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Quantifying Randomness Versus Consensus in Wine
Quality Ratings™
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Abstract

There has been ongoing interest in studying wine judges’ performance in evaluating wines.
Most of the studies have reached a similar conclusion: a significant lack of consensus exists
in wine quality ratings. However, a few studies, to the author’s knowledge, have provided
direct quantification of how much consensus (as opposed to randomness) exists in wine
ratings. In this paper, a permutation-based mixed model is proposed to quantify randomness
versus consensus in wine ratings. Specifically, wine ratings under the condition of randomness
are generated with a permutation method, and wine ratings under the condition of
consensus can be produced by sorting the ratings for each judge. Then the observed wine
ratings are modeled as a mixture of ratings under randomness and ratings under consensus.
This study shows that the model can provide excellent model fit, which indicates that wine
ratings, indeed, consist of a mixture of randomness and consensus. A direct measure is easily
computed to quantify randomness versus consensus in wine ratings. The method is
demonstrated with data analysis from a major wine competition and a simulation study.
(JEL Classifications: C10, C13, C15)

Keywords: Mixed model, permutation, quantifying randomness, wine judge consensus.

I. Introduction

Faced with an enormous number of choices of different wines, consumers often rely
on expert opinion to guide their purchase decision. Having recognized the influence
on their sales and profits of winning awards, wineries actively participate in different
wine competitions. Evaluation of wine quality in wine competitions is usually
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conducted by professional wine judges. Wine quality is an abstract measure that is
difficult to define. In addition, a judge’s personal perception of a wine’s quality may
be affected by extraneous factors, such as the order in which the wines are tasted and
the other wines in the lineup. A substantial lack of consensus has been found among
wine judges (Cao and Stokes, 2010; Gawel and Godden, 2008; Hodgson, 2008,
2009). As a consequence, the lack of consistency may compromise the credibility
of wine competitions, which could lead to a loss of consumer confidence in the
competition results.

Consensus, or interrater agreement, refers to the degree of agreement among
judges. Most of wine-tasting scores are ordinal. Some of the commonly used
statistics to measure agreement for ordinal data are: Spearman’s rank correlation,
Cohen’s kappa (Cohen, 1960), and Fleiss’s kappa (Fleiss, 1971). Spearman’s rank
correlation measures the correlation between the ranks of two variables. Cohen’s
kappa is a chance-corrected measure of interrater agreement for qualitative data
(categorical, ordinal, etc.). Note that Cohen’s kappa measures agreement only
between two raters. Fleiss’s kappa is a generalization of Cohen’s kappa to measure
agreement among K (K> 2) raters. All these measures have a range from -1 to 1,
where the sign indicates the direction and the magnitude indicates the strength of
agreement. The closer the statistics are to 1, the stronger the positive interrater
agreement.

Ashton (2012) reviewed a number of earlier studies and concluded that
consensus of wine judges is considerably below the consensus of judges in other
fields, but wine ratings appear not to be entirely random. The study used the Pearson
correlation (r=0.34) to measure the average level of consensus across the wines
between the ratings of each pair of judges. Although this correlation provides some
information on the consensus of wine judges, it does not directly quantify
randomness versus consensus in wine quality ratings. In fact, all the above
mentioned statistics fail to quantify randomness versus consensus regarding
interrater agreement. To address this issue, this study will investigate (1) whether
wine ratings consist of a mixture of two components (i.e., randomness and
consensus); (2) the proportions in the mixture of the two components; and
(3) whether the corresponding mixed model can adequately explain the variation
in wine ratings.

In this paper, a permutation-based mixed model is proposed to quantify
randomness versus consensus in wine ratings. Specifically, the distribution of
observed average wine ratings is modeled as a mixture of the distribution of
average wine ratings under complete randomness generated based on a permutation
method and the distribution of average wine ratings under perfect consensus,
which can be easily obtained by sorting the wine ratings for each judge. This
study shows that such a model can provide an excellent model fit and a direct
measure to quantify randomness versus consensus in wine ratings. The method is
demonstrated with data analysis from a major wine competition and a simulation
study.
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II. Examination of Wine-Tasting Data

The analysis is conducted using data from the 2009 California State Fair
Commercial Wine Competition (CSFCWC). A total of 68 judges were assigned to
17 panels to evaluate 2,496 different wines. Each panel of 4 judges evaluated around
150 different wines over two days. The judges, who each served on a single panel,
were instructed to provide ordinal grades (i.e., No award, Bronze, Bronze +), which
were later transformed to numerical scores (i.e., 80, 84, 86, 88, 90, 92, 94, 96). In
each panel, the ranking of the wines is determined by the average scores (ratings)
across the judges. Table 1 shows a sample of the observed ratings from one of the
panels (denoted as Panel A), where the rows represent the wines, and the columns
represent the judges.

To make the examination of the wine ratings more straightforward, a color plot
(or heat map) is constructed to display the data (see Figure 1). A warmer color
corresponds to a higher rating. Specifically, the colors brown, red, orange, yellow,
green, light blue, blue, and dark blue correspond to ratings of, respectively, 96, 94,
92, 90, 88, 86, 84, 80. The left-hand panel in Figure 1 displays a subset of the
observed ratings in Panel A. From left to right, the columns represent the ratings
assigned by the four judges. From top to bottom, the rows correspond to the wines
included in the panel. The center panel in Figure 1 shows the ratings under perfect
consensus for the same group of judges (denoted as the consensus set of ratings). It is
constructed by sorting the ratings from highest to lowest for each judge. It represents
the case in which judges are in perfect agreement on the order of the wines, and they
are allowed to use different ratings. For example, the top-ranking wine was assigned
92, 96, 96, and 94 by the four judges, respectively. The right-hand panel shows the
ratings under complete randomness (denoted as the random set of ratings). It is
constructed by permuting (shuffling) the ratings for each judge, which mimics the
case in which each judge randomly assigns ratings to the wines, and the ratings are
randomly picked from the values used in his rating pattern.

Table 1
A Subset of Raw Data from Panel A

J1 J2 J3 J4
74} 90 90 96 94
w2 90 88 84 80
w3 86 84 80 80
w4 84 90 80 80
w5 88 96 80 86
w6 90 80 90 88
wi 84 80 80 80
w8 86 92 80 94
w9 90 86 90 84
w10 80 86 88 80
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Figure 1
Wine-Tasting Data Heat Map
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The color index of brown, red, orange, yellow, green, light blue, blue, and dark blue correspond to 96, 94, 92, 90, 88, 86, 84, and 80, respectively. The left-hand panel shows a sample of the ratings assigned by
the four judges in Panel A, where rows represent different wines and columns represent judges. The center panel shows the ratings under perfect consensus for the same group of judges. The right-hand panel
shows the ratings under complete randomness.
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The wine ratings shown in Figure 1 have several interesting features. First, the
judges have different rating patterns (profiles), which can be seen from the center
panel of ratings in the consensus set. In terms of bias, which is the systematic
difference between a judge’s rating and the average rating from all the judges, Judge
J4 is more stringent than Judge J1 because J4 assigned more lower ratings to the
wines than did J1. In terms of discrimination, which measures a judge’s ability to
distinguish wines based on their quality (Cao and Stokes, 2010), Judge J2 used a
wider range of ratings (with all eight levels) than Judge J1, who only used five levels.
If the judges had the same rating pattern, the center panel would look like a layer
cake, with the same number of different levels of ratings among judges. This first
feature implicitly explains why the random ratings cannot be generated by assuming
that each possible rating is equally likely to be assigned by a judge. Instead, by
permuting the ratings for each judge, the respective rating pattern is maintained
when simulating random ratings for each judge. In this paper, the statistical software
R is used to produce permutation, where the probabilities for random selection are
applied sequentially—that is, the probability of choosing the next item is the same
among the remaining items. Such permutation methods have been commonly used
in statistics to generate data under randomness, for example, in microarray data
analysis (Cui et al., 2005; Tusher et al., 2001).

Based on Figure 1, it appears that the observed ratings contain considerable
amount of randomness. However, a certain degree of consensus is evident in the left-
hand panel (observed ratings), compared to no consensus in the right-hand panel
(random ratings). For example, there are six rows (i.e., wines) with the same rating
from at least three judges in the left-hand panel, while in the right-hand panel there
are only two rows with the same rating from three judges. The goal is to quantify
randomness versus consensus among all the judges—that is, how much variation in
observed ratings is from randomness and how much is from consensus.

III. Method

In statistics, a mixed distribution is used to describe the behavior of a random
variable whose values are derived from an underlying set of other random variables.
The history of data analysis using mixed models dates back more than 100 years to
the famous statistician Karl Pearson (1894); he fitted a mixture of two normal
probability density functions with different means and variances. In his paper,
Pearson suggested that the asymmetry in the distribution of the observed data
(measurements on the ratio of forehead to body length of 1,000 crabs sampled
from the Bay of Naples) stems from a mixture of two homogeneous subsets
(i.e., two subspecies of crabs). More formally, a distribution f is a mixture of
K component distributions f1, f>, ..., f3 if

S =YK i),

where the J; are the mixing weights, 4, > 0, and > X 7, = 1.
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In the past 30 years, considerable advances (in theory and application) have been
made in mixed models thanks to the advent of the modern computing techniques.
Mixed models have been successfully applied in such fields as astronomy, biology,
genetics, medicine, economics, and engineering, among many other research areas
in the biological, physical, and social sciences (McLachlan and Peel, 2000). In this
paper, we use a mixed model to study the two components in wine ratings:
randomness and consensus.

Wine competitions usually use the average ratings across judges to determine the
ranking of wines. Let X be the average rating, which is a random variable, and
d,(X) the density function of X under observation, d.(X) the density function of X
under perfect consensus, and d.(X) the density function of X under complete
randomness. Then the proposed model to describe the mixture distribution has the
form of

do(X) = prdr(X) + (1 —Pr)dc(X), (1)

where p, is the proportion of the random component in the mixed model and 1 - p, is
the proportion of the consensus component. An empirical estimate of the three
densities can be conveniently obtained by constructing the density histogram.
Plots (a), (b), and (c) in Figure 2, which is based on the data from a panel
(denoted as Panel B) in the CSFCWC, are the histograms for the observed average
ratings (X.observed in the original dataset), average ratings under perfect consensus
(X.consensus in the consensus set), and average ratings under complete randomness
(X.random in the random set), respectively. The range of the variables is partitioned
into a fixed number of bins, in this case 10 bins. The empirical estimate of density is
then the height of each bin (i.e., the relative frequency). One technical aspect is that
100 sets of the ratings under randomness (each set has the same number of wines as
in the observed dataset) are generated to construct d.(X) from one set of random
ratings, which results in quite unstable d.(X). Based on the application and
simulation studies in the following, d.(X) becomes very stable with 100 permutation
sets, and thus 100 sets is chosen for use in this method. Note that 100 permutation
sets are used to construct a stable distribution of ratings under randomness, but this
does not affect the number of bins chosen to estimate density d,(X). Increasing the
number of permutation sets means increasing the data size, which does not change
the density curve. The number of bins can be any fixed number—that is, 5, 10, or 20.
In this study, 10 bins are used because it is a convenient number and it is sufficient to
fit the model.

Model (1) can be rewritten as
do(X) — do(X) = pr(di(X) — d (X)),

which is a zero-intercept simple linear regression model with d,(X) — d.(X) as the
response variable and d.(X) — d/(X) as the explanatory variable. The regression
coefficient p, can be easily computed using least squares estimation.
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Figure 2
Plots for Panel B
Panel B: P_r= 0.62 and R*2= 0.8
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Plots from data analysis of wine ratings in Panel B, where the proportion of randomness is p,=0.62 and the coefficient of determination is
R>=0.80. Plots (a), (b), are (c) are the histograms for the observed average ratings, the average ratings under perfect consensus, and the
average ratings under complete randomness, respectively. Plot (d) shows the histogram for fitted average ratings based on the mixture
model. Plot (e) is the scatter plot of d,(X) — d(X) versus d(X) — d (X ) and the fitted zero-intercept regression line. Plot (f) is the

residual plot.

The proposed method is based on the average score for ordinal data. It should be
noted that the quantification of randomness versus consensus is not measured
directly by the average score as numerical values but modeled based on the
distribution of the average score. The proposed method is also different from the
ANOVA model based on the original data, where the factor for the judges measures
the judges’ bias (stringent, neutral, or generous), the factor for wine measures the
order of wines based on the general opinion of judges, and the error term accounts
for the remaining unexplained variation. Note that the error term in the ANOVA
model is not the same randomness studied in this paper. The randomness in
Model (1) refers to the case in which each judge randomly assigns ratings to the
wines, which do not depend on any parametric assumptions. The error term in the
ANOVA model depends on the fitted model, which measures the unexplained
variation after including the judge factor and the wine factor in the model.
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Figure 3
Plots for Panel C
Panel C : P_r = 0.85 and R*2 = 0.95
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Plots from data analysis of wine ratings in Panel C, where the proportion of randomness is p,=0.85 and the coefficient of determination is
R>=0.95. Plots (a), (b), and (c) are the histograms for the observed average ratings, the average ratings under perfect consensus, and the
average ratings under complete randomness, respectively. Plot (d) shows the histogram for fitted average ratings based on the mixture
model. Plot (e) is the scatter plot of d,(X) — d(X) versus d,(X) — d(X) and the fitted zero-intercept regression line. Plot (f) is the

residual plot.

IV. Application

Model (1) is applied to each of the 17 panels in the CSFCWC dataset. The
probability of randomness p, varies from 0.62 to 0.85. Based on the scatter plot and
the residual plot (see Figure 2 and Figure 3), Model (1) can capture the main pattern
in the data. The coefficient of determination (R*), which is the proportion of the
total variation of outcomes explained by the model, varies from 0.80 to 0.95,
indicating good to excellent model fit.

Figure 2 shows the results from Panel B, which has the lowest p, (p,=0.62) among
all the panels. It means that there is 62% of randomness and 38% of consensus in
those wine ratings. Plots (d), (e), and (f) are the histogram for the fitted average
ratings (X.fitted) based on Model (1), the scatter plot of the response variable
(d,(X)—dJ(X)) and the explanatory variable (d(X)— d. (X)) in the model, and
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the residual plot (X.fitted—X.observed). In addition to the evidence of R*=0.8, the
model fit can be assessed by (1) comparing plots (d) and (a) (the histogram of
X fitted versus the histogram of X.observed), which appear to have a similar shape;
and (2) examining plots (¢) and (f), which show that the fitted straight line has
captured the linear relationship in the scatter plot and the residuals are well behaved
(i.e., no outlier and no evidence of nonrandom pattern).

Figure 3 shows the results for the panel (denoted as Panel C), which has the
highest p, (p,=0.85) among all the panels. It means that there is 85% of randomness
and 15% of consensus in those wine ratings. The adequacy of model fit can be
confirmed by R*=0.95 and by examining the plots in Figure 3 in the same way as
described for Figure 2.

In all the panels considered, there is more randomness than consensus in wine
ratings, which is indicated by p, > 0.5. In addition, the lowest p, and the highest p,
among all the panels differ by more than 20%. This conclusion is supported by the
adequate model fit of the data. It can also be corroborated through visual
analytics. First, for all the panels, the histogram of X.observed resembles more
closely the histogram of X.random than that of X.concensus, resulting in p,>0.5.
Second, for a panel with a smaller p, the histogram of X.observed has clearer
influence than that of X concensus and more obvious deviation from that of X.
random. Note that the distribution of X.concensus generally is flatter than that of X.
random because under consensus judges agree on the ranking of wines, which
produces more extreme scores on two ends than does the random case. In Panel B,
the distribution of X observed is less spiked and has significantly more average
ratings at the low end than does X.random (see the first two bins in the histogram),
which can be attributed to a higher percentage of the consensus component in the
mixed distribution. By comparison, in Panel C, the distribution of X.observed is
almost a duplicate of the distribution of X.random, except for a few more average
ratings at the low end. This indicates that the random component is the absolute
dominant component in the mixed distribution and the consensus component
becomes trivial. The visual comparison is consistent with the difference in the
model-based p, in the two panels.

V. Simulation Study

In this section, we further investigate the performance of the proposed method by
conducting a simulation study to examine whether the model can correctly quantify
randomness versus consensus. With the simulation truth known, this study provides
additional evidence regarding the utility of the method.

The study includes a spectrum of proportions of randomness (p,), which is set
from 0.5 to 0.95 with an increment of 0.05. Based on the setup of the CSFCWC
dataset, the generated wine ratings in each panel consist of a specific proportion (p,)
of ratings, which are randomly selected (i.e., simple random selection in which
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Table 2
Simulation Results

Pr ﬁr SD(ﬁr) RZ

0.50 0.500 0.052 0.901
0.55 0.546 0.052 0.904
0.60 0.598 0.055 0.916
0.65 0.649 0.057 0.925
0.70 0.697 0.056 0.933
0.75 0.750 0.060 0.939
0.80 0.794 0.062 0.944
0.85 0.846 0.060 0.951
0.90 0.897 0.063 0.954
0.95 0.946 0.060 0.959

each rating has the same probability of being chosen) from the random set, and the
remaining proportion (1 — p,) of ratings, which are randomly selected from the
consensus set. This produces a dataset with a mixture of p, of randomness and 1 — p,
of consensus. Data are generated following this design for each panel, and the
simulation is repeated 100 times.

Table 2 summarizes the simulation results. The four columns in the tables
represent the true value of p,, the estimate of p, (i.e., p,) and the standard deviation
of the estimate (i.e., SD(p,)) over the panels and 100 simulations, and R? to measure
the model fit, respectively. The study shows that p, is unbiased for the whole
spectrum of p,, the variation of p, is stable, and the fit of Model (1) is excellent, as
indicated by an average R*>0.9 for all the cases.

VI. Discussion

In this paper, a permutation-based mixed model is proposed to quantify
randomness versus consensus in wine quality ratings. Compared to the existing
measures on interrater agreement, the new method has a number of advantages.
First, it is simple to implement and easy to interpret. Many of the current statistics
on interrater agreement provide a measure on the strength of consensus, but they
do not directly measure the amount of randomness versus consensus in multirater
studies. Unlike those measures, the proposed two-component mixed model
provides a direct answer on the percentage of randomness (and consensus) in wine
ratings.

Second, the method is flexible to allow wine judges to have their personal rating
patterns. Note that there are different operational definitions of rater agreement.
The two commonly used ones are (1) raters agree with one another on the exact
ratings to be awarded, and (2) raters agree on which performance is better and which
is worse. They respectively correspond to two types of behavior: (1) raters behave
like “rating machines” (e.g., a computer program to rate essays), and (2) raters
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behave like independent witnesses who may have their own standard for evaluation.
The wine quality ratings shown in Figure 1 clearly demonstrate that wine judges
have independent rating patterns, so it is thus reasonable to follow the second
definition of rater agreement. Note that Cohen’s kappa and Fleiss’s kappa measure
rater agreement based on an exact matching of ratings (i.e., definition 1 of rater
agreement). Spearman’s rank correlation is an appropriate measure regarding
definition 2 of rater agreement; however, it works for only two raters. The proposed
method maintains judges’ own rating patterns (i.e., definition 2 of rater agreement),
and it allows multiple judges in the study (i.e., judges can number more than two).

Third, the validity of the proposed method can be assessed by examining model
fit of the mixture model. Many of the current rater-agreement statistics do not
consider the quantitative composition of observed ratings. They are often used to
test whether or not consensus is zero. Note that whether or not consensus is zero is
generally not as relevant as how much consensus is in the ratings. By comparison,
model diagnostics for simple linear regression models can be used to find out
whether the proposed two-component mixed model provides adequate fit for the
data and whether the quantification of randomness versus consensus for wine
quality ratings is trustworthy. The adequate model fit from the real data analysis
indicates strong evidence that wine ratings consist of a mixture of two components
(randomness and consensus) and the mixed model can adequately explain the
variation in wine ratings.

In the proposed mixed model for wine quality ratings, the randomness may come
from two sources. One is pure error stemming from the inconsistency of wine
judge performance (Hodgson, 2008). The other is due to different taste profiles of
wine judges. In fact, judges’ personal perception of a wine’s quality can differ
considerably, which leads to judges’ divergence in wine appreciation. For example,
even for well-respected professional wine judges, such as Robert Parker and
Jancis Roberson, the mean correlation of wine ratings is only about 0.45. Thus,
a seemingly large percentage of randomness in wine quality ratings may not all be
attributed to inconsistency of judges in wine tasting. Using a definition of
consistency in wine judge performance as the ability to award similar scores to
samples of the same wine, Hodgson (2008) used an ANOVA model to measure a
judge’s ability to consistently evaluate samples of the identical wine. In his study,
he used a collection of wines for which each wine has triplicate samples poured from
the same bottle. The unique design of the wine tasting makes it possible for Hodgson
to conduct this unprecedented study. Without replicated samples, it is difficult to
examine the respective contribution of the two sources to the randomness in wine
ratings. However, with replicated samples, it is possible to examine judges’
inconsistency. It enables us to further decompose the randomness in the mixed
model, in which pure error is a cleaner measure of judges’ inconsistency and the taste
profile can be used to train the judges to have a more uniform tasting standard,
if that is desirable. The extension of the mixed model to further explain randomness
is our object of future study.
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