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SUMMARY
Self-reconfiguration of robotic manipulators under joint
failure can be achieved via fault-tolerance strategies. Fault-
tolerant manipulators are required to continue their end-
effector motion with a minimum velocity jump, when
failures occur to their joints. Optimal fault tolerance of
the manipulators requires a framework that can map the
velocity jump of the end-effector to the compensating joint
velocity commands. The main objective of the present
paper is to propose a general framework for the fault
tolerance of the manipulators, which can minimize the
end-effector velocity jump. In the present paper, locked
joint failures of the manipulators are modeled using matrix
perturbation methodology. Then, the optimal mapping for
the faults with a minimum end-effector velocity jump is
presented. On the basis of this mapping, the minimum
end-effector velocity jump is calculated. A generalized
framework is derived from the extension of optimal mapping
toward multiple locked joint failures. Two novel expressions
are derived representing the generalized optimal mapping
framework and the generalized minimum velocity jump.
These expressions are suitable for the optimal fault tolerance
of the serial link redundant manipulators. The required
conditions for a zero end-effector velocity jump of the
manipulators are analyzed. The generalized framework in
this paper is then evaluated for different failure scenarios for a
5-DOF planar manipulator and a 5-DOF spatial manipulator.
The validation includes three case studies. While the first
two are instantaneous studies, the third one is for the whole
trajectory of the manipulators. From the results of these case
studies, it is shown that, when locked joint faults occur, the
faulty manipulator is able to optimally maintain its velocity
with a zero end-effector velocity jump if the conditions of a
zero velocity jump are hold.
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1. Introduction
Fault-tolerant manipulators are essential wherever high
dependability of robots is required, such as robotic
manipulators applied in hazardous environments. The
application might be nuclear disposal, deep-sea missions,
or outer-space explorations.1,2 This fact has been noticed
for the teleoperated manipulators for handling of hazardous
or explosive chemicals.3,4 Design and control of fault-
tolerant manipulator aim to maintain the dependability of
the manipulator despite of partial failures. The fault might
occur in the actuators or the sensors of the manipulator.5,6

Research on fault tolerance of the manipulators is on
either the design of the manipulators (design of fault-
tolerant manipulators or fault-tolerant structures) or the
control of the manipulators (fault analysis and fault-tolerant
motion planning or control). Within the literature of design
of fault-tolerant manipulators, either different structure of
serial or parallel manipulators have been studied,7–12 or a
manipulator with a specific fault-tolerant property has been
designed that includes design of degrees of freedom (DOF),
link lengths, and redundancy in actuation.13,14 The design
procedure usually optimizes fault-tolerance measures of the
manipulators.12,14 For instance, relative manipulability15 or
worst-case dexterity16 are two of measures of fault tolerance
of manipulators. Condition number of manipulators can also
be used for the fault tolerance, this fact has been observed
in our previous work17 where the condition numbers are
used for finding optimal configurations for fault tolerance of
the manipulator. In the literature of the fault-tolerant control
of the manipulators, subjects, such as fault detection, fault
isolation, fault identification, and fault accommodation of the
manipulators, are studied.18–21

Serial link manipulators (SLMs) have received a great level
of attention by the researchers in the robotics community.
Fault-tolerant design of the SLMs can be achieved by
adding extra kinematic redundancy to the manipulators. A
SLM with extra kinematic redundancy is called serial link
redundant manipulator (SLRM).11,22,23 Via these kinematic
redundancies, the manipulator can be dependable to perform
a required24 or prioritized tasks25 despite of the joint failures.
The added kinematic redundancy not only improves the
fault tolerance of the manipulators, but also promotes other
static or dynamic properties of the manipulators. These
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properties can be used for higher dexterous movements,26

lower maintenance and repair costs, obstacle avoidance, and
so on. In fact, SLRMs have the capability to be used under
multiple constraints.25,27,28 Keeping in mind that having
kinematic redundancy does not guarantee the fault tolerance
for the operation of SLRMs, because the redundancy has to
be effectively used for fault tolerance29 of SLRMs.

Self-X systems are systems with self-assembly, self-
organization, self-reconfiguration, self-repair, self-
replication, or self-reproduction capability.30 The problem of
self-joint-velocity reconfiguration for robotic manipulators
under locked joint failures is addressed in the present paper.
The reconfiguration is proposed for locked joint failures via
incorporating fault-tolerance strategies. When a locked joint
failure occurs, it will cause an end-effector (EEF) velocity
jump because the locked joint stops to contribute into the
velocity of the EEF. The fault-tolerant manipulators are
expected to continue their motion tasks with a minimum EEF
velocity jump when faults occur into their joints. For having
this property, the contribution of the locked joints prior
to the fault time has to be compensated by healthy joints
via a proper reconfiguration strategy. This reconfiguration
requires a framework to map the EEF velocity jumps to the
compensating velocity commands for the healthy joints. The
compensating velocity commands must be calculated in a
way that optimally recovers EEF velocity jump.

While the focus of the present work is on the EEF velocity
jump, number of the literature has discussed the joint velocity
jump (JVJ), such as the studies in refs. [31, 32]. The mapping
in refs. [31, 32] is based on minimization of the minimum
JVJ. The focus in the present paper is the minimum EEF
velocity jump. The work in refs. [31, 32] obtained minimum
JVJ by using Lagrange multiplier method for the velocity
equation of the faulty manipulator and reported only a single
joint failure. But the present work is using least-square
technique within the methodology of matrix perturbation.
In fact, the perturbation methodology provides a better
interpretation of the optimal mapping and is very suitable
for the extension toward multiple locked joint failures.

The present paper is organized as following: At first,
the velocity equation of SLRMs with locked joint failure
is introduced with matrix perturbation methodology. Then,
the minimum EEF velocity jump is obtained, which gives
an optimal mapping for the fault tolerance of the SLRMs.
From this fault-tolerance mapping, the required conditions
to have a zero EEF velocity jump are analyzed. Next, the
mapping is extended toward multiple locked joint failures
and a generalized framework for optimal fault tolerance
with minimum EEF velocity jump is indicated. Finally, three
case studies are implemented to validate the proposed fault-
tolerance framework.

2. Kinematics of Serial Link Redundant Manipulators
In this section, kinematics of SLRMs with locked joints
failures is established. Within the formulas throughout this
paper, the capital letters represent matrices and small letters
represent vectors or scalar parameters. The matrices are
assumed to be full rank. If the number of the columns of

matrices is greater than the rows, then they are called fat
matrix and if it is less, they are called skinny matrix.

2.1. Kinematic and self-motion manifolds
Fault-tolerant analysis of robotic manipulators studies
different redundancies of the manipulators for the sake of
fault tolerance. The forward kinematics of a multirigid body
is introduced as a base of fault-tolerance analysis

x = f(q), (1)

q = [q1 q2 .... qn ]T, (2)

x = [x1 x2 . . . xm ]T, (3)

where f : Rn → Rm is the forward kinematic function of the
manipulators and it is a nonlinear equation. The manipulators
in this paper are assumed to be revolute joint manipulators.
Forward kinematics relates joint angles (2) to EFF positional
and orientational variables (3).

The joint variables define the configuration space (C-
space), and positional and orientational variables define the
work space of the manipulator. Knowing that f : Rn → Rm

then the manipulator has n-DOF, and n is the dimension of
the C-space or joint space and m is called the dimension of
the workspace. The degree of kinematic redundancy (DOR)
in nonsingular kinematic configurations of the manipulators
is obtained by n − m.

In ref. [13], the number of required redundancy was
investigated by applying joint fault probability and total
reliability of manipulators. In ref. [33], the upper limit
of an optimal fault-tolerant configuration for redundant
manipulators has been studied and it has indicated that
the optimal fault-tolerant configuration is not possible for
manipulators with more than 12-DOR. In general, the higher
the degree of redundancy, the better fault tolerance of the
manipulators. However, higher DOR for the manipulator may
not result to an optimal fault tolerance of the manipulators.
Identifying the fault-tolerant workspace of SLRMs requires
a general solution of inverse kinematics equation

q = f−1(x). (4)

For SLRMs, it is very rarely possible to find the general
fault-tolerant workspace of the manipulator because of the
redundancy of the solutions and the nonlinearity of Eq. (1).
The work in refs. [34, 35] has introduced the concept of
self-motion manifolds for the inverse kinematic problem of
SLRMs. The characterizations of the self-motion manifolds,
both in C-space and work space have been used for the fault-
tolerance study of the manipulators.34,35 The papers have
applied manifold techniques to determine manifold solution
for the inverse kinematic equations. Then, they have used
them to obtain the fault-tolerant configurations of a manip-
ulator. This type of analysis has very limited performance,
especially from generalization point of view. Therefore, other
methods for fault-tolerance study are preferred.

In last two decades, the fault tolerance of SLRMs has
been widely addressed by the researchers in the robotics
community. Recent work uses the properties of the Jacobian
matrix or null space of the Jacobian matrix to define
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fault-tolerance measures or provide fault-tolerance control.
For instance, some properties of the Jacobian matrix for fault
tolerance have been used in refs. [14, 29]. The relationship
between the fault tolerance and the null space of Jacobian
matrix has been addressed.29 Those measures of the fault
tolerance are based on the Jacobian not only can be used for
the design of the manipulators, but also they can be used for
the fault tolerance in the operation of the manipulators. This
motivates the use of Jacobian matrix for the fault-tolerant
motion of manipulators.

2.2. Jacobian matrix of SLRMs with locked joint faults
The Jacobian matrix of manipulators is shown as

J =
[

∂f
∂q

]
∈ Rm×n. (5)

Jacobian matrix relates the EFF translational and
orientational velocity to the joint velocities

ẋ = Jq̇, (6)

where J = [j1 . . . jk−1 jk jk+1 . . . jn ] and jk ∈
Rm is the kth column of J. The velocity equation (6) can
be written as

ẋ =
n∑

k=1

jkq̇k. (7)

Physically, jk in Eq. (7) indicates the contribution of the kth
joint velocity to the translational and orientational velocity
of the EEF. Normally, we have n ≥ m that is for a square
or fat matrix and in nonkinematic singular configurations of
the manipulators, the rank of the Jacobian matrix is m. The
common modeling method for the locked joint failures of the
manipulators in the literature14,36,37 is presented in following.

When the manipulator has a fault in its kth joint, then it
stops to contribute to the velocity of EFF of the manipulator.
Therefore, the Jacobian matrix of the faulty manipulator with
a locked joint failure is introduced by replacing a zero vector
in the kth column of the Jacobian matrix, which gives[

j1 . . . jk−1 0 jk+1 . . . jn
]
. (8)

This Jacobian matrix is reduced to a matrix, which is called
kth reduced Jacobian matrix as

kJ = [
j1 . . . jk−1 jk+1 . . . jn

] ∈ Rm×(n−1). (9)

The kth reduced Jacobian matrix is obtained simply by
eliminating the kth column of Eq. (5). The velocity equation
of faulty manipulator with a single locked joint fault is
obtained then by

ẋ = kJkq̇, (10)

where

kq̇ = [
q̇1 . . . q̇k−1 q̇k+1 . . . q̇n

]T ∈ Rn−1. (11)

Here, the vector kq̇ is the joint velocity vector of the reduced
manipulator. For single joint failures of n-DOF manipulators,

there are m number of reduced Jacobian matrices as

{1J,2 J, . . . ,n J}, (12)

where kJ is the kth reduced Jacobian matrix that is due to the
fault of the kth joint.

Knowing that n ≥ m, then the matrix kJ is a skinny matrix
when J is square. The matrix kJ is square when n = m + 1
or manipulator has only 1-DOR; otherwise, when n > m + 1
then kJ is a fat matrix.

With a similar approach, if a manipulator has r faults, then
the Jacobian matrices of faulty manipulator are obtained by
the permutation of r zero vectors in the original Jacobian
matrix. In general, with r, r = 1, . . . , n faults, there are

(
n

r
) = n!

r!(n−r)! reduced Jacobian matrices. For instance, if two

faults occur into the joints of k and l when k, l = 1, . . . , n

and k < l, then there are n(n−1)
2 reduced Jacobian matrices

indicated as

k,lJ = [
j1 . . . jk−1 jk+1 . . . jl−1 jl+1 . . . jn

] ∈ Rm×(n−2).

(13)
The velocity equation for manipulators with two locked joints
is written as

ẋ = k,lJk,lq̇ k, l = 1, . . . , n k < l, (14)

k,lq̇ = [
q̇1 . . . q̇k−1 q̇k+1 . . . q̇l−1 q̇l+1 . . . q̇n

]T ∈ Rn−2.

(15)

In general, for r > 1 faults, if Sr = {i1 i2 . . . ir |
i1 < i2 < . . . < ir 1 ≤ i1, ir ≤ n } is the ascending set of
faulty joints, then the velocity equation for a manipulator
with r faults of Sr is represented by

ẋ = Sr JSr q̇, (16)

where Sr J is obtained by eliminating the columns of
J associated to the faulty joints, and Sr q̇ is obtained
by eliminating the corresponding rows from q̇. By this
elimination, the matrix Sr J will be a skinny matrix when
n < m + r . The matrix kJ will be square matrix when
n = m + r; otherwise, when n > m + r then kJ will be a
fat matrix.

3. Minimum Velocity Jump for Faulty Manipulator

3.1. Matrix perturbation and single locked joint faults
If a sudden locked failure occurs into the kth joint of a
manipulator while the joint velocity expected to be q̇k for the
motion task, then the fault can be modeled via a perturbation
in the velocity equation (6) as

ẋ + �ẋ = (J + �J)(q̇ + �q̇), (17)

where �ẋ is the EEF velocity jump, �J is the perturbation
into the Jacobian matrix due to the failure, and �q̇ is the joint
velocities jump.
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If the kth joint is locked, then the perturbation in the
Jacobian matrix is

�J = [
0 . . . −jk . . . 0

]
. (18)

Additionally, as the kth joint stops after failure, the joint
velocities jump is

�q̇ = [
0 . . . −q̇k . . . 0

]T
, (19)

where q̇k is the expected velocity of the kth joint when the
manipulator is healthy.

The perturbation approach here is consistent with
the modeling in previous section. For the fault-tolerant
manipulators, a control input is required to compensate
the EEF velocity jump. Let assume u is the vector of the
control input to compensate the failure of the kth joint of the
manipulator. Adding this control input to Eq. (17) results in

ẋ + �ẋ = (J + �J)(q̇ + �q̇ + u). (20)

Using Eq. (6) to simplify Eq. (20) results in

�ẋ = (J + �J)�q̇ + �Jq̇ + (J + �J)u. (21)

Considering that J + �J is a matrix with zero vector in its
kth column, and �q̇ (19) is a zero vector except in the kth
row, then (J + �J)�q̇ ≡ 0 and Eq. (21) results in

�ẋ = �Jq̇ + (J + �J)u. (22)

Using Eq. (18) in Eq. (22) obtains the velocity jump of the
EEF as

�ẋ = −jkq̇k + (J + �J)u. (23)

Physically, Eq. (23) implies that the velocity jump at the
EEF is equal to the lost contribution of the kth joint velocity
(−jkq̇k) plus the contribution of the compensating velocity
of the other joints (J + �J)u. Having zero in the kth column
of (J + �J) will ensure that (J + �J)u cancels any control
command on the velocity of the kth joint. The faulty joint is
a locked joint and the calculated joint velocity vector u must
have a zero component in its kth row.

3.2. Minimization of the EEF velocity jump subjected to a
single joint fault
This control input is obtained in a way to optimally maintain
the velocity of the EEF, despite of the failure. Therefore, an
optimality problem can be defined based on minimum EEF
velocity jump for the velocity of the EEF after the failure. The
norm of the EEF velocity jump is used for this minimization.
The norm is

‖�ẋ‖2 = �ẋT�ẋ = (�Jq̇ + (J + �J)u)T(�Jq̇

+(J + �J)u). (24)

This norm can be used for minimization of the EEF velocity
jump to obtain the optimal control input of u. In the optimal
case, the velocity jump is zero ‖�ẋ‖ = 0. This optimum

case requires the vector of the EEF velocity jump to be zero
�ẋ = 0 and by substituting to Eq. (23)

(J + �J)uopt = jkq̇k, (25)

where uopt is the optimal control input for joint velocities to
minimize the EEF velocity jump. Expansion of Eq. (25) is

⎧⎪⎨
⎪⎩

j11u1 + · · · + j1(k−1)uk−1 + j1(k+1)uk+1 + · · · + j1nun = j1kq̇k,
· · ·

ji1u1 + · · · + ji(k−1)uk−1 + ji1(k+1)uk+1 + · · · + jinun = jikq̇k,
· · ·

jm1u1 + · · · + jm(k−1)uk−1 + jm(k+1)uk+1 + · · · + jmnun = jmkq̇k.

(26)

Using the reduced Jacobian matrix in Eq. (9), and
defining the reduced control input as ku =
[ku1

ku2 . . . kuk−1
kuk+1 . . . kun ]T, Eq. (26) is

encapsulated in

kJkuopt = jkq̇k. (27)

kuopt is same as uopt except the kth row has been eliminated.
Equation (27) means that the optimal joint velocity must

provide the same contribution to the velocity of the EEF as
that of the lost contribution of the faulty joint. By comparing
Eqs. (25) and (27), then (J + �J)uopt = kJkuopt and using
this property in the norm of the velocity jump (24) results in

‖�ẋ‖2 = (−jkq̇k + kJkuopt)T(−jkq̇k + kJkuopt). (28)

Equation (28) is then optimally solved by using least-square
technique as

kuopt = (kJ)†jkq̇k, (29)

where (kJ)† is Penrose–Moore or the pseudoinverse of
kJ. This pseudoinverse is only defined for nonsingular
configuration of the faulty manipulators that is equivalent
to the full rank of reduced Jacobian matrices. If the matrix
kJ is a fat and full-rank matrix, then the pseudoinverse is
obtained via right inverse of kJ by

(kJ)† = (kJ)T((kJ)(kJ)T)−1. (30)

If kJ is a square and full-rank matrix, then (kJ)† = (kJ)−1.
If matrix kJ becomes skinny matrix and full rank, then the

pseudoinverse is defined via left inverse of kJ as

(kJ)† = ((kJ)T kJ)−1(kJ)T. (31)

Finally, by replacing pseudoinverse in Eq. (29), the control
input vector is obtained. Then, by reconstructing uopt from
its reduced form of kuopt, which can be done by adding a
zero row to the kth row of kuopt as

uopt = [
ku

opt
1 . . . ku

opt
k−1 0 ku

opt
k . . . ku

opt
n−1

]T
.

(32)
This is the vector of the optimal control input for the

healthy joints. This input optimally compensates the EEF
velocity jump when a fault occurs to the kth joint of the
manipulator. Equations (29) and (32) provide a framework

https://doi.org/10.1017/S0263574711000671 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000671


Optimal mapping of joint faults into healthy joint velocity space for fault-tolerant redundant manipulators 639

for optimal mapping of the loss contribution of the faulty
joint (jkq̇k) to the compensating joint velocity of the healthy
joints (uopt). This framework can be used when a fault occurs
in the kth joint of the manipulator. For other joint failures
and if uopt is obtained for each the other joints, then a square
matrix V ∈ Rnn can be defined form each uopt as its column.
This matrix includes the optimal control input of Eq. (32)
for any single locked joint of an n-DOF manipulator and it
can be used for the fault tolerance of any single locked joint
failures of the manipulator. A method to compute V is to
define a matrix W ∈ Rn×(n−1) as

W = [w1 w2 ... wn ], (33)

where wk is the kth column of W and each column is obtained
by wk = kuopt = (kJ)†jkq̇k when k = 1, . . . , n. The closed
form of matrix W is

W = [
(1J)†j1 (2J)†j2 . . . (nJ)†jn

]
diag(q̇), (34)

where diag(q̇) is a diagonal matrix in Rn×n, and q̇ is vector of
diagonal element. Then, the matrix V is obtained by inserting
a zero value into diagonal positions for each column of W.

3.3. Minimum EEF velocity jump due to single locked joint
faults
If �ẋ 	= 0, then an EEF velocity jump has been occurred. By
using Eq. (25) into Eq. (23), the minimum velocity jump of
the EEF is indicated as

�ẋmin = −jkq̇k + kJkuopt. (35)

Substituting kuopt that was obtained in Eq. (29) results in a
velocity jump of

�ẋmin = −jkq̇k + kJ(kJ)†jkq̇k = (kJ(kJ)† − I)jkq̇k, (36)

where I ∈ Rm×m is an identity matrix. The reduced Jacobian
matrices are assumed full rank but it may become skinny
especially when multiple failures occur.

If the reduced Jacobian matrix is a square full rank or
fat full-rank matrix, then using the pseudoinverse gives
kJ(kJ)† = I, and consequently, the EEF velocity jump
becomes zero

�ẋmin = (kJ(kJ)† − I )jkq̇k = 0. (37)

Therefore, the velocity jump in Eq. (37) is always zero for
square full rank and fat full rank reduced matrices. But if kJ
becomes skinny full-rank matrix (when J is square), then by
using the left inverse definition of pseudoinverse (31), the
velocity jump is obtained as

�ẋmin = (kJ((kJ)T kJ)−1(kJ)T − I)jkq̇k. (38)

In summary, the minimum EEF velocity jump for SLRMs
under the locked joint failure is

�ẋmin=
{

0 when kJ is square or fat full rank matrix,(
kJ((kJ)T kJ)−1(kJ)T − I

)
jk q̇k when kJ is skinny and full rank matrix.

(39)

Equation (39) can be used to study the conditions of having
a zero EEF velocity jump when a failure occurs to the kth
joint. The zero EEF velocity jump is equivalent to fully fault
tolerance. If it is not possible to have a zero EEF velocity
jump then, because it is a minimum EEF velocity jump, we
call it optimal fault tolerance.

3.4. Conditions of a zero EEF velocity jump
From Eq. (39), the conditions of a zero EEF velocity jump
are summarized as following:

(1) If the reduced Jacobian matrix is a square full rank or a
fat full-rank matrix.

(2) If q̇k = 0 when kJ is a skinny matrix.
(3) If kJ((kJ)T kJ)−1(kJ)T = I when kJ is a skinny matrix.
(4) If jk belongs to null space of kJ((kJ)T kJ)−1(kJ)T − I

when kJ is a skinny matrix.

The first condition is for the case that the reduced Jacobian
matrix is a square full rank or fat full-rank matrix. It was
clearly observed from Eq. (39) that this case results to a zero
EEF velocity jump. The last three conditions are observed
from (kJ((kJ)T kJ)−1(kJ)T − I)jkq̇k, which was for the case
when kJ is a skinny matrix. These conditions are discussed in
continue and it is shown that the third and fourth conditions
in the aforementioned list are not physically possible.

The second condition happens when q̇k = 0. In this case,
the velocity of the locked joint prior to the fault is zero. It is
clear that the fault in the previously stopped joint does not
provide any EEF velocity jump.

The third condition for having a zero velocity jump was
when kJ((kJ)T kJ)−1(kJ)T = I, the following Statement is
used to explain the third condition:
Statement 1: If A is an arbitrary skinny full-rank matrix,
then A(ATA)−1AT is called the optimal projection into the
column space of A. From matrix algebra, the A(ATA)−1AT

will be an identity matrix, if and only if, it is a square and
full-rank matrix and it is in contradiction to the skinny form
of A.

To have a physical interpretation of Statement 1, we know
that the column space of the Jacobian matrix is the velocity
space of the EEF. Therefore, kJ((kJ)T kJ)−1(kJ)T maps the
faulty joint contribution into the EEF velocity space of the
faulty manipulator. This mapping is complete when the range
space of kJ covers the velocity space, which is equivalent to
the range space of J. Therefore, the range space of kJ is
required to be equal to the range space of J. This implies that
the column rank of matrix kJ has to be equal to the column
rank of J. Here is the contradiction because kJ is a skinny
full rank and J is a square full-rank matrices and it is not
possible to have the same column rank.

The fourth condition of a zero velocity jump is when
jk belongs to the null space kJ((kJ)T kJ)−1(kJ)T − I. The
following Statement is used to explain this condition.
Statement 2: It is known that kJ((kJ)T kJ)−1(kJ)T − I is the
null space projection of kJT. It maps jkq̇k into the null space
of kJT. If jk is in the null space of kJ((kJ)T kJ)−1(kJ)T − I,
then it is in the row space of kJT. It clearly requires jk to be a
linear combination of the columns of kJ. Consequently, the
column rank of kJ needs to be the same as the column rank
of J because jk is linear combination of other columns of
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kJ. This is impossible because J is square full-rank matrix;
therefore, the columns of J are independent.

From the list of four aforementioned conditions, it was
understood that the only two following conditions are
necessary and sufficient conditions for a zero EEF velocity
jump:

(1) When the reduced Jacobian matrix is a full-rank square
or full-rank fat matrix.

(2) When the velocity of the locked joint at failure time is
zero.

4. Extension Toward Multiple Locked Joint Faults

4.1. Extension for two locked joint failures
The extension for two locked joint faults is obtained by using
the perturbation methodology, which was indicated earlier
for single joint failure. If the two locked joints are kth and lth
joints of the manipulator (let say k < l), then the perturbation
model for the velocity jump in Eq. (22) can be used when its
parameter is defined according to these failures. Removing
the columns of the Jacobian matrix due to the faults gives the
Jacobian matrix perturbation as

�J = [0 . . . −jk 0 . . . −jl 0 . . . 0 ], (40)

and if it is used in Eq. (22) then gives the EEF velocity jump
as

�ẋ = −jkq̇k − jl q̇l + (J + �J)u. (41)

Similar to the expansion that was shown in Eq. (26), it is easy
to show that

(J + �J)u = k,lJk,lu. (42)

Therefore, the EEF velocity jump is

�ẋ = −jkq̇k − jl q̇l + k,lJk,lu, (43)

where k,lu is the control input to minimize the EEF velocity
jump due to the faults. Equation (43) is solved that gives
the optimal control input for the fault tolerance of the
manipulator as

k,luopt = (k,lJ)†(jkq̇k + jl q̇l). (44)

The pseudoinverse (k,lJ)† in Eq. (44) requires that the reduced
Jacobian to be full rank.

Finally, the optimal input for compensating velocity jump
of the EEF is

uopt =[
k,lu

opt
1 . . . k,lu

opt
k−1 0 k,lu

opt
k ... k,lu

opt
l−1 0 k,lu

opt
l ... k,lu

opt
n−2

]T
.

(45)

For determining the minimum velocity jump, if k,lJ is full-
rank matrix, then the velocity jump for two locked joints
failure is derived using Eq. (44) in Eq. (43) as

�ẋmin = (k,lJ(k,lJ)† − I)(jkq̇k + jl q̇l). (46)

If the reduced Jacobian matrix of k,lJ is fat full-rank matrix,
then pseudoinverse is defined by the right inverse of k,lJ and
for the right inverse we have k,lJ(k,lJ)† = I, which results to
a zero EEF velocity jump. When k,lJ is a square full-rank
matrix, then k,lJ(k,lJ)† = I that results to a zero EEF velocity
jump. But when k,lJ is a skinny full-rank matrix, then the left
inverse of k,lJ is used and the EEF velocity jump is obtained
by

�ẋmin = (k,lJ((k,lJ)T k,lJ)−1(k,lJ)T − I)(jkq̇k + jl q̇l). (47)

For a zero EEF velocity jump, in addition to the
conditions that were mentioned for single joint failures,
a new condition exists. This condition occurs if jkq̇k and
jl q̇l do not independently belong to the null space of
k,lJ((k,lJ)T k,lJ)−1(k,lJ)T − I, but their sum jkq̇k + jl q̇l is in
this null space. Physically, this can happen when the kth and
the lth joints are canceling the contribution of each other.
Therefore, their motion belongs to the self-motion manifold
of the manipulator. In this case, if both joints fail at the same
time, no EEF velocity jump occurs.

4.2. Extension for multiple faults: A general mapping
The extension toward multiple faults is proposed in this
section. The extension can be derived by the perturbation
method. The perturbations are required to be defined from
the list of the faulty joints same as what was done for two
faults. If r ≤ n is the number of the locked joint faults, then
the extension of the mapping framework for fault tolerance
is derived as

Sr uopt = (Sr J)†
(∑

k∈Sr

jkq̇k

)
(48)

for set of faulty joint Sr when Sr = {i1 i2 ... ir |
i1 < i2 < ... < ir ; 1 ≤ i1, i2, . . . ir ≤ n }, the optimal input
is obtained analogically to that was indicated for fault
tolerance of two joint failures in Eq. (44). Sr and Sr J
were previously introduced in Eq. (16). Sr J was obtained
by eliminating the columns of J associated to the faults
determined by Sr . If Sr J remains full rank then the
pseudoinverse in Eq. (48) is meaningful and the EEF
velocity jump of either for fat full rank, square full rank,
or skinny full rank matrix of Sr J gives �ẋmin = (Sr J(Sr J)† −
I)(

∑
k∈Sr

jkq̇k).
When the reduced Jacobian matrix with multiple faults

is still square full rank or fat full rank, then using the
regular inverse or right inverse of Sr J results in Sr J(Sr J)† = I,
which gives a zero EEF velocity jump. But if the reduced
Jacobian matrix is skinny full-rank matrix, the velocity jump
is obtained by the left inverse of Sr J and it gives the EEF
velocity jump as

�ẋmin = (Sr J((Sr J)T Sr J)−1(Sr J)T − I)

(∑
k∈Sr

jkq̇k

)
. (49)

The conditions of a zero EEF velocity jump include three
conditions. The first is when the reduced Jacobian matrix
remains square full rank or fat full-rank matrix, the second
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is when the velocity of the all locked joints at failure time is
zero. The third is when the faulty joints motion was in the self-
motion of the manipulator or

∑
k∈Sr

jkq̇k = 0. Physically,
this can happen when the faulty joints are canceling the
contribution of each other to the velocity of the EEF. Hence,
their motion belongs to the self-motion manifold of the
manipulator, if all fail at the same time, no EEF velocity
jump occurs.

4.3. QR-decomposition and minimum velocity jump
problem
Motivated by the benefits of QR-decomposition and by
knowing that in QR-decomposition, the matrix Q is an
orthogonal matrix or QQT = I, and R is an upper triangular
matrix, one can simplify the results provided in Eqs. (48) and
(49). The QR-decomposition for the Jacobian matrix is

J = QR. (50)

If QR-decomposition for the reduced Jacobian matrix Sr J is
indicated by

Sf J = Q̃R̃. (51)

Then, Q̃ is an orthogonal matrix or Q̃−1 = Q̃T. The optimum
joint velocity control input in Eq. (48) is obtained as

Sr uopt = (Sr J)†
(∑

k∈Sr

jkq̇k

)
= R̃†Q̃T

(∑
k∈Sr

jkq̇k

)
, (52)

and the EEF velocity jump is obtained as

�ẋmin = Q̃(R̃R̃
† − I)Q̃T

(∑
k∈Sr

jkq̇k

)
. (53)

This velocity jump is true either for case that the reduced
Jacobian matrix remains square full rank, fat full rank, or
skinny full-rank matrix. If the reduced Jacobian matrix is
square full rank or fat full rank, then using the regular inverse

or the right inverse of Sr J gives R̃R̃
† = I, which results to a

zero EEF velocity jump. But if the Jacobian matrix is a skinny
full-rank matrix, then the left inverse of Sr J is used and the
EEF velocity jump is obtained by

�ẋmin = Q̃(R̃(R̃TR̃)−1R̃T − I)Q̃T

(∑
k∈Sr

jkq̇k

)
. (54)

5. Generalized Optimal Mapping and Velocity Jump
This section summarizes the results of the previous sections.
The framework for a generalized optimal mapping with a
minimum EEF velocity jump is presented in a form of a
theorem. Then, it outlines conditions of a zero EEF velocity
jump.

5.1. Generalized optimal mapping
Theorem: The optimal mapping with a minimum EEF velocity
jump is introduced as follows:

If J ∈ Rm×n is the Jacobian matrix of a serial manipulator at
a given nonsingular configuration, and if the manipulator is
subjected to r locked joint failures (r ≤ n), and if the faults
are indicated by an ascending set of

Sr = { i1 i2 ... ir | i1 < i2 < ... < ir ; 1 ≤ i1, i2, ..., ir ≤ n }.
(55)

Then, the optimum control input for the healthy joint Sr uopt

is obtained by

Sr uopt = (Sr J)†
(∑

k∈Sr

jkq̇k

)
, (56)

where (Sr J)† is the pseudoinverse of Sr J, and Sr J is the reduced
Jacobian matrix of J. The pseudoinverse of a square full-rank
matrix is the inverse of the matrix; for fat full-rank matrix, it is
the right inverse of Sr J, which is (Sr J)† = (Sr J)T(Sr J(Sr J)T)−1.
The pseudoinverse of the skinny full-rank matrix of Sr J is the
left inverse of Sr J, which is(Sr J)† = ((Sr J)T Sr J)−1(Sr J)T.

5.2. Minimum EEF velocity jump
If the mapping in Eq. (56) is used then the EEF velocity
jump is a minimum EEF velocity jump. This minimum EEF
velocity jump is calculated as

�ẋmin = (Sr J(Sr J)† − I)

(∑
k∈Sr

jkq̇k

)
. (57)

For nonsingular configurations, Sr J is a full rank. Depending
to the size of Sr J if regular, right or left inverse is used instead
of pseudoinverse, then the minimum EEF velocity jump is

�ẋmin

=
{

0, when Sr J is square/fat full rank matrix,

(Sr J((Sr J)T Sr J)−1(Sr J)T − I)
( ∑

k∈Sr

jk q̇k

)
, when Sr J is skinny full rank matrix.

(58)

5.3. Conditions of a zero EEF velocity jump
By using Eq. (58), a zero EEF velocity jump is achieved
when the following conditions exist:

(1) If the reduced Jacobian matrix Sr J faults square full rank
or fat full-rank matrix.

(2) If velocities of the faulty joints at to fault time are zero
when Sr J is a skinny full rank.

(3) If
∑

k∈Sr
jkq̇k = 0, the faulty joint velocities are not zero

and Sr J is skinny full rank.

To demonstrate the validity of this generalized framework,
three case studies are implemented in the following sections.

6. Case Study I: Optimal Mapping for a 5-DOF Planar
Manipulator
A 5-DOF planar manipulator is modeled using MATLAB
Robotics Toolbox.38 The Denavit–Hartenberg (D-H)
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Table I. D-H parameters of a 5-DOF planar manipulator.

Link sk (m) dk (m) αk qk

1 0.05 0.45 0 q1

2 0.05 0.32 0 q2

3 0.05 0.18 0 q3

4 0.05 0.12 0 q4

5 0.05 0.08 0 q5

Fig. 1. (Colour online) A 5-DOF planar manipulator and sample of
planar trajectory, the reference frame for the Jacobian matrices is
in the frame attached to the EEF.

parameters of the manipulator are shown in Table I. In
D-H parameters, sk is the joint offset, qk is the joint
angle, dk is the link length, and αk is the link twist angle.
The manipulator’s configuration parameters and the joint
velocities at the configuration shown in Fig. 1 are indicated
in Table II. For this configuration and the indicated joint
velocities, the velocity of the EEF of the manipulator is
ẋ = [0.26 0.20 ]T m/s.

The last column of Table II is computed by ‖jkq̇k‖/‖ẋ‖,
which indicates how much each joint contributes to the
motion of the manipulator and it is divided by the velocity of
the EEF.

Four fault scenarios have been tested by using the model
of the manipulator. The fault scenarios include some cases
of a single failure up to four locked joint failures.

6.1. Scenario 1: Single joint faults
There are five cases of single joint failures. All five cases are
considered in scenario 1. The positional Jacobian matrix of
the manipulator in the reference frame attached to the EEF
of the manipulator is obtained as

J =
[

0.64 0.48 0.16 0.00 0.00
−0.15 0.27 0.27 0.20 0.08

]
. (59)

In the first case of single joint failures, if the first joint fails,
then the reduced Jacobian matrix and the eliminated column

Table II. Joint velocities and joint angels of the planar
manipulator at a fault instance. These are used in all fault

scenarios 1–4.

Contribution into
Joint Angle q Velocity q̇ the motion of the
No in degree in rad/s manipulator

1 10 0.05 0.10
2 70 0.40 0.67
3 25 0.20 0.20
4 65 0.10 0.07
5 0 0.30 0.07

Table III. Joint velocities with minimum EEF velocity jump
(values are in rad/s).

Second
Joint joint Third joint Fourth joint Fifth joint
No. fault fault fault fault

1 0.26 0.01 0.02 0.02
2 0 0.52 0.43 0.43
3 0.56 0 0.23 0.23
4 0.29 0.18 0 0.12
5 0.38 0.33 0.31 0
Velocity
Jump

0.00 m/s 0.00 m/s 0.00 m/s 0.00 m/s

of J are

1J =
[

0.48 0.16 0.00 0.00
0.27 0.27 0.20 0.08

]
, (60)

j1 =
[

0.64
−0.15

]
. (61)

The optimal control input to tolerate the first joint failure is
obtained via the mapping (29) as

1uopt = (1J)†j1q̇1 ⇒ 1uopt = [ 0.08 −0.04 −0.08 −0.03 ]Trad/s,

(62)

which is a required change of the velocity for second, third,
fourth, and fifth joints to compensate the first joint fault. By
Eq. (32), uopt = [0 0.08 −0.04 −0.08 −0.03 ]T.
Then, the vector of joint velocities is q̇ =
[0 0.48 0.16 0.02 0.27 ] rad/s that maintains
the EEF velocity. The next step is to calculate the EEF
velocity jump. The EEF velocity jump is determined via
�ẋmin = (1J(1J)† − I)j1q̇1. Substitution of the parameters
results in a zero EEF velocity jump. Zero jump is confirmed
if q̇ = [0 0.48 0.16 0.02 0.27 ] rad/s is used with the
Jacobian matrix of the healthy manipulator, which indicates
fully fault tolerance.

The same approach as the one for the fault in first joint is
used for other single joint failures. Table III presents joint
velocities for the fault tolerance of any of single joint faults.
From the EEF velocity jump shown in the last row of the
table, the fully faults tolerance is observed for all single joint
failures.
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Table IV. Joint velocities with minimum EEF velocity jump
(values are in rad/s).

Second and third Second and fourth
Joint No. joint fault joint fault

1 0.40 0.22
2 0 0
3 0 0.73
4 1.04 0
5 0.68 0.42
Velocity jump 0.00 m/s 0.00 m/s

Table V. Joint velocities with minimum EEF velocity jump (values
are in rad/s).

Second, third, and Second, fourth, and
Joint No. fourth joint fault fifth joint fault

1 0.40 0.19
2 0 0
3 0 0.83
4 0 0
5 3.27 0
Velocity jump 0.00m/s 0.00m/s

Table VI. D-H parameters of a 5-DOF spatial manipulator.

Link sk (m) dk (m) αk (Deg) qk

1 0.05 0.45 0 q1

2 0.05 0.32 90 q2

3 0.05 0.18 0 q3

4 0.05 0.12 0 q4

5 0.05 0.08 0 q5

6.2. Scenario 2: Two joint faults
There are ten cases of two joint failures. Two of the cases
including the faults in second and third joints and the faults
in second and fourth joints are studied in this scenario.
The Jacobian matrix in Eq. (59) is used to obtain under
the mapping in Eq. (44) and the results of the optimal
mapping are shown in Table IV. The minimum velocity jump
is obtained by Eq. (45).

6.3. Scenario 3: Three joint faults
There are ten cases of three joint failures. In this scenario,
two of these ten cases including the faults of second, third,
and fourth joints and the faults of second, fourth, and fifth
joints are studied. The Jacobian matrix in Eq. (59) is used
with the framework in Eqs. (56) and (57). Table V shows
the results of the optimal mapping and the EEF minimum
velocity jumps.

6.4. Scenario 4: Four joint faults
There are five cases of four joint failures. In this scenario, the
one with the fault in the second, third, fourth, and fifth joints
is studied. The Jacobian matrix in Eq. (59) is used under the
framework in Eqs. (56) and (57) and optimal joint velocity
is then computed as q̇ = [0.31 0 0 0 0 ]T rad/s. The
minimum EEF velocity jump is then obtained as �ẋmin =
[−0.06 −0.25 ]T m/s. The norm of the velocity jump is
‖�ẋmin‖ = 0.26 m/s.

Table VII. Joint velocities and joint angels of the manipulator
at fault instance. These are used in all fault scenarios 1–4.

Contribution into
Angle q Velocity q̇ motion of the

Joint No. (deg) (rad/s) manipulator

1 10 0.05 0.19
2 70 0.40 0.89
3 25 0.20 0.28
4 65 0.10 0.09
5 0 0.30 0.11

Fig. 2. (Colour online) A 5-DOF spatial manipulator, the reference
frame for the Jacobian matrices is in the frame attached to the EEF.

The above scenarios indicate that the faults up to three
joints are fully compensated because the manipulator has 5-
DOF and the workspace is R2. But in the fourth scenario with
one healthy joint, the framework does not fully compensate
the EEF velocity jump. However, the provided joint velocities
result in a minimum EEF velocity jump. These observations
are consistent with the conditions of a zero velocity jump. It
was mentioned earlier that the reference frame of the Jacobian
matrix is the frame attached to the EEF. Similar EEF velocity
jump is observed if the Jacobian matrix is calculated in the
reference frame attached to the base of the manipulator.

7. Case Study II: Optimal Mapping for a Spatial 5-DOF
Manipulator
A 5-DOF manipulator with the D-H parameters shown in
Table VI is modeled using MATLAB Robotic Toolbox. The
aim of this case study is to investigate the framework in
Eqs. (57) and (58) for maintaining the linear velocity of
the EEF of nonplanar manipulator. Table VII indicates the
joint angles and joint velocities of the manipulator. These
parameters have been used for the four fault scenarios in this
section. The configuration of the manipulator in Table VII is
indicated in Fig. 2. The EEF velocity at this configuration is
�ẋmin = [0.03 0.01 −0.22 ]T m/s.
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Table VIII. Joint velocities with minimum EEF velocity jump (values are in rad/s).

Joint No. Second joint fault Third joint fault Fourth joint fault Fifth joint fault

1 0.35 −0.03 0.03 0.01
2 0 0.50 0.46 0.45
3 0.20 0 0.20 0.20
4 0.59 0.21 0 0.15
5 0.50 0.34 0.33 0
Velocity jump 0.00 m/s 0.03 m/s 0.00 m/s 0.00 m/s

The framework for single joint failure in Eq. (29), two joint
failures in Eq. (44), three and four joint failures in Eq. (56)
are examined with four fault scenarios in below.

The manipulator positional Jacobian matrix in the
reference frame attached to the EEF is

J =
⎡
⎣ 0.00 0.00 0.16 0.00 0.00

−0.57 −0.15 0.28 0.20 0.08
−0.64 −0.48 0.00 0.00 0.00

⎤
⎦. (63)

7.1. Scenario 1: Single joint failure
There are five cases of single joint failures. All five are
considered in this scenario.

If the first joint fails, then the reduced Jacobian matrix and
the eliminated column are

1J =
⎡
⎣ 0.00 0.16 0.00 0.00

−0.15 0.28 0.20 0.08
−0.48 0.00 0.00 0.00

⎤
⎦, (64)

j1 = [−0.00 −0.57 −0.64 ]T. (65)

The control input for compensating the EEF
velocity jump is obtained by 1uopt = (1J)†j1q̇1 as
1uopt = [0.07 0.00 −0.08 −0.03 ]T rad/s. This gives
the optimal control input of uopt as uopt =
[0.00 0.07 0.00 −0.08 −0.03 ]T rad/s. The optimal
joint velocity with minimum EEF velocity jump is
q̇ = [0.00 0.47 0.20 0.02 0.27 ]T rad/s. The velocity
jump is determined by �ẋmin = (1J(1J)† − I)j1q̇1. By
substituting the values, the minimum EEF velocity jump is
‖�ẋmin‖ = 0 m/s. The zero EEF velocity jump is obtained
because the reduced Jacobian matrix is full column rank.
Table VIII indicates joint velocities for the failure of the
other single joints. The joint velocities in each column of the
tables have been calculated by the same approach as that for
the first joint. The minimum EEF velocity jump is shown
in the last row of the table. From the EEF velocity jump,
it is observed that only the fault in the third joint causes
a nonzero EEF velocity jump. The third joint is critical
because losing this joint makes the reduced Jacobian matrix
close to be rank deficient Jacobian matrix. For this failure,
the minimum velocity jump is 0.03 m/s. The velocity jump
vector is �ẋmin = [−0.03 0 0 ]T m/s.

7.2. Scenario 2: Two joint faults
There are ten cases of two joint failures. Two of these cases
are studied in this scenario. The results of the mapping are
shown in Table IX. The second column of the table presents

Table IX. Joint velocities with minimum EEF velocity jump
(values are in rad/s).

Second and third Second and fourth
Joint No. joint fault joint fault

1 0.35 0.35
2 0 0
3 0 0.20
4 0.83 0
5 0.59 1.97
Velocity jump 0.03 m/s 0.00 m/s

Table X. Joint velocities with minimum EEF velocity jump
(values are in rad/s).

Second, third and Second, fourth and
Joint No. fourth joint fault fifth joint fault

1 0.35 0.31
2 0 0
3 0 0.55
4 0 0
5 2.66 0
Velocity jump 0.03 m/s 0.07 m/s

the optimal joint velocities when a fault occurs to second and
third joints of the manipulator. For this case, the minimum
velocity jump is 0.03 m/s and the EEF velocity jump vector
is �ẋmin = [−0.03 0 0 ]T m/s. The third column of the
table is for the faults of second and fourth joints. In this case,
fully fault tolerance has been achieved.

7.3. Scenario 3: Three joint faults
There are ten cases of three joint failures. Two of these cases
are studied in this scenario. The first one is for the fault in
second, third, and fourth joints of the manipulator. The result
of this case is shown in the second column in Table X. The
minimum velocity jump is then 0.03 m/s. The EEF velocity
jump vector is �ẋmin = [−0.03 0 0 ]T m/s.

The second case is for the fault in second, fourth, and fifth
joints. Results of the mapping for this case are shown in
the third column of the table and the EEF velocity jump
is 0.07 m/s. In this case, the EEF velocity jump vector
is �ẋmin = [0.06 −0.03 0.03 ]Tm/s. The EEF velocity
jump has been occurred because the reduced matrix is rank
deficient.

7.4. Scenario 4: Four joint faults
There are five cases of four joint failures. In this scenario, the
case where the fault occurs in second, third, fourth, and fifth
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Fig. 3. (Colour online) Joint trajectories for the indicated trajectory
in Fig.2. These trajectories are based on a trajectory design function
in Matlab Robotics Toolbox.

joints is studied. Using the generalized framework (56) and
the Jacobian matrix in Eq. (63), the optimal joint velocity
is obtained as q̇ = [0.31 0 0 0 0 ]T rad/s. This joint
velocity results to the minimum EEF velocity jump vector
of �ẋmin = [0.06 −0.03 0.03 ]T m/s. The norm of the
minimum EEF velocity jump is ‖�ẋmin‖ = 0.073 m/s.

8. Case Study III: A Simulation Study
The framework in Eqs. (56) and (57) can be used for
whole workspace trajectory of the manipulator to optimally
maintain the velocity of the EEF when it is subjected to a
joint fault. The fault-tolerant operation of a 5-DOF positional
manipulator with D-H parameters in Table VI is presented
in this section. The workspace trajectory of the manipulator
starts from xs = [1.150 −0.134 0.034 ]T m and ends to
xd = [0.781 0.509 0.280 ]T m. This trajectory is shown
in Fig. 2. The corresponding joint trajectories are shown in
Fig. 3.

Two simulations have been developed to move the EEF on
the trajectory shown in Fig. 2. The first simulation is for the

Fig. 4. (Colour online) Faulty manipulator’s joint trajectory (the
third joint locked at 50th second).

case of a healthy manipulator, and the second one is when
the third joint of the manipulator is locked. The manipulator
with the fault in the third joint is called faulty manipulator.
The objective of the simulation is to find the manipulator’s
joint velocity and EEF trajectory for the healthy manipulator
and the faulty manipulator. The proposed mapping is for the
faulty manipulator used to maintain the EEF velocity of the
healthy manipulator. The fault occurs at the 50th second of
the motion to the faulty manipulator. A hundred seconds of
the motion of both manipulators is implemented in these
simulations. The third joint of the manipulator in the second
simulation is locked at the 50th second. The required joint
velocity commands to compensate this fault were computed
and it is indicated in Fig. 4.

Seven snapshots of the motion of the healthy and faulty
manipulator’s have been captured and are shown in Fig. 5.
They indicate the configurations of the healthy and faulty
manipulators and their EEF trajectory. It is seen that even
the trajectory has been efficiently maintained despite of the
third joint failure. The first column of previous page is with
the snapshots of the healthy manipulator, and the second
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Fig. 5. (Colour online) Manipulators’ configurations for indicated times. The first simulation results in left side are for the healthy
manipulator and second simulation results in right side are for the faulty manipulator.

https://doi.org/10.1017/S0263574711000671 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000671


Optimal mapping of joint faults into healthy joint velocity space for fault-tolerant redundant manipulators 647

Fig. 6. (Colour online) EEF velocity for the healthy and the faulty
manipulators and minimum EEF velocity jump.

column is with the corresponding snapshots for the faulty
manipulator.

9. Discussion on the Case Studies
Results of the first two case studies for planar and positional
manipulators confirm that the proposed framework and the
conditions for having a zero velocity jump can be used for
the fault tolerance of the robotic manipulators. For the case
study III, we have extended the proposed framework for the
whole motion of the manipulators. From the results of the
simulations, the joint angle trajectories in Figs. 3 and 4 are
exactly the same between 0 to 50th second. At the 50th
second, the third joint is locked and it remains unchanged as
Fig. 4 shows. After the failure time, the mapping framework
is used maintain the EEF velocity.

Figure 6 compares the velocity of the EEF for the healthy
manipulator and the faulty manipulator. The performance of
compensation is good until the 65th second of the motion.
At this time, the reduced Jacobian matrix is very close to be
rank deficient and caused an indicated velocity jump. From
the EEF velocity jump shown in Fig. 6, the maximum EEF
velocity jump is determined as 0.0015 m/s. From the result
of the figures in Table XI, the faulty manipulator has tried to
maintain the trajectory of the healthy manipulator. This has
been achieved by deploying the control input computed by
via the proposed mapping in this paper.

9.1. Comparison of the proposed approach with other work
on velocity jump
The minimum EEF velocity jump was studied in this paper.
From the literature, there are a number of references, which
have addressed the velocity jump. However, they have not
covered all the aspects and the generalization that we have
addressed in the present paper. For instance, a minimum JVJ
for redundant manipulators has been addressed extensively
in refs. [31, 32, 39, 40]. Within those work, the minimum
JVJ has been achieved via a minimization problem subjected
to a fault in kth joint. Following minimization problem has

been used to achieve minimum JVJ:

Min
1

2
(kq̇ − q̇)T(kq̇ − q̇). (66)

Subjected to ẋ = kJkq̇, (67)

where q̇ is the joint velocity vector prior the failure and
kq̇ is the joint velocity vector after the failure occurs.
This minimization problem has been solved using Lagrange
multiplier method and the optimal mapping with the
minimum JVJ was derived:31,32

kq̇ = (kJ)†ẋ. (68)

It is clear, that the work in refs. [31, 32] is not addressing the
minimum EEF velocity jump; however, they are assuming it
zero. We have obtained an optimal mapping that can map the
lost contribution of the faulty joint to the compensating joint
velocities of the healthy joints instead of just reconfiguring
the joint velocities. In the present work and by using
matrix perturbation methodology, a generalized framework
is proposed. This framework includes the cases with either
single or multiple joint failures.

10. Conclusion
Optimal fault mapping was presented in this paper to tolerate
the effect of the locked joint failures on the EEF velocity
of SLMs. The perturbation methodology was used for the
study of the locked joint failures of the manipulators to
obtain the EEF velocity jump due to the failures. Then,
via least-square technique, the minimum EEF velocity
jump was obtained through a mapping. The concepts and
mathematical properties of the proposed mapping were
discussed. Extension of the mapping for multiple locked
joint failures was presented and a general framework for
the mapping was introduced. The mapping gives the control
law to minimize the EEF velocity jump when locked joint
faults occur to the manipulators. The conditions for a zero
EEF velocity jump were addressed.

The proposed mapping framework was evaluated for
optimal fault tolerance of the positional velocities of a planar
manipulator and a spatial manipulator in three case studies.
The first two case studies validated the proposed mapping
for instantaneous fault tolerance by calculating the velocity
jumps for different fault scenarios in a given configuration
of manipulators. The third case study used the proposed
framework for a faulty manipulator to optimally maintain
the EEF velocity and EEF trajectory provided by a healthy
manipulator.
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