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We discuss a new class of Banach spaces which are wider than the strongly convex
spaces introduced by Congxin Wu and Yongjin Li. We prove that the new class of
Banach spaces lies strictly between either the class of uniformly convex spaces and
strongly convex spaces or the class of fully k-convex spaces and strongly convex
spaces. The new class of Banach spaces has inclusive relations with neither the class
of locally uniformly convex spaces nor the class of nearly uniformly convex spaces.
We obtain in addition some characterizations of this new class of Banach spaces.

1. Introduction

In 1936, Clarkson [2] introduced the concept of uniform convex Banach spaces. Con-
sequently, some methods were found to investigate the property of Banach space
from the geometric structure of the unit sphere in Banach space. This initiated
the study of convexity of Banach space. Since convexity has a striking intuitive
geometric meaning, many mathematicians were attracted to this field of study.
Smoothness, later introduced as a dual notion of convexity, is closely related to the
various properties of differentiability of norm (a kind of special convex function).
This prompted further in-depth study of smoothness and the further development
of the smooth theory of Banach space. As two important properties of geome-
try in Banach space, both convexity and smoothness not only have promoted the
development of geometric theories of Banach space, but are also widely applied to
such fields as control theory, operator theory, optimal approximation theory and
fixed-point theory.

In 1936, the concept of uniformly rotund (UR) Banach spaces was first intro-
duced by Clarkson. In 1955, the locally uniformly rotund (LUR) Banach spaces
were introduced by Lovaglia [10] as a generalization of UR spaces. Indeed, this is
the local version of UR spaces and need not be reflexive in general. Later, two
more generalizations of uniform convexity were introduced for Banach spaces. In
1979, Sullivan [16] introduced the k-uniformly rotund (kUR) spaces, and in 1980
Huff [7] introduced the nearly uniformly convex (NUC) Banach spaces. By ‘fixing’
one variable, Sullivan gave the local version of kUR spaces, i.e. locally k-uniformly
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rotund (LkUR) spaces. In 1994, Kutzarova and Lin [8] gave the local version of
NUC spaces, i.e. locally nearly uniformly convex (LNUC) spaces. Obviously, NUC
spaces imply LNUC spaces. Fan and Glicksberg [5, 6] extended the fully 2-convex
(2R) Banach spaces which were introduced by Šmulian [15], and studied the fully
k-convex (kR) Banach spaces. It is well known that kUR and kR spaces imply
reflexivity. In 1993, Wu and Li [17] introduced the strongly convex spaces. In 1998,
Wulede and Wu [19] introduced the k-strongly convex spaces as a generalization
of strongly convex Banach spaces and proved that kUR spaces imply k-strongly
convex spaces. About kUR, LkUR and kR spaces, we have the following chain of
implications [4, 5, 10,21]:

2R =⇒ · · · =⇒ kR =⇒ (k + 1)R;
UR =⇒ LUR = L1UR =⇒ L2UR =⇒ · · · =⇒ LkUR =⇒ L(k + 1)UR.

In 1972, Daneš [3] proved the so-called ‘drop theorem’. For any Banach space
(X, ‖·‖) and every closed set C ⊂ X disjoint from closed unit ball U(X) of X, there
exists a point x ∈ C such that D(x, U(X)) ∩ C = {x}, where the set D(x, U(X)),
the convex hull of x and U(X), is called the drop generated by x /∈ U(X). In
1987, modifying the assumption of the Daneš drop theorem, Rolewicz [13] began
the study of the drop property for the closed unit ball. He defined the norm ‖ · ‖
to have the drop property if, for every closed set C ⊂ X disjoint from U(X), there
exists an x ∈ C such that D(x, U(X)) ∩ C = {x}. Later, two characterizations of
the drop property were obtained. Montesinos [11] proved that (X, ‖ · ‖) having the
drop property is equivalent to reflexive space X possessing the Kadec–Klee prop-
erty. In 1990, Banaś [1] gave the characterization of the drop property as follows:
(X, ‖ · ‖) has the drop property if and only if, for any functional f of norm 1,
limε→0 α(F (f, ε)) = 0 holds, where α(F (f, ε)) denotes the Kuratowski measure of
non-compactness of the set

F (f, ε) = {x : x ∈ X, ‖x‖ � 1, f(x) � 1 − ε}.

Here we consider a new class of convexity, i.e. uniform extreme convexity, and
discuss its relation to the drop property, the strong convexity, the full k-convexity
and the uniform convexity, as well as the relations between the local uniform con-
vexity and near uniform convexity. We also give some characterizations of uniform
extreme convexity. Throughout this paper X denotes an infinite-dimensional real
Banach space with the norm ‖ · ‖. The symbol X∗ denotes the dual of the space
X. U(X) and S(X) denote the closed unit ball and the unit sphere of X, respec-
tively. S(X∗), S(X∗∗) and S(X∗∗∗) denote the unit spheres of X∗, X∗∗ and X∗∗∗,
respectively.

A Banach space X is said to be a UR space [2] if for any ε > 0 there exists a
δ(ε) > 0 such that, for any norm-1 elements x and y, ‖x+y‖ > 2−δ and ‖x−y‖ < ε.

A Banach space X is said to be an LUR space [10] if for any norm-1 element
x and ε > 0 there exists a δ = δ(ε, x) > 0 such that, for any norm-1 element y,
‖x + y‖ > 2 − δ and ‖x − y‖ < ε.

A Banach space X is said to be a kUR (k � 1) space [16] if for any ε > 0 there
exists a δ(ε) > 0 such that for all norm-1 elements x1, x2, . . . , xk+1, ‖x1 +x2 + · · ·+
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xk+1‖ > (k + 1) − δ, and

A(x1, x2, . . . , xk+1)

= sup

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
f1(x1) f1(x2) · · · f1(xk+1)

...
...

. . .
...

fk(x1) fk(x2) · · · fk(xk+1)

∣∣∣∣∣∣∣∣∣
: f1, . . . , fk ∈ S(X∗)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< ε.

A Banach space X is said to be an NUC space [7] if for any ε > 0 there exists a
δ(ε) > 0 such that for any sequence {xn} ⊂ U(X), sep(xn) > ε, we have co({xn})∩
(1− δ)U(X) �= ∅, where sep(xn) = inf{‖xn −xn‖ : n �= m} and co({xn}) means the
convex hull of {xn}.

A Banach space X is said to be an LNUC space [8] if for any norm-1 element x
and ε > 0 there exists a δ = δ(ε, x) > 0 such that, for any sequence {xn} ⊂ U(X),
sep(xn) > ε, we have co({x} ∪ {xn}) ∩ (1 − δ)U(X) �= ∅, where co({x} ∪ {xn})
means the convex hull of {x} and {xn}.

A Banach space X is said to be a kR space (k � 2) [5] if, for any sequence {xn}
in X such that

lim
n1,...,nk→∞

1
k

‖xn1 + xn2 + · · · + xnk
‖ = 1,

{xn} is a Cauchy sequence in X.
A Banach space X is said to be a strongly convex space [17] if, for any x ∈ S(X),

{xn} ⊂ S(X) and for a certain functional f ∈ Sx such that f(xn) → 1, n → ∞,
then ‖xn − x‖ → 0, n → ∞, where Sx = {f : f ∈ S(X∗), f(x) = 1}.

A Banach space X is said to be a k strongly convex space [20] if, for any norm-1
element x, ε > 0 and for any functional f ∈ Sx, there is a δ(x, f, ε) > 0 such that
for all norm-1 elements x1, . . . , xk and f(x + x1 + · · · + xk) > (k + 1) − δ, we have
A(x, x1, . . . , xk) < ε.

Theorem 1.1 (Kadec–Klee property). If any x ∈ S(X), {xn} ⊂ S(X) such that
xn

w−→ x, n → ∞, and ‖xn‖ → ‖x‖, n → ∞, then ‖xn − x‖ → 0, n → ∞, where
xn

w−→ x, n → ∞, means that f(xn) → f(x), n → ∞, for all f ∈ X∗.

In §§ 2 and 3, we shall use the following four lemmas.

Lemma 1.2 (Banaś [1]; Montesinos [11]). Let X be a Banach space. Then the fol-
lowing statements are equivalent:

(i) X has the drop property;

(ii) for any f ∈ S(X∗), limε→0 α(F (f, ε)) = 0;

(iii) the reflexive space X has the Kadec–Klee property.

Lemma 1.3 (Wulede [18]; Wu and Li [17]). Let X be a Banach space. Then

(i) if X is a strictly convex k-strongly convex (respectively, LUR or kR) space,
X is a strongly convex space,

(ii) if X is a strongly convex space, X is a strictly convex space having the Kadec–
Klee property.
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Lemma 1.4 (Wu and Li [17]). X is a strongly convex space if and only if for any
ε > 0, x ∈ S(X) and f ∈ Sx there exists a δ(x, f, ε) > 0 such that, for any y ∈ S(X),
f(x + y) > 2 − δ, we have ‖x − y‖ < ε.

Lemma 1.5 (Wu and Li [17]). Let X be a reflexive Banach space. X is then strong-
ly convex if and only if every point of S(X) is a denting point of U(X), i.e. if
every x ∈ S(X), then x �∈ co(M(x, ε)) for all ε > 0, where M(x, ε) = {y : y ∈
U(X), ‖y − x‖ � ε}.

2. The definition and characterizations of
uniformly extremely convex spaces

Definition 2.1. A Banach space X is said to be a uniformly extremely convex
space if, for any sequences {xn}, {yn} consisting of elements of norm-1 for a certain
functional f of norm 1, and limn→∞ f(xn) = limn→∞ f(yn) = 1 holds, ‖xn −yn‖ →
0, n → ∞.

We shall need the following simple but useful proposition.

Proposition 2.2. X is uniformly extremely convex space if and only if, for any
ε > 0, f ∈ S(X∗), there exists a δ(ε, f) > 0 such that, for any x, y ∈ S(X),
f(x + y) > 2 − δ, we have ‖x − y‖ < ε.

Proof of necessity. Suppose the contrary. Then there exist ε0 > 0, f0 ∈ S(X∗) and
x, y ∈ S(X) such that for any δ = 1/n, n ∈ N, we have f0(x + y) > 2 − 1/n, but
‖x − y‖ � ε0. Take xn = x, yn = y. Then {xn}, {yn} ⊂ S(X), ‖xn − yn‖ � ε0 and
2 − 1/n < f0(xn + yn) � 2. It follows that

lim
n→∞

f0(xn) = lim
n→∞

f0(yn) = 1.

On the other hand, by the definition of the uniformly extremely convex space, we
have ‖xn−yn‖ → 0, n → ∞; this contradicts the statement that ‖xn−yn‖ � ε0.

Proof of sufficiency. If, for any {xn}, {yn} ⊂ S(X), f ∈ S(X∗),

lim
n→∞

f(xn) = lim
n→∞

f(yn) = 1

holds, then f(xn + yn) → 2, n → ∞. Therefore, for any δ > 0, there exists an
integer N0 ∈ N such that, for all n � N0, f(xn + yn) > 2 − δ. For any ε > 0, by
the conditions given in proposition 2.2, we have ‖xn − yn‖ < ε; this means that
‖xn − yn‖ → 0, n → ∞.

Theorem 2.3. X is uniformly extremely convex if and only if X is strictly convex
and has the drop property.

Proof of necessity. Suppose that X is a uniformly extremely convex space. Then, as
a simple consequence of lemma 1.4 and proposition 2.2 we know that X is a strongly
convex space. Hence, X is strictly convex and has the Kadec–Klee property. Now we
prove that X is reflexive. For any f ∈ S(X∗), there exists {xn} ⊂ S(X) satisfying
f(xn) → 1, n → ∞. Hence, for each ε > 0 there exists an integer N > 0 such that
f(xn) > 1 − 1

2δ(ε) as n > N . It follows that f(xn + xm) > 2 − δ(ε), n, m > N ,
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where δ(ε) is the function required in the definition of the uniformly extremely
convex space. From the definition of the uniformly extremely convex space, we
have ‖xn −xm‖ < ε for any n, m > N . This means that xn is a Cauchy sequence in
Banach space X; hence, there exists an x ∈ S(X) such that ‖xn −x‖ → 0, n → ∞.
Furthermore, f(x) = 1. From James’s theorem we know that X is reflexive.

Proof of sufficiency. If X is not uniformly extremely convex, then there exist f0 ∈
S(X∗), {x0

n}, {y0
n} ⊂ S(X) such that limn→∞ f0(x0

n) = limn→∞ f0(y0
n) = 1, but

there exist some ε0 > 0 and a subsequence {nk} ⊂ {n} satisfying ‖x0
nk

− y0
nk

‖ � ε0.
On the other hand, X is reflexive since X has the drop property. Therefore, {x0

nk
}

has a weak convergent subsequence, without loss of generality, and, letting the weak
convergent subsequence itself be {x0

nk
}, we have

x0
nk

w−→ x0, k → ∞,

where x0 ∈ X. Similarly, y0
nk

has a weak convergent subsequence y0
nkj

such that

y0
nkj

w−→ y0, j → ∞,

where y0 ∈ X. By the Banach–Mazur theorem, we know that ‖x0‖ � 1, ‖y0‖ � 1.
As

lim
n→∞

f0(x0
n) = lim

n→∞
f0(y0

n) = 1,

we know that f0(x0) = f0(y0) = 1; thus, x0, y0 ∈ S(X) and 1 � ‖ 1
2 (x0 + y0)‖ �

f0( 1
2 (x0 + y0)) = 1. By the conditions given in theorem 2.3, we know that X

is strictly convex and has the Kadec–Klee property. It follows that x0 = y0 and
‖x0

nkj
−x0‖ → 0, ‖y0

nkj
−x0‖ → 0, j → ∞. Furthermore, ‖x0

nkj
− y0

nkj
‖ → 0, j → ∞.

This contradicts ‖x0
nk

− y0
nk

‖ � ε0.

Corollary 2.4. Let X be a Banach space. Then the following are equivalent:

(i) X is uniformly extremely convex;

(ii) X is strongly convex and reflexive;

(iii) X is strictly convex and, for any f ∈ S(X∗), limε→0 α(F (f, ε)) = 0;

(iv) if, for any sequences ϕn, ψn ∈ S(X∗∗) and a certain functional f of norm 1,
limn→∞ ϕn(f) = limn→∞ ψn(f) = 1 holds, then ‖ϕn − ψn‖ → 0, n → ∞.

Proof.
(ii) =⇒ (i). This follows immediately from lemmas 1.2 and 1.3 and theorem 2.3.

(i) =⇒ (ii). This follows immediately from proposition 2.2, lemma 1.4 and theo-
rem 2.3.

The equivalence between (i) and (iii) follows immediately from theorem 2.3 and
lemma 1.2. The equivalence between (i) and (iv) follows immediately from defini-
tion 2.1 and the reflexivity of X.

Theorem 2.5. X is a uniformly extremely convex space if and only if X is reflexive
and every point of S(X) is a denting point of U(X).
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Proof. This follows immediately from lemma 1.5 and corollary 2.4.

Theorem 2.6. X is a uniformly extremely convex space if and only if, for each
f ∈ S(X∗), the limit

lim
t→0+

‖f + tF‖ + ‖f − tF‖ − 2
t

= 0 (2.1)

exists uniformly for F ∈ S(X∗∗∗).

Proof. If (2.1) does not hold, then there exist ε0, Fk ∈ S(X∗∗∗) and tk with 0 <
tk < 1/k such that

‖f + tkFk‖ + ‖f − tkFk‖ − 2
tk

� ε0.

Hence, from ‖f − tkFk‖ + ‖f + tkFk‖ − 2 � ε0tk, it follows that

2 + ε0tk − 2t2k � ‖f + tkFk‖ + ‖f − tkFk‖ − 2t2k. (2.2)

For each tk let uk, vk be chosen so that uk, vk ∈ S(X∗∗) and

f(uk) + tkFk(uk) > ‖f + tkFk‖ − t2k, (2.3)

f(vk) − tkFk(vk) > ‖f − tkFk‖ − t2k. (2.4)

Clearly, uk(f) → 1 and vk(f) → 1 as k → ∞. However, combining (2.3) and (2.4),
we have

‖f+tkFk‖+‖f−tkFk‖−2t2k < f(uk+vk)+tkFk(uk−vk) � 2+tkFk(uk−vk). (2.5)

Combining (2.5) and (2.2), we have

2 + ε0tk − 2t2k < 2 + tkFk(uk − vk).

It follows that
ε0 − 2tk < Fk(uk − vk) � ‖Fk‖‖uk − vk‖.

Let k → ∞. Then we have
ε0 � ‖uk − vk‖. (2.6)

On the other hand, from the definition of uniformly extremely convex space, we
also have ‖uk − vk‖ → 0; this contradicts (2.6).

Suppose that for any f ∈ S(X∗), {ϕk} and {ψk} ⊂ S(X∗∗) we have ϕk(f) → 1,
ψk(f) → 1, k → ∞. Then, by (2.1), we know that for ε > 0 there exists T ,
0 < T < 1, such that ∣∣∣∣‖f + tF‖ + ‖f − tF‖ − 2

t

∣∣∣∣ <
ε

3

for all F ⊂ S(X∗∗∗) and 0 < t < T . Take t satisfying 0 < t < min{ε, T}. Then
there exists an integer K > 0 such that for any k > K we have∣∣∣∣ϕk(f) − 1

t

∣∣∣∣ <
ε

3
,

∣∣∣∣ψk(f) − 1
t

∣∣∣∣ <
ε

3
.
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On the other hand,∣∣∣∣‖f + tF‖ + ‖f − tF‖ − 2
t

∣∣∣∣ � |f(ϕk) + tF (ϕk)| + |f(ψk) − tF (ψk)| − 2
t

� f(ϕk) + tF (ϕk) + f(ψk) − tF (ψk) − 2
t

=
f(ϕk) − 1

t
+

f(ψk) − 1
t

+ F (ϕk − ψk).

Finally, for any k > K we have

F (ϕk − ψk) �
∣∣∣∣‖f + tF‖ + ‖f − tF‖ − 2

t

∣∣∣∣ +
∣∣∣∣f(ϕk) − 1

t

∣∣∣∣ +
∣∣∣∣f(ψk) − 1

t

∣∣∣∣ < ε,

and, similarly, F (ψk − ϕk) < ε. Hence, we have ‖ϕk − ψk‖ < ε. From corollary 2.4
we know that X is a uniformly extremely convex space.

Corollary 2.7. X is a uniformly extremely convex space if and only if X is reflex-
ive and, for each f ∈ S(X∗), the limit

lim
t→0+

‖f + tg‖ + ‖f − tg‖ − 2
t

= 0

exists uniformly for g ∈ S(X∗).

Proof. The necessity can be immediately obtained from theorems 2.3 and 2.6. The
sufficiency is immediate from theorem 2.6 and the reflexivity of X.

3. The relations between uniform extreme convexity and various other
types of convexity

Theorem 3.1. If X is a UR space, then X is a uniformly extremely convex space.

Proof. It is clear from definition of UR and proposition 2.2 that UR space implies
uniformly extremely convex space.

Theorem 3.2. If X is a kR space, then X is a uniformly extremely convex space.

Proof. Noticing the fact that kR space implies reflexivity, it is easy to see that
the kR space implies a uniformly extremely convex space from lemma 1.3 and
corollary 2.4.

The converse implication of the theorem 3.1 is not true.

Example 3.3. There exists a uniformly extremely convex space X which is not an
LUR space.

Let E = (l2, ‖ · ‖). For x = (a1, a2, . . . ) ∈ E, define

‖x‖2 = {|a1| + (a2
2 + a2

3 + · · · )1/2}2 +
{(

a2

2

)2

+ · · · +
(

an

n

)2

+ · · ·
}

.

It follows from [5] that X = (Σ ⊕ E)l2 is a 2R space, but is not an LkUR space [12].
Furthermore, X is not an LUR space; hence, X is not a UR space. On the other
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hand, by theorem 3.2 we know that 2R space implies uniformly extremely convex
space.

Example 3.4. There exists a strongly convex space X which is not a uniformly
extremely convex space.

In fact, we consider a non-reflexive LUR space X [4,10]. Then, by lemma 1.3, we
know that X is a strongly convex space, but is not a uniformly extremely convex
space because X is non-reflexive.

By corollary 2.4, theorem 3.1, and examples 3.3 and 3.4, we have the following.

Remark 3.5.

(i) The class of uniformly extremely convex spaces lies strictly between the class
of uniformly convex spaces and the class of strongly convex spaces.

(ii) There are no inclusion relations between the class of locally uniformly convex
spaces and the class of uniformly extremely convex spaces.

The converse implication of the theorem 3.2 is not true.

Example 3.6. There exists a uniformly extremely convex space X which is not a
kR space for every k � 2.

Let k � 2 be an integer, and let i1 < i2 < · · · < ik. For each x = (a1, a2, . . . ) ∈ l2,
define

‖x‖2
i1,...,ik

=
( k∑

j=1

|aij |
)2

+
∑

i �=i1,...,ik

a2
i ,

and let Xi1,...,ik
= (l2, ‖ · ‖i1,...,ik

). For x ∈ l2, let

‖x‖1 = sup
i1<i2<···<ik

‖x‖i1,...,ik
, X1 = (l2, ‖x‖1).

Define

‖x‖2 = ‖x‖2
1 +

∞∑
i=1

a2
i

2i
for all x = (a1, a2, . . . ) ∈ l2.

It follows from [9] that (X1, ‖ · ‖) is a strictly convex kUR space, but is not a kR
space. Hence, X is a k-strongly convex space. By lemma 1.3, we know that X is a
strongly convex space. Noticing that kUR space implies reflexivity, it follows from
corollary 2.4 that X is a uniformly extremely convex space.

By theorem 3.2, corollary 2.4 and example 3.4 and 3.6, we have the following.

Remark 3.7. The class of uniformly extremely convex spaces lies strictly between
the classes of fully k-convex spaces and strongly convex spaces.

Example 3.8. There exists a uniformly extremely convex space X which is not an
NUC space.
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Let (X, ‖ · ‖) be a 2R space with normalized basis {en}. Define,

for all x =
∞∑

n=1

anen in X, |‖x|‖ =
{(

|a1| +
∥∥∥∥

∞∑
n=2

anen

∥∥∥∥
)2

+
∞∑

n=2

(
an

n

)2}1/2

.

Then, by [8], we know that (X, |‖ · |‖) is a 2R Banach space, but is not an LNUC
space. Furthermore, X is not an NUC space. On the other hand, by theorem 3.2
we know that X is uniformly extremely convex space.

Example 3.9. There exists an NUC space X which is not a uniformly extremely
convex space.

In fact, we consider a non-strictly convex NUC space X [14]. Then by theorem 2.3
we know that X is not a uniformly extremely convex space.

By Examples 3.8 and 3.9, we have the following.

Remark 3.10. There are no inclusion relations between the class of nearly uni-
formly convex spaces and the class of uniformly extremely convex spaces.
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15 V. Šmulian. On some geometrical properties of the unit sphere in the space of the type (B).

Mat. Sb. 6 (1939), 77–94.
16 F. Sullivan. A generalization of uniformly rotund Banach spaces. Can. J. Math. 31 (1979),

628–636.

https://doi.org/10.1017/S0308210510000545 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000545


224 S. Wulede and W. Ha

17 C. X. Wu and Y. J. Li. Strong convexity in Banach spaces. J. Math. PRC 13 (1993),
105–108.

18 S. Wulede. On k-strongly convex spaces. J. Inner Mongolia Normal Univ. 28 (1999), 101–
105. (In Chinese.)

19 S. Wulede and C. X. Wu. k-strong convexity and k-strong smoothness. Chin. Annals Math.
A19 (1998), 373–378.

20 S. Wulede, A. Han and L. Y. Bao. Some geometric properties related to smoothness of
Banach spaces. Nonlin. Analysis 66 (2007), 723–734.

21 X. T. Yu and E. R. Zhang. On the locally kUR spaces. J. East China Normal Univ. 4
(1981), 25–30. (In Chinese.)

(Issued 17 February 2012 )

https://doi.org/10.1017/S0308210510000545 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000545

