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Analytical method for observed powder diffraction intensity data based
on maximum likelihood estimation
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A new methodology based on maximum likelihood estimation for structure refinement using powder
diffraction data is proposed. The method can not only optimize the parameters adjusted in Rietveld
refinement but also parameters to specify errors in a model for statistical properties of the observed
intensity. The results of structure refinements with relation to fluorapatite Ca5(PO4)3F, anglesite
PbSO4, and barite BaSO4 are demonstrated. The structure parameters of fluorapatite and barite opti-
mized by the new method are closer to single-crystal data than those optimized by the Rietveld
method, while the structure parameters of anglesite, whose values optimized by the Rietveld method
are already in good agreement with the single-crystal data, are almost unchanged by the application of
the new method. © 2013 International Centre for Diffraction Data.
[doi:10.1017/S0885715613000195]
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I. INTRODUCTION

The Rietveld refinement is an application of the weighted
least-squares method to experimentally observed powder dif-
fraction intensity data, based on the model for the crystal struc-
ture, peak profile, and background intensities. In principle, the
errors in optimized values of crystallographic parameters such
as unit-cell constants, atomic positions, etc., can be evaluated
by the Rietveld method, if the experimental errors are known
quantities. However, we often encounter too small statistical
errors in the output of Rietveld programs, particularly in the
cases: (i) strong X-ray source, (ii) long measurement time,
(iii) high-resolution optics, (iv) high-sensitivity detectors,
and (v) samples with high crystallinity and large scattering
cross section. It means that the assumed experimental errors
tend to be underestimated in those cases. Then the solution
should simply be the use of appropriate values for the assump-
tion of experimental errors.

It has already been suggested that the statistical variance
in observed powder diffraction intensities is dominantly
caused by the finite number of particles that satisfy the diffrac-
tion condition, when the size of crystallites is not small
enough (Alexander et al., 1948). This effect is referred to as
“particle statistics” (de Wolff, 1958), and it has experimentally
been confirmed (Ida et al., 2009) that the observed statistical
variance σj

2 can be modeled as the sum of counting statistical
variance (σc)j

2 approximated by the expected value of the num-
ber of counts y(2Θj) at the diffraction angle 2Θj, and particle
statistical variance (σp)j

2, that is,

s2
j ≈ (sc)

2
j + (sp)

2
j (1)
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2
j ≈ y(2Qj) (2)

The particle statistical variance (σp)j
2 can be formulated by

(Alexander et al., 1948; De Wolff, 1958; Ida et al., 2009)

(sp)
2
j ≈

Cp[y(2Qj)− bj]2 sinQj

(meff )j
(3)

where Cp is an unknown proportionality factor, bj is the back-
ground intensity, and (meff)j is the effective multiplicity for
reflection, defined by

(meff )j ;
[y1(2Qj)+ · · · + ym(2Qj)]2

[y1(2Qj)]2 + · · · + [ym(2Qj)]2
(4)

when m different reflections contribute to the observed inten-
sity as follows:

y(2Qj) = bj + y1(2Qj)+ · · · + ym(2Qj) (5)

It is quite likely that the statistical error proportional to the
observed intensity also affect the statistical properties of the
measured data, as suggested by Toraya (1998, 2000). We
then have assumed a three-term model for the statistical errors,

s2
j ≈ (sc)

2
j + (sp)

2
j + (sr)

2
j (6)

(sr)
2
j = Cr[y(2Qj)]

2 (7)

where Cr is an unknown proportionality factor in the statistical
model for the observed powder diffraction intensity data.

The unknown parameters Cp and Cr in the statistical
model cannot be optimized by the Rietveld method, but can
be estimated from the experimental data by applying a “maxi-
mum likelihood estimation” as an alternative to the
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least-squares method. In this article, the concept of the new
methodology for analysis of powder diffraction data based
on maximum likelihood estimation is described, and the
results of analyses on fluorapatite Ca5(PO4)3F, anglesite
PbSO4, and barite BaSO4 are demonstrated.

II. MAXIMUM LIKELIHOOD ESTIMATION

Suppose that diffraction intensities {Y1, ..., YN} observed
at diffraction angles {2Θ1, ..., 2ΘN} are normally distributed
around an appropriate model y(2Θj) with a statistical error of
{σj} at each data point. Then, the probability P that this dataset
should be realized is given by

P =
∏N
j=1

1

(2p)1/2sj
exp − D2

j

2s2
j

( )
(8)

where Δj≡ Yj− y(2Θj) is the deviation of the observed inten-
sity Yj from the average intensity y(2Θj). The maximum like-
lihood estimation denotes the optimization of the statistical
model to maximize the probability P, which is exactly equiv-
alent to the minimization of the “unlikelihood estimator” U
defined by

U ; −2 lnP− N ln (2p) =
∑N
j=1

D2
j

s2
j

+ lns2
j

( )
(9)

Note that the Rietveld method is nothing but the minimiz-
ation of weighted sum of squared deviation S, given by

S =
∑N
j=1

D2
j

s2
j

(10)

and the values of {σj} should always diverge to infinity, if they
are allowed to be varied.

The plots shown in Figure 1 schematically illustrate the
capability of maximum likelihood estimation to optimize
the error model, simplifying the behavior of the unlikelihood
estimator as a function of σ2, U = Δ2/σ2 + lnσ2. It should be
noted that the unlikelihood U has a minimum at a finite
value of σ2.

III. ANALYTICAL PROCEDURES

The optimization of the overall statistical model by the
maximum likelihood estimation can be divided into the fol-
lowing two steps (Ida and Izumi, 2011):

(i) Structure refinement by the Rietveld method with the user-
defined errors {σj}, where σj = Yj

1/2 is assumed at the initial
stage.

(ii) Estimation of errors {σj}, determined by Cp and Cr, by the
minimization of the unlikelihood indicator U(Cp, Cr),
applying the deviations {Δj} = {Yj− y(2Θj)}, individual
model peak profile {yk(2Θj)} and background intensities
{bj}, calculated by the former Rietveld refinement.

The above steps (i) and (ii) are repeated until convergence,
which typically needs 3–4 iterations.

IV. APPLICATIONS TO X-RAY POWDER DIFFRACTION

DATA

In this section, the applications of the new structure
refinement method based on the maximum likelihood esti-
mation to fluorapatite Ca5(PO4)3F, anglesite PbSO4, and bar-
ite BaSO4 are demonstrated. Further details about the
analytical results have been described elsewhere (Ida and
Izumi, 2011).

A. Fluorapatite, Ca5(PO4)3F

CuKα X-ray powder diffraction data of fluorapatite,
Ca5(PO4)3F, were originally attached to the DBWS Rietveld
program package developed by Young et al. (1995), and are
currently available as an example dataset in the RIETAN-FP
package (Izumi and Momma, 2007). The space group of fluor-
apatite is P63/m (No. 176).

The differences in atomic coordinates between the struc-
ture refined from the powder and single-crystal diffraction
data (Sudarsanan et al., 1972) are plotted in Figure 2. All
the atomic fractional coordinates optimized by our new
method are closer to the single-crystal data than those obtained
by the Rietveld method.

Figure 1. Illustration to demonstrate the capability of maximum likelihood
estimation to optimize statistical variance σ2. The unlikelihood function
U=Δ2/σ2+lnσ2 always has a minimum value at a finite value of σ2.

Figure 2. Deviations of the fractional coordinates of fluorapatite optimized
by the Rietveld (triangles) and new (circles) methods from those obtained
by X-ray analysis of a synthetic single crystal by Sudarsanan et al. (1972).
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B. Anglesite, PbSO4

CuKα X-ray powder diffraction data of anglesite, PbSO4,
supplied for a Rietveld refinement round robin (Hill, 1992),
were reanalyzed. The data are available as an example file in
the FullProf package (Rodríguez-Carvajal, 1993). The space
group of anglesite is Pnma (No. 62).

The differences in atomic coordinates between structure
refinements from the powder and synthetic single-crystal dif-
fraction data (Miyake et al., 1978) are plotted in Figure 3. The
atomic coordinates optimized by the new analytical method
are almost unchanged from the results obtained by the
Rietveld method. It should be noted that the results of the
Rietveld method have already been in good agreement with
the single-crystal data within the experimental errors. It is
suggested that the powder diffraction data were collected
almost under ideal condition for the Rietveld structure refine-
ment. This example shows a rather favorable behavior of the
new analytical method, to the point that it does not cause
unwanted modification to the satisfactory results of the
Rietveld method.

C. Barite, BaSO4

CuKα1 X-ray powder diffraction data of barite, BaSO4 are
available as an example in the RIETAN-FP package (Izumi

and Momma, 2007). The space group of barite is Pnma
(No. 62), and is isostructural to anglesite.

The differences in atomic coordinates between structure
refinements from the powder and synthetic single-crystal dif-
fraction data (Miyake et al., 1978) are plotted in Figure 4. This
example shows significant improvements in agreement with
the single-crystal data by applying the new analytical method.
It should be emphasized that the results of the new analytical
method are closer to the single-crystal data than those obtained
by the Rietveld method, even though the Rietveld and new
analytical methods are applied exactly to the same powder dif-
fraction data, while the sample for single-crystal analysis is
different from what is used in the powder diffraction exper-
iment. The improved agreement with single-crystal data may
be ascribed to lower probability to satisfy the diffraction con-
dition because of the use of monochromated X-ray source on
collection of the powder diffraction intensity data of BaSO4.

V. CONCLUSION

A new method based on the maximum likelihood esti-
mation for structure refinement from powder diffraction data
has been developed. A model for statistical errors affected
by particle statistics in experimental data can be optimized
by the method. The method has been applied to the powder
diffraction data of fluorapatite, anglesite, and barite. The struc-
tures refined by the new method show improved agreement
with single crystal data, as compared with those obtained by
conventional Rietveld refinements. The new method can be
used as an alternative to the Rietveld method for structure
refinement.
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Figure 3. Deviations of the fractional coordinates of anglesite optimized by
the Rietveld (triangles) and new (circles) methods from those obtained by
single-crystal X-ray structure analysis by Miyake et al. (1978).

Figure 4. Deviations of the fractional coordinates of barite optimized by the
Rietveld (triangles) and new (circles) methods from those obtained by
single-crystal X-ray structure analysis by Miyake et al. (1978).
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