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We study an example of.Bellman’s gold-mining problem related to a program-
ming job on the computefhe problem is formulated by dynamic programming and
the optimal strategy is explicitly derive@lhe Bayesian version when the parameter
involved is unknown is also solved by the same metlitad shown that the optimal
strategy in each of two versions has the “no-islafm; in other words“control-
limit”) property

1. THE PROBLEM

There aren identical items each of which has the probability of failpre (0,3).
When we use these items to construct a “systéra!; a series connection of “units”

the {;}-item unit works “on” with probability{ 11:;32}, and “off” with probability
{;’2} We have to choos@ne-by-one sequentiallgither one of the two kinds of the
units, with the objective of

E[length of run of “on” units until END — max (1.2)
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FiGuURE 1. A system withn = 10.

subject to

2(Number of 2-item units used- (Number of 1-item units used=n, (1.2)

where END means the eventin which either some unit works off or there remains no
item, whichever occurs first

Figure 1 shows a system with= 10, and the length of run of “on” units in this
system has the expected value

a{p? +2(1—p*)p? +3(1 - p?)?p + 4(1—p*)%ap+ ---},
whereq=1—p.
The problem is formulated by dynamic programming and the optimal strategy is
explicitly derived as a function g € (0,%). This work was motivated by an article
by Hamadd 4], related to a programming job on the computar{4], the author
investigates the same problem as in the present article by trying another approach in
which the optimality equations are recursively solved in detalil

2. DYNAMIC PROGRAMMING

LetF, be the maximum expected reward when therenatems availableThen the
Optimality Equation is evidently

Fo=1{a1+F_)} O{Q - p*) 1+ F_»)} (n=23,...;F,=0,F, =0),
(2.1)

whereq=1—p.
We prove the following

THEOREM 1: Let ny = [log 2/(—log g)] and lets be the strategyUse a2-item unit
as long as n> ng, and switch to dl-item unit as soon as = n,. (6 is denoted by
2ln=m0)/211M0) Then & is optimal[nearly optimall if n — ny is even[odd]. “Nearly
optimal means that eithes or 2(("""0/211M*1 j5 optimal

Proor: Denote by 12 if n= 3, the strategy of using a 1-item unit first2-item unit
secongand the optimal continuation thiriburth, and so onLet F}? be the expected
reward obtained by employing the strategy.Ithen for n= 3, from (2.1) we have

Fa? =qp*+q(1—p?)(2+ F_s),
Fav=A-p*)p+(1—-p*)a2+ F,a),
and hence

Fo® —Fer=a{p*+2(1-p*)} —(1-p*)(p+29)=—pg<0. (22
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Forn = 2, we have
Fi—Fi'=1-p®—(ap+2¢°) =q(1—-29) <O, (2.3)
because > 3.

Combining(2.2) and(2.3), we find that the optimal strategy has the form of
2("M)/21M for anyn = 2.

Our next step is to determing as a function ofp. Let us compare the two
strategies 21and ¥*2 for any integerx = 1. The expected reward obtained by
employing the strategy*lfor x=1,2,..., is

x—1 q
91 =p> qu+qu=(5>(1—qx), (2.4)
k=1

and also the expected reward by the strategyZory = 0,1,2,..., is
y—1
9(2¥1%) = p? X k(1—p?)* + (1 - p?){y + g(1*)}
k=1

=(p?-D{1—(1—-p*)Y}+ (21— p?)g(1"). (2.5)
Therefore we have from (2.4) and(2.5), after some algebra

g(21%) — g(1**?) = (1 - p*){1+ g(1*)} - (g)u— aq?)

=q(1-2g"). (2.6)
Equating(2.6) to zerq we obtain
1 log 2 )
X+l —= — e, x+1= . 2.7
I (“loga) @D
Let ng be the positive integer such that
qett=3<qm (2.8)

Then becausé€2.6) is increasing irx, we have
g(21% 1) — g(1™"*) < 0=g(21™) — g(17*?).
This completes the proof of the theorem u

Table 1 gives the values of, = [log 2/(—log g)] for some small values gd.
From Theorem 1 and Table the optimal system with = 10 whenp = 0.1 is given
by Figure 2 and the system shown by Figure 1 is not optimal

Some remarks around Theorem 1 are given in Remarksahd 3 of Section 4

TABLE 1. Values ofng

p= 0.01 0015 Qo2 003 005 Q01 015 02 025-Q029
np= 68 45 34 22 13 6 4 3 2
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FIGURE 2. A system withn = 10.

3. BAYESIAN DYNAMIC PROGRAMMING

Consider the case where the valuep afe unknownSuppose that there is the prior
information thatp is a random variable with the distribution bétgg3); that is its
probability density functioripdf) is

_ I'(a+B) w1 p1 _
f(pla,B) e P 10<p<1), ap=Ll

We define a statér, 8| n) to mean thatl) there aranitems available an() the
current information about the unknown valugxs$ that it is arandom variable.v.)
distributed as beta, B).

LetF,(a, B) be the expected reward obtained by employing the optimal strategy
under the Bayesian learning starting from statgg|n). Then by the well-known
manner of Bayesian learnintpr Bernoulli/beta(seg e.g., DeGroot[2; Sects 5.9
and 63]), we have the Optimality Equation

Fo(a, ) = Fa(e, B) OFZ (e, B)

(n=2; Fo(a,B) =0, Fy(a, B) = B/(a + B)), (3.1)
where
Fa(a,B) = fo 1-pQ+F, 1(a,B+1)f(pla,B)dp
= A A+ F_(a,B+1)) (3.2)
a +B n—1 ’ .
and

FiaB) = [ 0= D2+ Fyalaf +2)
0

+2p(1—p)(1+ F2(a+ 1B+ )i (pla,B)dp
BB+
(a+B)(a+B+1)
N 2a83
(a+B)a+B+1)

(1+Fy2(e,B+2)

A+F, y(a+1,B8+1)). (3.3)
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Note that if a 1-item unitis used at stdie 3|n), then the state is transferred to
state(a, 8 +1/n—1) with probability3/(a + B)
END with probabilitya/(a + B);
and if a two-item system is used at stéte3|n), then the state is transferred to
state(a, B+ 2|n — 2) with probability8(8 + 1)/(a + B)(a + B+ 1)
state(a + 1,8 +1|n—2) with probability 228/(a + 8)(a + 8 + 1)
END with probabilitya(a +1)/(a + B)(a + B +1).
By using the same method as in Theoremwvé prove the following

THEOREM 2:

i. For the Bayesian Bernouflbetaversion(3.1)—(3.3), there exists a function
no(a, B) such that the optimal strategy in stdte, 8|n) is as follows Use a
2-item[1-item] unit, if n >[=] ng(a, B).

ii. ng(e, B) is determined by the posig integer n satisfying

Y @B (Bl
2 Kt B, Tlam D= Bl g
< aB
(a + B)z
_ 3 (@B (Bl
= 2K B, Tl Dot D =B g s (B4

where(m),=m(m+1) --- (m+k—1), and the empty sum is meant by zero

ProoF OF (i): We use the same notations as used in the proof of Theorénstate
(a, B|n) with n= 3, we have from (3.1)—(3.3),

Flz = [a(a+1) + (B +1(B+2){2+F, s(a,B +3)}
(o + ,3)3
+2a(B+D{2+ F, 3(a+ 1B+ 2)}],
= e g et 2@t DT (BHD(B+2){2+ Fg(@f+3)
+2a(B+1){2+ Fys(a+ 1,8+ 2))]
and hence
12¢ _ p2ls — _ 2a3
F F @t B, <. (3.5)

Note that the terms involving,_s(«, 8 + 3) andF,_s(« + 1, 8 + 2) disappearand
(3.4) is valid independently of = 3.
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Forn= 2, we have

F2—Fj= {1— “(aﬂ)}— B (at+208+1)
(a+B), (a+B),

 BB+1-a)
Y (3.6

implying thatF? < F}! @ 8 > a — 1. The condition3 > « — 1 in state(«, 8|2) is
usually not restrictivebecause we start from stdie, 8|n) with o« = 8 andn = 3.

Combining (3.5) with (3.6) we find that the optimal strategy has the form
2("=M)/2 for anyn = 2.

ProoF oF (ii): We have to determiney(a, 8). We compare the two strategies*21
and X2 in state(a, B|x + 2). Denote byG(21*| a, B) the expected reward obtained
by following the strategy 21in state(a, 8| x + 2). We can find after some algebra
based on3.2)—(3.3), that

X+2 = sy & M
G lap) =a 2 kg D e
and also
) = M M
Cetlep) = {“E(“ VB PG +B>X+J
x—1 (Bk+1 (B
+ [Za(a + 1) Zl(k+ 1) (a+—,8)k+3 +2a(x+1) m]’
(3.8)

where the firs{second part is due to the strategy starting from stédeg + 2|x)
[(e + 1,8 + 1|x)], which is left after the first choice of a 2-item unBubtracting
(3.7) and(3.8) we obtain after some algebra

¢(X|a,p) = G(21[a, B) = G(1*?|ex, B)

X K (a)z(ﬂ)k af (a)2,3

k=1 (01+/3)k+2 - (a+,3)2 - (01"',3)3
(B)x+l
+{(a—1D(x+1) —pB} m, (3.9
which, we can find is increasing irx. Because if we consider
X (Ol)z(ﬂ)k (,B)X+1
h(x) = K—————— -1 1) ———
0= 2Kt e, @I )
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then
h(x) —h(x—1) = (2a—1)(a+1)x(a_(f—2;)x+2 +(a—1) (a(f;,;;;& > 0.
Thus h(x), and hencé3.9), is increasing ik = 1. Moreover
olap) = g+ @a=p-2) (a(f—);)s
= _(a%ﬁ)sl{(a—ﬂ)2+a3+3ﬁ+2}<0

ande(x|a, 8) becomes positive for some largeTherefore we have

¢(no(a, B) — 1]a, B) < 0= o(No(e, B)| e, B)

for somengy(a, B), which is equivalent to(3.6). This completes the proof of
Theorem Zii). u

Note that Theorem 2 indicates the followinifone uses a 2-item unit and it
works “on” then one has to choose either a 2-item unit or a 1-item unit. iexhe
uses a 1-item unit and it works pthen one must choose a 1-item unit only until
END.

More discussions on Theorem 2 are made in Remark 4 of the next section

4. REMARKS

We present some rematks

1. The problem discussed in the present work is an example of Bellman'’s gold-
mining problen{1, pp. 61-80. Theorems 1 and 2 show that the optimal strategy in
each of two versions of the problem has the “no-island” propgéry every optimal
decision region is a connected et

Ross[6] and otherg Monahan 5], for example found that a counterintuitive
strategywith a disconnected decision regiaa optimal by a model of a partially
observable Markov decision process

2. Concerning Theorem the expected reward obtained by employing the strat-
egy 21%is given by(2.4) and(2.5). Thereforgethe optimal system with =10 and
p = 0.1, shown by Figure 2has the expected reward

9(2°1°) = (p2 - (1 - (1-p*)?) + (1 - p?)?g(1°)
=1-p){1+(1-p*)p 1-a")}
giving 6.1032 ifp=1 — g = 0.1 is substituted
For the nonoptimal system /it is
9(21%) = (p~2 = 1)p? + (1 - p?)g(1®)
=(1-p?)pt1-a°),
giving 6.0645 ifp = 0.1 is substituted
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For another nonoptimal systerm', it is

g(1%°) = <g>(1— q°) =5.8619 ifp=0.1

Moreover the specific numbeny = [log 2/(—log q)] appeared in the past lit-
erature in an article by DomansK®] related to certain optimal stopping game
connected with aniid. sequence of Bernoulliv.’s.

3. Two extended problems will arise

Problem A. We can form two kinds of unitdJ; and U,. For eachi =1 and 2
unit U; works “on” with probabilityg; and “off” with probabilityp; =1 — ¢; with
operating cost;. Assume that;; < g, andc; < c,. Let C be the total budget
available Then the problem ig1.1) with (1.2) replaced by

¢, (Number of U used + ¢, (Number of U, used = C.

Find the condition omp; andc;, i = 1, 2, under which the optimal strategy
has the “no-island” property

Problem B. If we newly introduce the 3-item unitvhich works “on” with
probability 1— p® and “off” with probability p3 we have a conjecture that the
strategy 32Y1* with 3z + 2y + x = n, is optimal Is this conjecture valid? If so
find the optimalx andy as a function of.

As for Problem Bthe argument used in the 2-case can be carried over to the
3-casethat is we find that using (i =1, 2) and then 3 is no better than using 3
and theni. So the problem left is to find the optimglas a function of. It
is interesting to find that the equalif®.7) in the 2-case becomes the equality
y—1=log3/log(1— p?)inthe 3-casgand that ifn = 100 andp = 0.1, then the
optimal system is 84116,

4. We present numerical examples of Theorem 2

Example 1:Letn =5 and(«, 8) = (1,4). Then from Theorem 2we have to con-
sider the three strategie§ 213 and 21. We computg4.1) and(4.2) and find that

4 (4 4),
G(15|1,4) = kzlk& + 5& — 29825

43 44 45 42 43 44
G(21%|1,4) = {2%+3§5—;+4%}+{8ES—;+12%+8%}
= 27222

and

2 _ @ 8 _
G(221|1,4) = &) (1+ G(21]1,6)) + B, (1+ G(21]2,5)) = 2.3936
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because we hayé&om (3.8),

(B)s (B)2
G2l|a,B) =2 + 4a .
(a + ,3)3 (a +B)s
Hence we conclude that strategy is optimal at staté1,4|5). On the other handf
we try to compute the Optimality Equatid8.1)—(3.3) starting from

Fs(L4) = 2(1+ F4(1,5) O{15 + 5F3(1,6) + 15F5(2,5)},
then we arriveafter some stepst the same resylEs(1,4) = 2.9825

Example 2: Suppose that we start from stdte, 8|n) = (1,1|7). Denote a 1-item
[2-item] unit by U, [U,]. Then the optimal strategy is represented as follows

—(1,3|5)—————U, only until END
(1,117 —2 (2,4]3) U, only until END

%

L (2,2/5)

(3,313) U, only until END

becausd3.4) in Theorem 2 givesy(1,1) = 5, ng(L,3) = 6, ng(2,2) = ny(2,3) =
no(2,4) = 4, andny(3,3) = 3. The top path means the followinBirst, use a Y. If it
works “on” and the transferred statg(is3|5), then use s thereafter until END as
long as they work “ori

Finally, the following fact is worth noting

THEOREM 3: Suppose thgB = a + 3(v8a? + 1 — 3). If Bayesian learning3.2)—
(3.3) is not made and we exploit the prior knowledge that peta «, 8) only, then
no(a, B) is equal to the posite integer that satisfies

(B+ Dngi1 1 (B + 1D,

(@+B+Dn 2 (a+f+Dy e
Proor: From(2.6), we have after some algebra
1
0(22|a, )~ 9 ?la ) = | {921 ~ 97} (p e B) cp
1
=fo (0—29*)f(pla,B)dp
R { 2Bt } @2
a+B (a+,3+1)x+1
Equating(4.2) to zerq we obtain
(B+Den 1 @3

(a+B+1)x+1 2
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This equation corresponds (2.7) in Theorem 1(i.e,, the case wherp =1 — qis
known).

Becausé€4.2) is increasing ink=1 and is negative at=1if 2(a?—1) < (8 —
a)?+3(B—a) (i.e, B=a+ 2(V8a? +1— 3)), there exists @y(a, B) such that
9(21% e, B) — 9(1™" @, B) < 9(21™ |, B) — 9(1™"?|ex, B),
which is equivalent t@¢4.1). This completes the proof of the theorem u

Example 3:Let («, 8|n) = (1,4]5), as in Example 1Because conditiof4.1) for
(a, B) = (1,4) givesny(1,4) = 4, the optimal strategyvhenn = 5, is either 2F or 1°
(see Theorem)LFrom(2.4) and(2.5), we have

921%) = (1-p*)L+aq+g*+ ),
9(1°) =q+g*+ - +¢°
and hence we obtain

1
021114 = | (21%)f(pl14)dp= 28937
0

1
9(1°14) = JO g(1%)f(p|1L4) dp= 2.9825

because

(a)r (IB)S
(a’ + B)r+s

Therefore 1° is optimal and the expected reward i9825 The result is the same
as in Example Jlimplying that learning is useless becauses too small

1
fo p'g*f(ple,B)dp = (r,s=0,12,...).
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