purpose of this section is to design the ϑc so that the position error converges to zero. In this
regard, feedback linearizing kinematic control is proposed for the control of the AUV at the kinematic
level.

Now, ϑc (commanded velocities) is defined as follows
ϑc = I−1(y){ẏr − kyEy} (5)

where ky is a diagonal matrix with positive diagonal elements.
Thus, Eq. (4) can be rewritten as follows:

Ev = I−1(y)
{Ėy + kyEy

}
(6)

where
Ėy = ẏr − ẏ (7)

It should be noted that the asymptotic convergence of the velocity errors to the origin is guaran-
teed based on Eq. (5). Since matrix I−1(y) is nonsingular, in fact

∣∣I−1(y)
∣∣ = 1, so the term Ėy + kyEy

converges to the origin as well. Hence, it can be obtained that
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Ėy = −kyEy (8)

Proposition 1. The commanded velocity (5) for the kinematic model (1) converges the tracking errors
(3) to zero.

Proof: The candidate Lyapunov function used is selected as in Eq. (9).

Vη = 1

2
ET
y Ey (9)

Differentiating the candidate Lyapunov function yields

V̇η = ET
y Ėy (10)

Substitutin (8) into (10), one obtains

V̇η = −ET
y kyEy (11)

The time derivative of the chosen Lyapunov candidate function is negative definite, hence with the
designed common velocity the tracking errors will converge to zero.

3. AUV dynamic model
The nonlinear dynamic system (Fig. 1) can be expressed as [25]

τ =Mϑ̇ + C(ϑ)ϑ +D(ϑ)ϑ (12)

where M is the mass inertia matrix, C(ϑ) corresponds to the Coriolis and centripetal matrix, D(ϑ)
denotes the damping matrix and τ is the controller force input, which are all defined as follow:

M=

⎡⎢⎢⎢⎢⎣
m − Xu̇ 0 0 0

0 m − Yv̇ 0 0

0 0 m − Zẇ 0

0 0 0 Iz − Nṙ

⎤⎥⎥⎥⎥⎦

C(ϑ) =

⎡⎢⎢⎢⎢⎣
0 0 − (m − Yv̇) v 0

0 0 (m − Xu̇) u 0

− (m − Yv̇) v (m − Xu̇) u 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦

D(ϑ) = −

⎡⎢⎢⎢⎢⎣
Xu 0 0 0

0 Yv 0 0

0 0 Zw 0

0 0 0 Nr

⎤⎥⎥⎥⎥⎦

τ =

⎡⎢⎢⎢⎣
surge force

sway force

0
heave force

⎤⎥⎥⎥⎦
Where, m is AUV’s mass, Iz is the AUV’s moment of inertia about the z-axis, Xu̇, Yv̇, Zẇ, and Nṙ are
the hydrodynamic augmented mass terms in the surge, the sway, the heave, and the yaw directions,
respectively, also Xu, Yv,Zw, and Nr are the linear damping terms. The hydrodynamic terms of higher-
order are negligible.
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Figure 1. Underwater vehicle (REMUS 100).

4. Actuator fault model
One of the most common defects that affect the function of the system is reducing the effectiveness of
an actuator or failing to complete it [26–30].

Reducing the effectiveness of the actuator can be caused by lowering the voltage of the power supply,
increasing its resistance, etc. Complete operator failure can also result from mechanical breakdowns,
wire cutouts, external barriers, and so on.

The failure in the actuator can be modeled in different ways. One of the most commonly used methods
is as follows [31]. f is faulty system and the actuator loses its control efficacy.

τ
f
i (t) = (1 − γi)σiτi(t) + δfi (13)

Here i = system actuators in x, y, and z directions, γi ∈ {0, 1} is an index reflecting whether the actu-
ator loses its effectiveness completely or not, γi =0 corresponds to the function of the actuator in a
non-fault state and γi = 1 models the complete failure of the stimulus, σi ∈ [−1, 1] is the coefficient that
shows the effectiveness of the sensor and δf is the unknown friction value.

Therefore, the AUV faulty dynamic model is as follows:

τ
f
i (t) = (1 − γi) σiMϑ̇ + (1 − γi) σiC(ϑ)ϑ + (1 − γi) σiD(ϑ)ϑ + δf (14)

5. Dynamic controller design
As mentioned in the Introduction, in passive methods, robust controller theory and principles are
employed. As they might be used in active methods but each robust controller is not necessarily fault
tolerant. Thus, in this section, conventional law controls used in AUV control are designed. Then, the
proposed controller when AUV faces actuator failure is presented. The purpose is to design an operator
for stabilizing tracking errors about the origin. The control strategy in the design of all controllers is
shown in Fig. 2.

5.1. Feedback linearizing dynamic control (FLDC)
To represent the first controller of the dynamic section, the FLDC controller is used.

To this end, tracking error is defined as follows

Eϑ = ϑc − ϑ (15)

In which ϑc is a kinematic input vector obtained from the kinematic controller design. The control
law is obtained as follows.

τ =Mϑ̇c + C(ϑ)ϑ +D(ϑ)ϑ +MKEϑ (16)

https://doi.org/10.1017/S0263574722000765 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000765


Robotica 4081

Figure 2. Adaptive fault-tolerant control scheme.

In which K is the system’s gain matrix.

Proposition 2. Control law of Eq. (16) for dynamic system stabilizes tracking error of system
velocities about origin asymptotically according to Eq. (4).

Proof: The candidate Lyapunov function used to ensure the stability of the closed-loop system is
selected as in Eq. (17).

VFLDC = 1

2
ET
ϑ
Eϑ (17)

The time derivative of the selected Lyapunov function is described in Eq. (18).
V̇FLDC = ET

ϑ
Ėϑ = ET

ϑ

(
ϑ̇c − ϑ̇

)
(18)

Equation (19) is obtained by replacing dynamic equations of Eq. (12) and applying control inputs of
Eq. (16).

V̇NDC = ET
ϑ

(M−1 {τ − C(ϑ)ϑ −D(ϑ)ϑ −MKEϑ} −M−1{τ − C(ϑ)ϑ −D(ϑ)ϑ}) (19)
Simplifications yield

V̇NDC = −ET
ϑ
KEϑ (20)

Therefore, to realize system stability and convergence of the velocity errors, the derivative of the
positive definite Lyapunov function should be negative. Hence, coefficients K should be positive.

5.2. Sliding mode dynamic control (SMDC)
Sliding mode control has features like being robust against structural and parametric uncertainties and
its transient response is proper discriminating it from other control methods.

PI filtered tracking error as the sliding surface is defined as in Eq. (21) in which K is the gain matrix
of the integrator of the sliding surface.

Sϑ = Eϑ +K
∫ t

0

Eϑ (τ )dτ (21)

Consider SMDC control law as in Eq. (22).
τ =Mϑ̇c + C(ϑ)ϑ +D(ϑ)ϑ +MKEϑ −KsSϑ − Wssgn (Sϑ) (22)

In which Ks, Ws is the control gain of the system.

Proposition 3. Control law of Eq. (22) for dynamic system stabilizes tracking error of system
velocities about origin asymptotically according to Eq. (4).
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Proof: Function of Eq. (23) which is positive definite is considered as the Lyapunov function.

VSMDC = 1

2
ST
ϑ
Sϑ (23)

The time derivative of this function is represented in Eq. (24).

V̇SMDC = ST
ϑ
Ṡϑ = ST

ϑ

(Ėϑ +KEϑ
)

(24)

By applying the control input of Eq. (22), and dynamic model Eq. (12) can be simplified as in
Eq. (25).

V̇SMDC = ST
ϑ (−KsSϑ − Wssgn (Sϑ)) (25)

Therefore, to realize system stability, the derivative of the positive definite Lyapunov function should
be negative. Hence, coefficients Ks, Ws should be positive.

5.3. Adaptive nonlinear dynamic control (ANDC)
In this section, an adaptive robust controller for the AUV is presented. Calculation and proof of ANDC
control laws are given in [32]. Here, the ANDC control law is described only.

τ =Mϑ̇c + C(ϑ)ϑ +D(ϑ)ϑ +MKEϑ +Msgn
(
ρ̂i ‖ϑ‖i−1 (i ∈N = {1, 2, 3} )

)
(26)

accompanied with the subsequent adaptive rules is used to obtain the unknown parameters
˙̂ρ1 = β0 ‖Eϑ‖ , ˙̂ρ2 = β1 ‖Eϑ‖ ‖ϑ‖1 , ˙̂ρ3 = β2 ‖Eϑ‖ ‖ϑ‖2 (27)

Hence, the ρ̂i is adaptive rules and β > 0, are controller gains. The β is selected using the trial and
error method.

5.4. Adaptive fault-tolerant dynamic control
Usually, it is very difficult to predict and prevent the occurrence of faults. The fault impact range varies on
system performance. The occurrence of a fault sometimes causes a brief decrease in system performance
and at times can lead to system failure. Hence, in this section, the AFTDC algorithm is proposed.

To this end, dynamic velocities tracking error is defined as follows

Ėϑ = ϑ̇c − ϑ̇ (28)

Substituting (13) into (12) yields

ϑ̇ =M−1τ
f
i +M−1δfi −M−1C(ϑ)ϑ −M−1D(ϑ)ϑ (29)

The time derivative of the system error in (5) becomes

ϑ̇c = ϑ̇c (y, yr, ẏr, ÿr) (30)

Then, substituting (29) and (30) into (28) yields

Ėϑ = ϑ̇c −M−1σiτ −M−1δfi +M−1C(ϑ)ϑ +M−1D(ϑ)ϑ (31)

An AFTDC method will be designed to maintain acceptable performance even in the presence of the
actuator’s fault. The compensable faults in (13) and (14) can be divided into the following three groups.

I. No-fault: when the actuator works healthily, namely, γi = 0, σi = 1, δfi = 0

II. Faulty: when the actuator loses its control efficacy partially, namely, γi = 0, σi ∈ (0, 1), δfi = 0

III. Actuator loss: when the actuator loses its control efficacy completely, namely, γi = 1

Let’s consider that all σi(t) is a diagonal matrix with σi(t) ∈ (0, 1] for actuators of the system,
which are piecewise constant but unknown. Thereupon, a corresponding nominal control signal is
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designed as

τ ∗ = χ (i)τd (32)

where τd is a control signal to be designed and χ (i) = 1
σi(t)

, which are unknown.
Let χ̂ (i) denote the estimates of χ (i) and δ̂f denote the estimates of δf . Then, the adaptive dynamic

control law is designed as

τ = χ̂ (i)τd (33)

τd =M
{
ϑ̇c −M−1̂δf +M−1C(ϑ)ϑ +M−1D(ϑ)ϑ +KEϑ

}
(34)

accompanied with the subsequent adaptive rules is used to obtain the unknown parameters
˙̂χ = −ciτdET

ϑ
M−1 (35)

˙̂
δfi = QiM−1Eϑ (36)

The estimation errors are defined as follows

χ̃(i) = χ (i) − χ̂(i) (37)

δ̃fi = δfi − δ̂fi (38)

It is noteworthy that adaptive rules are designed to compensate for the actuator loss of AUVs.
Therefore, the error dynamic in (31) becomes

Ėϑ = ϑ̇c −M−1σiτ
∗ −M−1σi(τ − τ ∗) −M−1δfi +M−1C(ϑ)ϑ +M−1D(ϑ)ϑ (39)

Substituting (32)–(34) into (12) yields

Ėϑ = ϑ̇c −
{
ϑ̇c −M−1δ̂f +M−1C(ϑ)ϑ +M−1D(ϑ)ϑ +KEϑ

}
− {M−1σi

(
χ − χ̂

)
τd

} −M−1δfi +M−1C(ϑ)ϑ +M−1D(ϑ)ϑ

= −KEϑ +M−1̃δf −M−1σiχ̃τd (40)

Proposition 4. Control law of Eq. (29) and the adaptation rules (31, 32) stabilize tracking errors of
system velocities about origin asymptotically according to Eq. (4).

Proof : Consider the following Lyapunov function candidate:

VAFTC = 1

2
ET
ϑ
Eϑ + 1

2
δ̃

T

f Q−1
i δ̃f + 1

2
σic

−1
i χ̃

2 (41)

By differentiating (37), Vϑ can be calculated as

V̇AFTC = ET
ϑ
Ėϑ + δ̃

T

f Q−1
i

˙̃
δf + σic

−1
i χ̃

˙̃χ (42)

With (40), the time derivative of Lyapunov function (42) can be calculated as

V̇AFTC = −ET
ϑ
KEϑ < 0 (43)

6. Results and discussion
In this section, we will evaluate the performance of the controller proposed in this paper. The selected
control laws for the actuator forces given in the previous section are applied to the nonlinear system
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Table I. The Remus model parameters.

Parameter Symbol Value Units
Mass of AUV m 30.48 Kg
Moment of inertia Iz 3.45 kg.m2

Linear drag Xu −8.8065 kg/s
Linear drag Yv −65.5457 kg/s
Linear drag Zw −65.5457 kg/s
Linear drag Nr −6.7352 kg/s
Added mass Xu̇ −0.93 Kg
Added mass Yv̇ −35.5 Kg
Added mass Zẇ −35.5 Kg
Added mass Nṙ −35.5 kg.m2

Table II. Selected parameters of the four controllers.

Controller Parameters Value
FLDC ky, K1, K2, K3 0.5, 30,30, 20
SMDC ky, K1, K2,K3, Ks, Ws 0.5, 30, 30, 30, 4, 3
ANDC ky, K1, K2, K3,β0,β1, β2 0.5, 30,30, 20, 300, 1000, 1000
AFTDC ky, K1, K2, K3, Qi, ci 0.5, 30,30, 20, 1, 480

described by the AUV’s model in Eqs. (1) and (12), and the performance is evaluated through some
comparative results. In these analyses, a practical AUV called the REMUS AUV is considered. The
actual values of the REMUS AUV parameters are reported in Table I.

The considered reference trajectory is

x = 10 sin
( t

8

)
; y = 10 cos

( t

8

)
; z = 10 sin

( t

4

)
(44)

To investigate the performance of the proposed method in fault detection, the proposed AFTDC
controller is compared to the other controllers such as FLDC, SMDC, and conventional ANDC.

The parameters of these controllers are reported in Table II.
In the early moments of the beginning of the movement, it is assumed that the system is operated

in normal working conditions with the assumed uncertainties and disturbances. Then, the fault-tolerant
capability of these controllers is considered. To model the effects of system faults, it is assumed that the
following fault functions and external disturbances exist in the system:

Case study 1:

Surge force:

⎧⎨⎩ τ = τd 0 ≤ t< 25

τ = 0.1τd 25 ≤ t

Sway force:

⎧⎨⎩ τ = τd 0 ≤ t< 35

τ = 0.2τd 35 ≤ t

Heave force:

⎧⎨⎩ τ = τd 0 ≤ t< 45

τ = 0.15τd 45 ≤ t
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Figure 3. Position errors in the x-direction for the four compared controllers, 1st case study.

Figure 4. Position errors in the y-direction for the four compared controllers, 1st case study.

The external disturbances are assumed as follows:

d =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1 sin

(
t
5

)
0.05 sin

(
t

15

)
0.65 cos

(
t

15

)

⎤⎥⎥⎥⎥⎥⎥⎦

T

(us (t − 60)− us (t − 80)) (45)

where

us(t) =
[

1, t ≥ 0

0, otherwise

It means that a sudden fault ( τ = 0.1τd 25 ≤ t ) occurs in the first actuator from t ≥ 25 s, while the
second and third actuators’ losses 80% and 85% of their efficiency from the time t ≥ 35 s and t ≥ 45 s,
respectively.

According to Figs. 3–5, the FLDC has poor performance in the face of faults and disturbances.
However, other controllers after the occurrence of the fault, by increasing the amplitude control sig-
nal (Figs. 6–8), have somewhat remedied the fault. The reason for this is the relative fault tolerance
property of robust controllers. However, AFTDC display better performance.

Next, we consider the fault-tolerant capability in the presence of higher faults. to consider the
outcomes of the fault in the system, we suppose that the following fault function subsists in the system.

Case study 2:
γi = 0, σi = 1 for t< 30
γi = 0, σi = 10−5 for t ≥ 30
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Figure 5. Position errors in the z-direction for the four compared controllers, 1st case study.

Figure 6. The surge forces of the AUV for the four compared controllers, 1st case study.

Figure 7. The sway forces of the AUV for the four compared controllers, 1st case study.

According to Figs. 9–12, the FLDC, SMDC, and ANDC have poor performance in the face of large
faults. Still, the best performance is related to the AFTDC. adaptive rules are used as online estimation
to compensate for malfunctions in robot performance. Therefore, the designed controller is resistant to
the effects of fault due to the use of adaptive estimators, and as expected the controller fully compensates
for the effects of faults. The range of magnitude, numerical values, and oscillations of the control forces
are in a suitable margin, and robot actuators can produce them.
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Figure 8. The heave forces of the AUV for the four compared controllers, 1st case study.

Figure 9. AUV paths with the proposed controller.

Figure 10. Position errors in the x-direction for the four compared controllers, 2nd case study.

7. Conclusions
In this paper, the fault-tolerant controller is proposed for AUV with external disturbance and actua-
tor fault. To reduce computational complexity, the controller is designed in two parts: kinematics and
dynamics. In the dynamic model, the loss of a part of the fault is considered to be the system’s effec-
tiveness. To compensate for the effects of the actuator fault and to attenuate the disturbance, an AFTDC
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Figure 11. Position errors in the y-direction for the four compared controllers, 2nd case study.

Figure 12. Position errors in the z-direction for the four compared controllers, 2nd case study.

scheme is suggested. The comparison of the obtained results of the AFTDC and other controller algo-
rithms shows the superiority of the AFTDC in the presence of actuator faults and external disturbances.
Therefore, the proposed method has good fault tolerance capability.
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