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Abstract
This paper first uses a decoupling modeling method to model legged robots. The method groups all the degrees
of freedom according to the number of limbs, regarding each limb as a manipulator with serial structure, which
greatly reduces the number of dynamic parameters that need to be identified simultaneously. On this basis, a step-
by-step identification method from the end-effector link to the base link, referred to as “E-B” identification method,
is proposed. Simulation verification is carried out on a quadruped robot with 16 degrees of freedom in Gazebo, and
the validity of the method proposed is discussed.

1. Introduction
With the expansion of robot application scenarios, it is of great practical significance to study how to
enable robots to perform tasks in the rugged and complex unstructured environment. Compared with
caterpillar or wheeled mobile robots, legged robots with strong flexibility and terrain adaptability are
more likely to perform tasks excellently in complex terrain environments. The dynamic model of a
legged robot is usually complex. Some literatures, for example, ref. [1] took an eight-legged walking
robot as a whole to establish the dynamic model. References [2, 3] proposed the control method ignoring
mass of legs in the robot model to reduce model complexity. In the case of heavy load and high-speed
leg movement, there are two reasons for that a legged robot model without mass of legs cannot meet
application requirements. One is the weight of joint actuators generally increased in order to provide
more power, and the other is the dynamic effect of the legs’ mass becoming non-negligible at high-
speed movement. With the legs’ mass, it is necessary to know the parameters in the dynamic equations
whether to solve the interaction force between the robot and the environment or to boost model-based
control. Many literatures have studied the identification of dynamic parameters. References [4, 5] and
[6] showed that not all inertial parameters participate in the calculation of dynamic equations, and the
symbolic expression of the minimum inertial parameters set that contributed to the dynamic equations is
discussed. Reference [7] proposed an approach of base parameters identification using neural network.
Reference [8] divided the identification process into two steps. In the first step, inverse dynamics and
pseudo-inverse matrix are used to solve the base parameters of the model. In the second step, neural
network compensator is used to improve the accuracy of the parameters. Reference [9] proposed the load
inertial parameters identification method of industrial manipulator,which is significant in that the control
law can be adjusted to improve motion performance of the manipulator. Reference [10] systematically
summarized the identification methods of robot dynamic parameters and listed the practical applications
of dynamic parameters identification. Reference [11] studied the identification problem of the open-loop
robot system and discussed the influence of temperature on base parameters. Reference [12] indicated

C© The Author(s), 2021. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574721000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000783
https://orcid.org/0000-0002-1127-7668
https://doi.org/10.1017/S0263574721000783


748 Xu Chang et al.

that control laws based on careful identification procedures improve transparency compared to classical
closed-loop position control laws.

Dynamic parameters can be divided into three categories: geometric parameters, inertial parame-
ters, and other dynamic parameters. Geometric parameters are determined at design stage, but other
parameters in practical systems are difficult to obtain accurately. Although the dynamic equations are
nonlinear, they are linear about the inertial parameters. The linear combination of inertial parameters
called “base parameters” [6] can be obtained by the least square method. References [13] and [14] pro-
posed an approach of the numerical solution of the base parameters set. Reference [15] studied the issue
of base parameters identification under the condition of noise interference. Reference [16] proposed
a base parameters calculation method for general multi-body systems, and ref. [17] studied the base
parameters symbolic expressions for planar open-loop and closed-loop mechanisms.

The solution sensitivity of the linear equations to the input error can be measured by the condition
number. [18] The smaller the condition number, the higher the accuracy of the result. Condition num-
ber of regression matrix is related to the form of dynamic equations, the excitation trajectory, and so
on. Many literatures studied the generation of excitation trajectory. Reference [19] proposed a method
of excitation trajectory generation, which can reduce the influence of model error and noise on least
squares solution, and the excitation trajectory is composed of a series of interpolation points in space.
References [20] and [21] suggested that the excitation trajectories are composed of Fourier series; they
thought an analytical solution of velocity and acceleration can be obtained in this way. Reference [22]
proposed a method for excitation trajectory generation using both Fourier series and polynomial. A pre-
determined trajectory composed of Fourier series with inertial parameters provided by Computer Aided
Design (CAD) is used to generate motion data of a manipulator in ref. [23]. Reference [24] made use
of the Fourier series trajectory generation method to identify dynamic parameters in robot system with
complaint actuators, but the specific excitation trajectory parameters are not given. In fact, without the
knowledge of dynamic parameters, there is no way to use force control to let the manipulator move along
the desired trajectory. If using position control, no matter how close the distance between any two inter-
polation points, velocity and acceleration will change with time and not equal to the first- and second-
order derivative of the desired trajectory, which limits the practical application of excitation trajectory
research.

The methods introduced above have a common point that all parameters are identified simultaneously.
To the best of our knowledge, the performance of the step-by-step identification method has not been
fully discussed.

Based on the analysis of the equivalence principle of Einstein’s general theory of relativity and gen-
eral relativity principle, regarding the body fixed with inertial measurement unit (IMU) of legged robot
as base link, each limb is equivalent to a manipulator with serial structure. Using the acceleration data
provided by IMU, the robot dynamics model is decomposed into mutually decoupled dynamic models
of each limb. Thus, the model decoupling between robot limbs is realized without any simplification
of the model, and the number of degrees of freedom coupled to each other and the number of inertial
base parameters to be identified simultaneously are greatly reduced. In this paper, our main contribution
is to propose a new identification method which is different from the traditional method of identifying
all the parameters simultaneously. Our method only needs to identify base parameters of one link at
one step, so as to improve the accuracy of the identification results. In order to compare identification
results with real values, verification with a quadruped robot built in Gazebo simulation environment is
provided.

This paper is organized as follows. Section 2 discusses decoupling modeling method of legged robots.
Section 3 introduces the “E-B” identification method and points out that two kinds of different forms
of dynamic equations can be applied to obtain base parameters. In Section 4, simulation verification
is carried out in Gazebo, giving the regression matrix condition numbers with different identification
methods and comparison between base parameters obtained by the least square method and real values.
Finally, the validity of the method proposed in this paper is verified by estimating foot contact forces
using the dynamic equations.
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Figure 1. Schematic diagram of a legged robot with n limbs.

2. Decoupling modeling of legged robot
In order to give full play to the flexibility of legged robot and make it achieve good quality of con-
trol effect, it is important to establish dynamic equations of the robot and obtain the parameters in the
equations. In general, the number of degrees of freedom of legged robot is far more than that of a manip-
ulator, which leads to the complexity of dynamic equations and the number of dynamic parameters to
be identified also increasing. Since the limbs of a legged robot are similar in structure, one natural idea
is whether the limbs can be modeled separately from each other. Fortunately, this can be achieved with
Einstein’s general relativity and data provided by IMU.

The two basic principles of Einstein’s general theory of relativity can be briefly described as follows:

• Equivalence principle: Dynamic effects of the inertial and gravitational fields are locally
indistinguishable;

• Principle of generalized relativity: All laws of physics take the same form in any frame of
reference.

As shown in Fig. 1, assuming the number of limbs of a legged robot is n, each limb is a serial
structure, and a IMU is fixed to the body link. The cartesian coordinate frame is established on the
origin of measurements of the IMU, which is called the body frame. Denoting end-effector links of
limbs as dei(i = 1, 2, . . . , n), all the links in the path from link db0 to link dei , excluding link db0, form a
set, and there are altogether n of them. Each of them has a link connected to db0 by a joint, and a cartesian
coordinate frame is established by taking the fixed point oCLi

connected to db0 on the axis of the joint as
the origin, which is called the limb frame. The acceleration aoCLi

at the origin of the limb frame can be
expressed as

aoCLi
=aō + ωō × (ωō × roCLi

) + wō × roCLi

where aō, ωō, and wō, are, respectively translational acceleration, angular velocity, and angular accelera-
tion of the origin of measurements inside the IMU. roCLi

is the position vector of point oCLi
in body frame

ō. The position of a point in the limb frame oCLi
is expressed as rj. The acceleration aj at this point is

determined by the origin translational acceleration aoCLi
of the limb frame, the rotation acceleration wō

of the limb frame, the rotation angular velocity ωō, and the linear velocity ṙj of this point relative to the
limb frame. Thus,

aj = aoCLi
+ f (rj, ṙj, ωō, wō)
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where f (rj, ṙj, ωō, wō) consists of centripetal acceleration, Coriolis acceleration, and angular accelera-
tion. According to the basic principle of general relativity, gravitational field and inertial force field are
locally equivalent. Only if we just apply a force mjaj (mj is mass at point j) in the opposite direction
to the acceleration at any point j in frame oCLi

, all laws of physics are true in this frame, which allows
dynamic equations of legged robot to be set up in n groups. The inertial force generated by the transla-
tional acceleration aoCLi

directly acts on the center of mass of the link, and the inertial force generated by
the rotation of the limb frame is related to the position. In practical application, if the angular velocity
of the limb frame is not large, the rotation can be ignored to simplify the dynamic equations.

The key to decoupling modeling is to obtain the translational acceleration aoCLi
of the limb frame and

the acceleration f (rj, ṙj, ωō, wō) generated by the rotation. This is the reason why IMU plays a role in
decoupling modeling. It can directly give the data of the acceleration aō and figure out ωō and wō from
attitude angle. With Einstein’s general theory of relativity and IMU sensor, the decoupling modeling of
legged robot is realized without any simplification. By decoupling modeling, the dynamic parameters
to be identified are also divided into n groups, which reduces the number of parameters to be identified
at one data set and consequently improve the accuracy of identification results. The robot dynamic
equations after decoupling modeling can be expressed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M1(q1)q̈1 + C1(q1, q̇1)q̇1 + G1(q1) = τ 1 + fext,1,

M2(q2)q̈2 + C2(q2, q̇2)q̇2 + G2(q2) = τ 2 + fext,2,

· · ·
Mn(qn)q̈n + Cn(qn, q̇n)q̇n + Gn(qn) = τ n + fext,n.

(1)

where qi(i = 1, 2, . . . n) is generalized coordinates vector, Mi(qi)(i = 1, 2, . . . n) is the mass matrix which
is symmetric and positive definite, Ci(qi, q̇i)(i = 1, 2, . . . n) represents the Coriolis force and centripetal
force terms, Gi(qi)(i = 1, 2, . . . n) is the gravity term, τ i(i = 1, 2, . . . n) represents joint generalized force,
and fext,i(i = 1, 2, . . . , n) represents all other external generalized forces. The dynamic equations for every
group (or every limb) are similar. More importantly, they are independent of each other. Compared with
solving all the dynamic equations, several independent sets of dynamic equations allow us to solve some
task-related equations as needed, which can reduce the computation amount and increase the execution
speed of the program. Furthermore, the direct result by decoupling modeling method is to reduce the
number of subsequent dynamic parameters that need to be identified simultaneously.

An important issue is how to obtain the angular velocity and the angular acceleration. In practice,
the angular velocity can usually be obtained by difference of angles and proper filtering. As for the
angular acceleration, it cannot usually be obtained by the difference method. We can ignore the relevant
terms and use other robust control methods to compensate. Related modeling work can also refer to
refs. [25, 26].

3. Base parameters identification
3.1. Two kinds of dynamic equations
The dynamic equations of the set CLi is

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + fext (2)

The inertia tensor matrix of link di ∈ CLi with mass mi about the link frame is

Ii =
⎡
⎣Iixx Iixy Iixz

Iixy Iiyy Iiyz

Iixz Iiyz Iizz

⎤
⎦ (3)
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where Ii is the symmetric and positive definite matrix. The first moment-of-inertia vector of link di is

Li = miri =
⎡
⎣mirxi

miryi

mirzi

⎤
⎦ (4)

where ri =
⎡
⎣rxi

ryi

rzi

⎤
⎦ is the position vector of center of mass of link di about the link frame. Inertial

parameters of link di are denoted as

δi =
[

Iixx Iiyy Iizz Iixy Iixz Iiyz mirxi miryi mirzi mi

]T (5)

Then, all inertia parameters of a limb with N links are

δ = [
δ

T
1 δ

T
2 · · · δ

T
N

]T (6)

By arranging Eq. (2) according to the parameters in vector δ, the form of dynamic equation often used
in identification can be obtained,

H(q, q̇, q̈)δ = τ (7)

Although Eq. (2) is nonlinear, it is a linear equation about δ. So, the least square method can be used to
get the dynamic parameters. Here we point out that, in addition to Eq. (2), there is a second form of the
dynamic equations which is linear about δ. According to Lagrange’s equations of the second kind, the
dynamic equations of the multi-degree-of-freedom system can be expressed as [30]

n∑
k=1

Mksq̈k +
n∑

k=1

n∑
m=1

[k, m;s]q̇kq̇m = Qs (s = 1, 2, . . . , n) (8)

where qk(k = 1, 2, . . . , n) is the generalized coordinate, Mks is the component of the mass matrix M,
Qs is a generalized force (including gravity term) relative to generalized coordinates qs, and [k, m;s]
denotes Christoffel’s symbols of the first kind,

[k, m;s] = [m, k;s] = 1

2

(
∂Mks

∂qm

+ ∂Mms

∂qk

− ∂Mkm

∂qs

)
(9)

Let f (s, m) =
n∑

k=1

[k, m;s]q̇k, since

n∑
k=1

n∑
m=1

[k, m;s]q̇kq̇m =
n∑

m=1

f (s, m)q̇m (10)

comparing with Eq. (2) to get

C(q, q̇) =

⎡
⎢⎢⎢⎣

f (1, 1) f (1, 2) · · · f (1, n)

f (2, 1) f (2, 2) . . . f (2, n)
...

...
...

...
f (n, 1) f (n, 2) · · · f (n, n)

⎤
⎥⎥⎥⎦

n×n

(11)

Considering

f (s, m) =
n∑

k=1

[k, m;s]q̇k =
n∑

k=1

1

2

(
∂Mks

∂qm

+ ∂Mms

∂qk

− ∂Mkm

∂qs

)
q̇k (12)

and

f (m, s) =
n∑

k=1

[k, s;m]q̇k =
n∑

k=1

1

2

(
∂Mkm

∂qs

+ ∂Msm

∂qk

− ∂Mks

∂qm

)
q̇k (13)
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then adding the two equations, we get

f (m, s) + f (s, m) =
n∑

k=1

∂Mms

∂qk

q̇k = dMms

dt
(14)

By writing the above equation into matrix form, the relation between mass matrix M(q) and matrix
C(q, q̇) is derived,

Ṁ(q) = C(q, q̇) + CT(q, q̇) (15)

The second form of dynamic equations can be obtained using Eq. (15). Integrating both sides of Eq.
(2) and integration by parts applied on the left side of that with Eq. (15), we derive dynamic equations
of the following form:

M(q(t))q̇(t)= M(q(t0))q̇(t0)+
t∫

t0

(τ + CT(q, q̇)q̇ − G(q))dt′ (16)

where M(q(t))q̇(t) is the generalized momentum at time t. We refer to Eq. (16) as “acceleration-free
dynamic equations.” By arranging Eq. (16), a new dynamic equation form linear about vector δ can be
obtained,

K(q, q̇)δ =
t∫

t0

τdt′ (17)

In the case of only position sensor, velocity and acceleration can be solved by first- and second-order
difference of the position, respectively. In a real system with noise, the accuracy of acceleration signal
obtained by second-order difference is low. The low-precision acceleration signal will reduce the data
quality of regression matrix H(q, q̇, q̈). Because the regression matrix K(q, q̇) has no acceleration
term, we can predict that the data quality will be better. The identification results of dynamic Eq. (17)
are given in Section 4.

3.2. Base parameters
The reason why all inertial parameters cannot be identified by dynamic equations is analyzed below
from the perspective of matrix theory.

No matter which dynamic equation form is adopted, the corresponding regression matrix W and joint
generalized force vector Y can be obtained by sampling motion data from the identification trajectory
and torque sensor. Their relationship satisfies the following equation:

Wm×nδn×1 = Ym×1 (18)

where Wm×n is an m × n regression matrix(m � n), Ym×1 is an m dimensional column vector, and
δn×1 is an n dimensional inertial parameters to be identified (matrix dimension subscripts are omit-
ted for convenience hereafter). Since the regression matrix is not column full rank, [27] the least
square method cannot be directly used to solve Eq. (18). In fact, there is a nonsingular matrix K that
satisfies

WK = [
Wb 0

]
(19)

Right multiplying a matrix by a nonsingular matrix is equivalent to performing a column elementary
transformation, [28] so matrix W is decomposed into a column full rank matrix Wb and a null matrix.
Furthermore, the following relations are obtained by transforming Eq. (18),

Wδ = WKK−1δ = [
Wb 0

] [
δ

T
b 0

]T = Y

⇒ Wbδb = Y (20)
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For Eq. (20), the least square method can be directly used to solve the vector δb, δb and δ satisfy the
following relationship:

K−1δ = [
δ

T
b 0

]T (21)

Left multiplying a vector by a nonsingular matrix is equivalent to performing a row elementary trans-
formation, so elements of vector δb are a linear combination of that of vector δ. The linear dependent of
the columns of the regression matrix W makes it impossible to identify the inertial parameters vector
directly, and only the linear combination of inertial parameters vector δb can be obtained. Generally,
elements of vector δb are called base parameters. Base parameters are the minimum set to generate a
dynamic equation. [29]

3.3. Other dynamic parameters identification
Other dynamic factors such as friction often exist in a real system. For each joint, friction model is
usually modeled as [23]

fk = fvkq̇k + fcksgn(q̇k) + fok (22)

where sgn represents the sign function, fvk and fck are the viscous friction and coulomb friction coefficient,
respectively, and fok is the Coulomb friction offset generated by the static bias of the driver such as a motor
current offset. When identifying friction parameters, substitute Eq. (22) to dynamic equations, then
expansion vector δ with fvk, fck, and fok. Similar to friction parameters, a general method for identifying
other dynamic parameters can be summarized as follows:

• Establish relevant dynamic model, and the model is linear with respect to parameters to be
identified;

• Expand vector δ with new parameters provided by the model.

3.4. E-B identification method
By using the decoupling modeling method in Section 2, dynamic model of each limb is separated from
each other. Consequently, inertial parameters can be identified in groups. Assuming that set CLi con-
taining n links, the base parameters vector δb can be obtained by solving Eq. (20) with the least square
method directly. In case of noise, the number of parameters, the data set quality of regression matrix,
and the condition number are important factors which affect identification results. Some literatures try to
design excitation trajectories to improve identification results, but without knowledge of inertial param-
eters, there is no way to adopt force control to let the robot move along the desired trajectory. If using
position control, no matter how close the distance between any two interpolation points, velocity and
acceleration will change with time and not equal to the first- and second-order derivative of the desired
trajectory. In view of this situation, this paper proposes an identification method to improve identification
results without specified excitation trajectories.

Under the condition that the leg is a serial structure, along from the base link to the end link, take
n joint angles as generalized coordinates, corresponding to the dynamic equations 1 ∼ n. To make the
statement clearer, we give the following definitions and theorems. In the identification process, the link
to be identified usually does not collide with its surroundings, so the following descriptions assume that
the external force is zero.

Definition 1. Along from the base link to the end link, label the links from 1 to n. If a certain base
parameter is composed of a linear combination of inertial parameters of several links, and the smallest
labeled link of these inertial parameters is k, then the base parameter is said to be the base parameter
about link k.
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Theorem 1. The s-th dynamic equation contains only base parameters about the link s, s + 1, . . . , n.

Proof: According to Lagrange’s equations of the second kind, the s-th dynamic equation is [30]
d

dt

∂T

∂ q̇s

− ∂T

∂qs

= Qs (23)

where qs is a generalized coordinate, T is the total kinetic energy of n links, and Qs is the general-
ized force of all external forces including gravity about generalized coordinate qs. For serial structure,
the contribution of link s, s + 1, . . . , n to ∂T

∂qs
, ∂T

∂ q̇s
and Qs is not zero, but the contribution of link

1, 2, . . . , s − 1 to ∂T
∂qs

, ∂T
∂ q̇s

and Qs is zero, that is, the s-th dynamic equation does not contain inertial
parameters of link 1, 2, . . . , s − 1. Hence, the s-th dynamic equation only contains base parameters
about link s, s + 1, . . . , n.

Theorem 2. When the selection of the base parameters is determined, the s-th dynamic equation contains
the maximum set of the base parameters about the link s.

Proof: Since the base parameters are the minimum set to generate dynamic equations, [29] when the
selection of the base parameters is determined, expressions of base parameters for link s that appear in
dynamic equation 1 ∼ s are the same. For the dynamic equation s, the base parameters about link s are
composed of linear combinations of its inertial parameters, which means that all base parameters about
link s are contained. Whereas in equation 1 ∼ s − 1, more column vectors of the regression matrix are
included than those in equation s, which may generate a new linear dependent term, so that the number of
base parameters about link s in dynamic equation 1 ∼ s − 1 is not more than those in dynamic equation
s. So the set of base parameters about link s in dynamic equations 1 ∼ s − 1 is a subset of that in the
dynamic equation s, and that proves Theorem 2.

Based on the above definitions and properties, let the base parameters vector of link s in the dynamic
equation s be δb,s, and its subset in the dynamic equation m(m ≤ s)be σ m,s ⊆ δb,s. Then there are n vectors
composed of base parameters, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = [
δ

T
b,1 σ T

1,2 · · · σ T
1,n−1 σ T

1,n

]T

β2 = [
δ

T
b,2 · · · σ T

2,n−1 σ T
2,n

]T

. . .

βn−1 = [
δ

T
b,n−1 σ T

n−1,n

]T

βn = δb,n

(24)

satisfying the dynamic equations ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

W1β1 = τ 1

W2β2 = τ 2

· · ·
Wn−1βn−1 = τ n−1

Wnβn = τ n

(25)

Starting from the n-th dynamic equation, βn is first solved by the least square method, and its subset
σ n−1,n is substituted into the n − 1-th dynamic equation to get

Wn−1βn−1 = [
Wn−1,n−1 Wn−1,n

] [
δ

T
b,n−1 σ T

n−1,n

]T = τ n−1 (26)

where Wn−1,n−1 is a regression matrix whose dimension is appropriate to that of δb,n−1. Expand the above
equation to get

Wn−1,n−1δb,n−1 = τ n−1 − Wn−1,nσ n−1,n (27)
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Figure 2. Quadruped robot simulation model and its prototype.

Continue with the least square method to solve vector δb,n−1, and its subset σ n−2,n−1 is substituted into the
n − 2-th dynamic equation to get

Wn−2,n−2δb,n−2 = τ n−2 − Wn−2,n−1σ n−2,n−1 − Wn−2,nσ n−2,n (28)

and so on until the first dynamic equation is solved,

W1,1δb,1 = τ 1 − W1,2σ 1,2 − W1,3σ 1,3 − · · · − W1,nσ 1,n (29)

The step-by-step identification method from the end link to the base link is called “E-B”(The end link
to the base link) identification method. In “E-B” identification method, the base parameters are only
related to one link each step, which avoids identifying all the base parameters at one step. A smaller
number of parameters will increase the accuracy of the identification results. Comparison results among
three methods (directly using the least square method, the E-B method, and the E-B method with no
acceleration term) are given in Section 4.

4. Simulation verification
Generally, it is hard to obtain real values of dynamical parameters in a real robot. In order to compare
the identification results with real values, simulation is carried out in Gazebo which offers the real robot
simulation environment. As shown in Fig. 2, a quadruped robot with 16 degrees of freedom is built in
Gazebo according to the size and weight of a real robot in our laboratory and a IMU sensor is fixed in
the body of the robot. The total weight of the robot is 136.68 kg, and each limb, which is composed of
four links and four revolute joints, weighs 14.04 kg. The friction model of the joints includes viscous
friction and Coulomb friction, and the Coulomb friction offset is 0. The geometric parameters, iner-
tial parameters, and friction parameters of each limb are the same. As described in Section 2, through
decoupling modeling, the dynamic equations for every limb are similar and independent of each other.
We can choose only one limb to study, and the other three limbs can be identified separately in the same
way when we want to obtain the parameters of them. Therefore, in the simulation, only base parameters
of the left front limb are identified. The links and joints along the direction from the body to the ground
are labeled as 1 ∼ 4 in sequence. The specific expressions of the base parameters are shown in Table I. It
should be noted that there is no need to perform identification in the condition of movement of the robot
body. In the identification stage, fixing the robot body does not affect the parameters of leg identification
results. The robot body should be lifted and fixed so that the foot does not touch the ground within the
range of motion, and ensure that the left front limb is not affected by external forces during the motion.
The driving torque of each joint is applied in a sinusoidal form,

Fk = ak sin (ωkt) + bk

The values for ak, ωk, and bk are listed in Table II.
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Table I. Base parameters of the left front limb

δb Corresponding linear combination of inertial parameters
δb,1 I1xx + I2zz + I3zz + I4zz + l2

1(m2 + m3 + m4)
δb,2 m1yc1 + m2yc2 + m3yc3 + m4yc4

δb,3 m1zc1 + l1(m2 + m3 + m4)
δb,4 fv1

δb,5 fc1

δb,6 I2xx − I2zz + l2
2(m3 + m4)

δb,7 I2yy + l2
2(m3 + m4)

δb,8 I2xy

δb,9 I2xz

δb,10 I2yz − l2(m3yc3 + m4yc4)
δb,11 m2xc2

δb,12 m2zc2 + l2(m3 + m4)
δb,13 fv2

δb,14 fc2

δb,15 I3xx − I3zz + l2
3m4

δb,16 I3yy + l2
3m4

δb,17 I3xy

δb,18 I3xz

δb,19 I3yz − l3m4yc4

δb,20 m3xc3

δb,21 m3zc3 + l3m4

δb,22 fv3

δb,23 fc3

δb,24 I4xx − I4zz

δb,25 I4yy

δb,26 I4xy

δb,27 I4xz

δb,28 I4yz

δb,29 m4xc4

δb,30 m4zc4

δb,31 fv4

δb,32 fc4

Table II. Parameter values of driving
torque Fk = ak sin (ωkt) + bk

Joint k ak ωk bk

1 6 π 0
2 6 π 7.5
3 −3 π −9
4 5 π 5.5

There is no need to consider the specific form of the excitation trajectory, but the sinusoidal torque
signal of a single frequency is applied, which is the advantage of the “E-B” identification method. The
amplitude, frequency, and bias of the torque can be determined by several attempts, which satisfy the
need to make joints movements cover the workspace as much as possible.
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Table III. Comparison between identification results and real values. The blue
numbers represent the results closest to the real values when measured by
absolute error

Real No-Acc dynamic equations Direct
δb value E-B method using E-B method identification
δb,1 0.0514 1.2543 3.1146 1.5660
δb,2 0 −0.0229 0.0517 −0.0246
δb,3 0.8038 0.3655 1.5395 3.6128
δb,4 1 0.8668 1.2139 1.4466
δb,5 1 0.0788 −0.9823 0.1621
δb,6 0.6597 0.5525 2.6177 0.1566
δb,7 1.5334 1.5294 1.8208 –
δb,8 0 0.009 −0.1372 0.5845
δb,9 0 −0.0233 −1.0949 0.1819
δb,10 0 0.027 −0.2681 −0.2286
δb,11 0 0.0637 −0.0603 1.2700
δb,12 2.797 2.8316 3.8579 1.4795
δb,13 1 0.9926 2.0525 1.5515
δb,14 1 −0.079 −1.4671 0.2162
δb,15 0.6008 0.8664 0.6686 0.2187
δb,16 1.1305 1.1059 1.0938 –
δb,17 0 0.059 −0.0094 0.3997
δb,18 0 0.4075 0.1381 −0.3819
δb,19 0 0.0624 −0.0114 −0.3593
δb,20 0 −0.0062 −0.0138 −1.1099
δb,21 2.06 2.0668 2.0434 1.0800
δb,22 1 0.9296 0.9511 0.6429
δb,23 1 −0.0157 0.0949 −0.4694
δb,24 0.2435 0.1903 0.1799 0.7574
δb,25 0.2454 0.2349 0.2393 –
δb,26 0 0.0203 0.0191 0.1144
δb,27 0 0.0064 0.0458 −0.1110
δb,28 0 0.0195 0.0065 0.0053
δb,29 0 −0.0017 0.0007 0.2672
δb,30 0.91428 0.9166 0.9109 0.4931
δb,31 1 0.9942 0.9921 1.1246
δb,32 1 −0.0567 0.0058 −0.1625

The limb motion lasts 4 s, the sampling interval is 1ms, and the regression matrix W has in total
4 × 4000 = 16, 000 rows. Joint position and joint torque are got by the corresponding sensors in Gazebo,
respectively. The first and second derivatives of the position are solved by difference method, then filtered
appropriately. Table III compares real values with the results of base parameters obtained by different
identification methods. “E-B” method refers to the value of base parameters obtained by “E-B” iden-
tification method with the dynamic Eq. (2), and the condition numbers of regression matrices are 32,
38, 50, and 24 successively. “No-Acc dynamic equations using E-B method are the result of using the
dynamic Eq. (17) and “E-B” identification method, and the condition numbers of regression matrices
are 600, 551, 736, and 197, respectively. Direct identification shows the results obtained by directly
using the least square method with dynamic Eq. (2), and the condition number of the regression matrix
is 72. By comparison, it can be found that the results obtained by using the “E-B” method are closer to
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Figure 3. Comparison between estimated torques and measured torques obtained using the “E-B”
identification method.

Figure 4. Comparison between estimated torques and measured torques obtained by direct identifica-
tion.

the real values. Although the data quality of regression matrices obtained using Eq. (17) is better, the
condition number of regression matrices is too high to get good result. Similar to the real environment,
noise sources also exist in Gazebo, including sensor noise, numerical calculation error, joint constraint
correction force, etc. This may lead to the violation of physical laws for some parameters. After using
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Figure 5. Feet contact forces estimation of the quadruped robot.

“E-B” method to obtain the original base parameters, we can use the method proposed by ref. [23] to
map the parameters to a physically feasible set. With the “E-B” identification method and the direct
identification method, two sets of base parameters are obtained. Figures 3 and 4, respectively, show the
comparison between joint torque estimation and sensor measured torque using these two sets of base
parameters. It can be seen that the “E-B” method is superior to the direct identification method in esti-
mating torques. One way to explain it is that the direct identification method contains all parameters
with the least square method in one step, and the regression matrix is made up of all data of dynamic
equations, so the identification results should satisfy all dynamic equations to minimize the squared
sum of errors of torques estimation. Whereas the “E-B” identification method only uses the data from
one dynamic equation to identify base parameters of one link every step, and the number of parameters
solved in a single step decreases. Hence, it can be predicted that the estimation of joint torque by the
“E-B” identification method will be better than that by the direct identification method.

The identification process is offline. When the identification task is completed, we can use the
dynamic equation to calculate external forces. A direct application of modeling and identification of
legged robots is the foot forces estimation. If errors occur in either modeling or base parameters iden-
tification process, then the external generalized force calculated by dynamic equations will be wrong.
Therefore, foot contact forces of the robot which are calculated by dynamic equations can be used to
verify the proposed method. Figure 5 shows the foot contact force (perpendicular to the ground) curves
of the quadruped robot from standing state to trotting gait. The dot dash line is the estimation value
of the foot contact force from dynamic equations which are established by decoupling modeling and
“E-B” identification method. The solid line is the value given by the contact force sensor in Gazebo.
Both sets of values are processed through a low-pass filter. The results show that the method proposed
in this paper is reliable.

5. Conclusion
By decoupling modeling, the dynamic equations of legged robot can be decomposed into several
independent sets of equations, and its advantages can be summarized into the following three points:
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1. The modeling process is more concise and clearer.
2. Instead of solving all the dynamic equations, several independent sets of dynamic equations allow

us to solve only task-related dynamic equations as needed, which greatly reduces the amount of
computation and thus increases the execution speed of the program.

3. The mutually decoupled dynamic equations reduce the number of base parameters to be
identified simultaneously, which can improve the accuracy of the identification results.

The “E-B” identification method proposed in this paper does not depend on the specific identification
trajectory and only identifies base parameters of one link at one step. Compared with the direct identifi-
cation method, the result of “E-B” identification method is closer to the real values. Obviously, accurate
model and sensor data can improve the accuracy of identification results. The limitation of this paper is
that it does not discuss the influence of various types of signals on the identification results under the
condition of different sensor noises.

In this paper, base parameters identification with dynamic equations in acceleration-free form is also
discussed. As can be seen from the results in Table III, although the condition number of the regression
matrix is higher, parameters of link 4 and link 3 maintain certain accuracy. Due to the error accumula-
tion, link 2 and link 1 deviate from the true value far away. The accuracy of data and condition number
of the regression matrix are both important factors that influence the identification results.
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